Articles | Volume 6, issue 3
https://doi.org/10.5194/wcd-6-927-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-6-927-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climatology, long-term variability and trend of resolved gravity wave drag in the stratosphere revealed by ERA5
Zuzana Procházková
CORRESPONDING AUTHOR
Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
Radek Zajíček
Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
Related authors
No articles found.
Beth Dingley, James A. Anstey, Marta Abalos, Carsten Abraham, Tommi Bergman, Lisa Bock, Sonya Fiddes, Birgit Hassler, Ryan J. Kramer, Fei Luo, Fiona M. O'Connor, Petr Šácha, Isla R. Simpson, Laura J. Wilcox, and Mark D. Zelinka
EGUsphere, https://doi.org/10.5194/egusphere-2025-3189, https://doi.org/10.5194/egusphere-2025-3189, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This manuscript defines as a list of variables and scientific opportunities which are requested from the CMIP7 Assessment Fast Track to address open atmospheric science questions. The list reflects the output of a large public community engagement effort, coordinated across autumn 2025 through to summer 2025.
Masatomo Fujiwara, Patrick Martineau, Jonathon S. Wright, Marta Abalos, Petr Šácha, Yoshio Kawatani, Sean M. Davis, Thomas Birner, and Beatriz M. Monge-Sanz
Atmos. Chem. Phys., 24, 7873–7898, https://doi.org/10.5194/acp-24-7873-2024, https://doi.org/10.5194/acp-24-7873-2024, 2024
Short summary
Short summary
A climatology of the major variables and terms of the transformed Eulerian-mean (TEM) momentum and thermodynamic equations from four global atmospheric reanalyses is evaluated. The spread among reanalysis TEM momentum balance terms is around 10 % in Northern Hemisphere winter and up to 50 % in Southern Hemisphere winter. The largest uncertainties in the thermodynamic equation (about 50 %) are in the vertical advection, which does not show a structure consistent with the differences in heating.
Cited articles
Achatz, U.: Atmospheric dynamics, vol. 10, Springer, https://doi.org/10.1007/978-3-662-63941-2, 2022. a
Achatz, U., Alexander, M. J., Becker, E., Chun, H.-Y., Dörnbrack, A., Holt, L., Plougonven, R., Polichtchouk, I., Sato, K., Sheshadri, A., Stephen, C. C., van Niekert, A., and Wright, C. J.: Atmospheric gravity waves: Processes and parameterization, J. Atmos. Sci., 81, 237–262, https://doi.org/10.1175/JAS-D-23-0210.1, 2024. a, b, c
Añel, J. A., Cnossen, I., Antuña‐Marrero, J. C., Beig, G., Brown, M. K., Doornbos, E. : The need for better monitoring of climate change in the middle and upper atmosphere, AGU Advances, 6, e2024AV001465, https://doi.org/10.1029/2024AV001465, 2025. a
Ayorinde, T. T., Wrasse, C. M., Takahashi, H., Barros, D., Figueiredo, C. A. O. B., da silva, L. A., and Bilibio, A. V.: Investigation of the long-term variation of gravity waves over South America using empirical orthogonal function analysis, Earth Planets Space, 76, 105, https://doi.org/10.1186/s40623-024-02045-0, 2024. a
Clette, F. and Lefèvre, L.: SILSO Sunspot Number V2.0, WDC SILSO – Royal Observatory of Belgium (ROB) [data set], https://doi.org/10.24414/qnza-ac80, 2015 (updated 2022). a
Daley, R. and Bourassa, Y.: Rhomboidal versus triangular spherical harmonic truncation: Some verification statistics, Atmos.-Ocean, 16, 187–196, https://doi.org/10.1080/07055900.1978.9649026, 1978. a
Dörnbrack, A., Eckermann, S. D., Williams, B. P., and Haggerty, J.: Stratospheric gravity waves excited by a propagating Rossby wave train – A DEEPWAVE case study, J. Atmos. Sci., 79, 567–591, https://doi.org/10.1175/JAS-D-21-0057.1, 2022. a
