Articles | Volume 2, issue 1
https://doi.org/10.5194/wcd-2-89-2021
https://doi.org/10.5194/wcd-2-89-2021
Research article
 | 
02 Feb 2021
Research article |  | 02 Feb 2021

Observations and simulation of intense convection embedded in a warm conveyor belt – how ambient vertical wind shear determines the dynamical impact

Annika Oertel, Michael Sprenger, Hanna Joos, Maxi Boettcher, Heike Konow, Martin Hagen, and Heini Wernli

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Annika Oertel on behalf of the Authors (13 Jan 2021)  Author's response    Manuscript
ED: Publish as is (15 Jan 2021) by Johannes Dahl
AR by Annika Oertel on behalf of the Authors (19 Jan 2021)  Author's response    Manuscript
Download
Short summary
Convection embedded in the stratiform cloud band of strongly ascending airstreams in extratropical cyclones (so-called warm conveyor belts) can influence not only surface precipitation but also the upper-tropospheric potential vorticity (PV) and waveguide. The comparison of intense vs. moderate embedded convection shows that its strength alone is not a reliable measure for upper-tropospheric PV modification. Instead, characteristics of the ambient flow co-determine its dynamical significance.