Eichinger, R., Garny, H., Šácha, P., Danker, J., Dietmüller, S., and Oberländer-Hayn, S.: Effects of missing gravity waves on stratospheric dynamics; part 1: climatology, Clim. Dynam., 54, 3165–3183, https://doi.org/10.1007/s00382-020-05166-w, 2020. a, b
Eichinger, R., Rhode, S., Garny, H., Preusse, P., Pisoft, P., Kuchař, A., Jöckel, P., Kerkweg, A., and Kern, B.: Emulating lateral gravity wave propagation in a global chemistry–climate model (EMAC v2.55.2) through horizontal flux redistribution, Geosci. Model Dev., 16, 5561–5583, https://doi.org/10.5194/gmd-16-5561-2023, 2023. a
Ern, M., Trinh, Q. T., Preusse, P., Gille, J. C., Mlynczak, M. G., Russell III, J. M., and Riese, M.: GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings, Earth Syst. Sci. Data, 10, 857–892, https://doi.org/10.5194/essd-10-857-2018, 2018. a
Frederiksen, J. S. and Frederiksen, C. S.: Twentieth century winter changes in Southern Hemisphere synoptic weather modes, Adv. Meteorol., 2011, 353829, https://doi.org/10.1155/2011/353829, 2011. a
Freie Universität Berlin: Die Quasi-Biennial-Oszillation (QBO) Datenreihe, Freie Universität Berlin [data set], https://www.geo.fu-berlin.de/met/ag/strat/produkte/qbo/index.html (last access: September 2022), 2021. a
Fritts, D. C.: Gravity wave saturation in the middle atmosphere: A review of theory and observations, Rev. Geophys., 22, 275–308, https://doi.org/10.1029/RG022i003p00275, 1984. a
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, https://doi.org/10.1029/2001RG000106, 2003. a, b
Fujiwara, M., Martineau, P., Wright, J. S., Abalos, M., Šácha, P., Kawatani, Y., Davis, S. M., Birner, T., and Monge-Sanz, B. M.: Climatology of the terms and variables of transformed Eulerian-mean (TEM) equations from multiple reanalyses: MERRA-2, JRA-55, ERA-Interim, and CFSR, Atmos. Chem. Phys., 24, 7873–7898, https://doi.org/10.5194/acp-24-7873-2024, 2024. a
Gisinger, S., Polichtchouk, I., Dörnbrack, A., Reichert, R., Kaifler, B., Kaifler, N., Rapp, M., and Sandu, I.: Gravity-wave-driven seasonal variability of temperature differences between ECMWF IFS and Rayleigh lidar measurements in the Lee of the Southern Andes, J. Geophys. Res.-Atmos., 127, e2021JD036270, https://doi.org/10.1029/2021JD036270, 2022. a
Gupta, A., Birner, T., Dörnbrack, A., and Polichtchouk, I.: Importance of gravity wave forcing for springtime southern polar vortex breakdown as revealed by ERA5, Geophys. Res. Lett., 48, e2021GL092762, https://doi.org/10.1029/2021GL092762, 2021. a, b
Hájková, D. and Šácha, P.: Parameterized orographic gravity wave drag and dynamical effects in CMIP6 models, Clim. Dynam., 62, 2259–2284, https://doi.org/10.1007/s00382-023-07021-0, 2024. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: Complete ERA5 from 1940: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service (C3S) Data Store (CDS) [data set], 10, data distribution by the German Climate Computing Center (DKRZ), https://doi.org/10.24381/cds.143582cf, 2017. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N. : The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hoffmann, L., Xue, X., and Alexander, M.: A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations, J. Geophys. Res.-Atmos., 118, 416–434, https://doi.org/10.1029/2012JD018658, 2013. a
Kalisch, S., Preusse, P., Ern, M., Eckermann, S. D., and Riese, M.: Differences in gravity wave drag between realistic oblique and assumed vertical propagation, J. Geophys. Res.-Atmos., 119, 10–081, https://doi.org/10.1002/2014JD021779, 2014. a, b
Kruse, C. G., Alexander, M. J., Hoffmann, L., van Niekerk, A., Polichtchouk, I., Bacmeister, J. T., Holt, L., Plougonven, R., Šácha, P., Wright, C., Sato, K., Shibuya, R., Gisinger, S., Ern, M., Meyer, C. I., and Stein, O.: Observed and modeled mountain waves from the surface to the mesosphere near the Drake Passage, J. Atmos. Sci., 79, 909–932, https://doi.org/10.1175/JAS-D-21-0252.1, 2022. a, b
Kuchar, A., Sacha, P., Eichinger, R., Jacobi, C., Pisoft, P., and Rieder, H. E.: On the intermittency of orographic gravity wave hotspots and its importance for middle atmosphere dynamics, Weather Clim. Dynam., 1, 481–495, https://doi.org/10.5194/wcd-1-481-2020, 2020. a, b, c, d
Lear, E. J., Wright, C. J., Hindley, N. P., Polichtchouk, I., and Hoffmann, L.: Comparing Gravity Waves in a Kilometer-Scale Run of the IFS to AIRS Satellite Observations and ERA5, J. Geophys. Res.-Atmos., 129, e2023JD040097, https://doi.org/10.1029/2023JD040097, 2024. a
Lee, S. H., Williams, P. D., and Frame, T. H.: Increased shear in the North Atlantic upper-level jet stream over the past four decades, Nature, 572, 639–642, https://doi.org/10.1038/s41586-019-1465-z, 2019. a
Li, Z., Wei, J., Bao, X., and Sun, Y. Q.: Intercomparison of tropospheric and stratospheric mesoscale kinetic energy resolved by the high-resolution global reanalysis datasets, Q. J. Roy. Meteor. Soc., 149, 3738–3764, https://doi.org/10.1002/qj.4605, 2023. a
Lindzen, R. S.: Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res.-Oceans, 86, 9707–9714, https://doi.org/10.1029/JC086iC10p09707, 1981. a
Match, A. and Gerber, E. P.: Tropospheric expansion under global warming reduces tropical lower stratospheric ozone, Geophys. Res. Lett., 49, e2022GL099463, https://doi.org/10.1029/2022GL099463, 2022. a
Nappo, C. J.: An introduction to atmospheric gravity waves, vol. 102, Academic press, ISBN 978-0-12-385223-6, 2012. a
NOAA Climate Prediction Center: Monthly mean NAO index since January 1950, NOAA Climate Prediction Center [data set], https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml (last access: September 2022), 2022. a
NOAA Physical Science Laboratory: Multivariate ENSO Index Version 2 (MEI.v2), NOAA Physical Science Laboratory [data set], https://www.psl.noaa.gov/enso/mei/data/meiv2.data (last access: September 2022), 2022. a
Pahlavan, H. A., Wallace, J. M., and Fu, Q.: Characteristics of tropical convective gravity waves resolved by ERA5 reanalysis, J. Atmos. Sci., 80, 777–795, https://doi.org/10.1175/JAS-D-22-0057.1, 2023. a, b
Pahlavan, H. A., Wallace, J. M., Fu, Q., and Alexander, M. J.: Characteristics of gravity waves in opposing phases of the QBO: a reanalysis perspective with ERA5, J. Atmos. Sci., 81, 1579–1587, https://doi.org/10.1175/JAS-D-23-0165.1, 2024. a
Pisoft, P., Sacha, P., Polvani, L. M., Añel, J. A., De La Torre, L., Eichinger, R., Foelsche, U., Huszar, P., Jacobi, C., Karlicky, J., Kuchar, A., Miksovsky, J., Zak, M., and Rieder, H. E.: Stratospheric contraction caused by increasing greenhouse gases, Environ. Res. Lett., 16, 064038, https://doi.org/10.1088/1748-9326/abfe2b, 2021. a
Plougonven, R., de la Cámara, A., Hertzog, A., and Lott, F.: How does knowledge of atmospheric gravity waves guide their parameterizations?, Q. J. Roy. Meteor. Soc., 146, 1529–1543, https://doi.org/10.1002/qj.3732, 2020. a
Podglajen, A., Hertzog, A., Plougonven, R., and Legras, B.: Lagrangian gravity wave spectra in the lower stratosphere of current (re)analyses, Atmos. Chem. Phys., 20, 9331–9350, https://doi.org/10.5194/acp-20-9331-2020, 2020. a
Polichtchouk, I., Wedi, N., and Kim, Y.-H.: Resolved gravity waves in the tropical stratosphere: Impact of horizontal resolution and deep convection parametrization, Q. J. Roy. Meteor. Soc., 148, 233–251, https://doi.org/10.1002/qj.4202, 2022. a
Procházková, Z., Kruse, C. G., Alexander, M. J., Hoffmann, L., Bacmeister, J. T., Holt, L., Wright, C., Sato, K., Gisinger, S., Ern, M., Geldenhuys, M., Preusse, P., and Šácha, P. : Sensitivity of mountain wave drag estimates on separation methods and proposed improvements, J. Atmos. Sci., https://doi.org/10.1175/JAS-D-22-0151.1, 2023. a, b, c, d
Procházková, Z., Zajíček, R., and Šácha, P.: ERA5 gravity wave fluxes and drag on subdomains and in zonal mean, Zenodo [data set], https://doi.org/10.5281/zenodo.15473686, 2025a. a
Procházková, Z., Zajíček, R., and Šácha, P.: prochazz/era5gws: Gravity Wave Fluxes and Drag. v1.0, Zenodo [code], https://doi.org/10.5281/zenodo.17020639, 2025b. a
Reichert, R., Kaifler, N., and Kaifler, B.: Limitations in wavelet analysis of non-stationary atmospheric gravity wave signatures in temperature profiles, Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024, 2024. a
Rhode, S., Preusse, P., Ungermann, J., Polichtchouk, I., Sato, K., Watanabe, S., Ern, M., Nogai, K., Sinnhuber, B.-M., and Riese, M.: Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT, Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024, 2024. a, b
Richter, J. H., Anstey, J. A., Butchart, N., Kawatani, Y., Meehl, G. A., Osprey, S., and Simpson, I. R.: Progress in simulating the quasi-biennial oscillation in CMIP models, J. Geophys. Res.-Atmos., 125, e2019JD032362, https://doi.org/10.1029/2019JD032362, 2020. a
Rõõm, R.: Nonhydrostatic adiabatic kernel for HIRLAM: Part I: fundamentals of nonhydrostatic dynamics in pressure-related coordinates, Tech. rep., Swedish Meteorological and Hydrological Institute, https://meteo.physic.ut.ee/~room/papers/kuni2004/nhkern1.pdf (last access: 2023), 2001. a
Šácha, P., Kuchař, A., Jacobi, C., and Pišoft, P.: Enhanced internal gravity wave activity and breaking over the northeastern Pacific–eastern Asian region, Atmos. Chem. Phys., 15, 13097–13112, https://doi.org/10.5194/acp-15-13097-2015, 2015. a
Šácha, P., Lilienthal, F., Jacobi, C., and Pišoft, P.: Influence of the spatial distribution of gravity wave activity on the middle atmospheric dynamics, Atmos. Chem. Phys., 16, 15755–15775, https://doi.org/10.5194/acp-16-15755-2016, 2016. a
Šácha, P., Miksovsky, J., and Pisoft, P.: Interannual variability in the gravity wave drag – vertical coupling and possible climate links, Earth Syst. Dynam., 9, 647–661, https://doi.org/10.5194/esd-9-647-2018, 2018. a, b, c, d
Šácha, P., Kuchař, A., Eichinger, R., Pišoft, P., Jacobi, C., and Rieder, H. E.: Diverse Dynamical Response to Orographic Gravity Wave Drag Hotspots-A Zonal Mean Perspective, Geophys. Res. Lett., 48, 1–11, https://doi.org/10.1029/2021GL093305, 2021. a
Šácha, P., Zajíček, R., Kuchař, A., Eichinger, R., and Pišoft, P.: Disentangling the advective Brewer-Dobson circulation change, Geophys. Res. Lett., 51, e2023GL105919, https://doi.org/10.1029/2023GL105919, 2024. a
Sato, K. and Hirano, S.: The climatology of the Brewer–Dobson circulation and the contribution of gravity waves, Atmos. Chem. Phys., 19, 4517–4539, https://doi.org/10.5194/acp-19-4517-2019, 2019. a
Sigmond, M., Anstey, J., Arora, V., Digby, R., Gillett, N., Kharin, V., Merryfield, W., Reader, C., Scinocca, J., Swart, N., Virgin, J., Abraham, C., Cole, J., Lambert, N., Lee, W.-S., Liang, Y., Malinina, E., Rieger, L., von Salzen, K., Seiler, C., Seinen, C., Shao, A., Sospedra-Alfonso, R., Wang, L., and Yang, D.: Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis: CanESM5.0 and CanESM5.1, Geosci. Model Dev., 16, 6553–6591, https://doi.org/10.5194/gmd-16-6553-2023, 2023. a
Simmons, A., Soci, C., Nicolas, J., Bell, B., Berrisford, P., Dragani, R., Flemming, J., Haimberger, L., Healy, S., Hersbach, H., Horányi, A., Inness, A., Muñoz-Sabater, J., Radu, R., and Schepers, D. : ERA5.1: Rerun of the Fifth generation of ECMWF atmospheric reanalyses of the global climate (2000–2006 only), Copernicus Climate Change Service (C3S) Data Store (CDS) [data set], data distribution by the German Climate Computing Center (DKRZ), https://doi.org/10.24381/cds.143582cf, 2020. a
Simpson, I. R., Shepherd, T. G., and Sigmond, M.: Dynamics of the lower stratospheric circulation response to ENSO, J. Atmos. Sci., 68, 2537–2556, https://doi.org/10.1175/JAS-D-11-05.1, 2011. a
Sun, Y. Q., Hassanzadeh, P., Alexander, M. J., and Kruse, C. G.: Quantifying 3D gravity wave drag in a library of tropical convection-permitting simulations for data-driven parameterizations, J. Adv. Model. Earth Syst., 15, e2022MS003585, https://doi.org/10.1029/2022MS003585, 2023. a
Vasylkevych, S. and Žagar, N.: A high-accuracy global prognostic model for the simulation of Rossby and gravity wave dynamics, Q. J. Roy. Meteor. Soc., 147, 1989–2007, https://doi.org/10.1002/qj.4006, 2021. a
Voelker, G. S., Bölöni, G., Kim, Y.-H., Zängl, G., and Achatz, U.: MS-GWaM: A 3-dimensional transient gravity wave parametrization for atmospheric models, J. Atmos. Sci., https://doi.org/10.1175/JAS-D-23-0153.1, 2024. a
Wedi, N. P., Polichtchouk, I., Dueben, P., Anantharaj, V. G., Bauer, P., Boussetta, S., Browne, P., Deconinck, W., Gaudin, W., Hadade, I., Hatfield, S., Iffrig, O., Lopez, P., Maciel, P., Mueller, A., Saarinen, S., Sandu, I., Quintino, T., and Vitart, F. : A baseline for global weather and climate simulations at 1 km resolution, J. Adv. Model. Earth Syst., 12, e2020MS002192, https://doi.org/10.1029/2020MS002192, 2020. a
Wei, J., Zhang, F., Richter, J. H., Alexander, M. J., and Sun, Y. Q.: Global distributions of tropospheric and stratospheric gravity wave momentum fluxes resolved by the 9-km ECMWF experiments, J. Atmos. Sci., 79, 2621–2644, https://doi.org/10.1175/JAS-D-21-0173.1, 2022. a
Wright, C., Osprey, S., and Gille, J.: Global observations of gravity wave intermittency and its impact on the observed momentum flux morphology, J. Geophys. Res.-Atmos., 118, 10–980, https://doi.org/10.1002/jgrd.50869, 2013. a
Xie, Z., Cholaw, B., Deng, Y., He, B., and Lai, S.: Intraseasonal transition of Northern Hemisphere planetary waves and the underlying mechanism during the abrupt-change period of early summer, Clim. Dynam., 1–15, https://doi.org/10.1007/s00382-021-06048-5, 2022. a
Zhao, X., Sheng, Z., Shi, H., Weng, L., and He, Y.: Middle atmosphere temperature changes derived from SABER observations during 2002–20, J. Climate, 34, 7995–8012, https://doi.org/10.1175/JCLI-D-20-1010.1, 2021. a
Short summary
In this work, we compute and analyze resolved gravity wave drag in high-resolution reanalysis data. Studying gravity waves with a realistic dataset helps us to understand them better and potentially improve climate projections. Part of our results supports a key hypothesis governing the vertical distribution of parameterized gravity wave drag in climate models; however, we also provide evidence of the strong influence of horizontal wave propagation, a mechanism that is currently missing in the models.
In this work, we compute and analyze resolved gravity wave drag in high-resolution reanalysis...