Articles | Volume 3, issue 4
https://doi.org/10.5194/wcd-3-1237-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-3-1237-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The stratosphere: a review of the dynamics and variability
Neal Butchart
CORRESPONDING AUTHOR
Met Office Hadley Centre (MOHC), Exeter, EX1 3PB, UK
Related authors
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
This article is included in the Encyclopedia of Geosciences
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
This article is included in the Encyclopedia of Geosciences
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
This article is included in the Encyclopedia of Geosciences
Jacob W. Smith, Peter H. Haynes, Amanda C. Maycock, Neal Butchart, and Andrew C. Bushell
Atmos. Chem. Phys., 21, 2469–2489, https://doi.org/10.5194/acp-21-2469-2021, https://doi.org/10.5194/acp-21-2469-2021, 2021
Short summary
Short summary
This paper informs realistic simulation of stratospheric water vapour by clearly attributing each of the two key influences on water vapour entry to the stratosphere. Presenting modified trajectory models, the results of this paper show temperatures dominate on annual and inter-annual variations; however, transport has a significant effect in reducing the annual cycle maximum. Furthermore, sub-seasonal variations in temperature have an important overall influence.
This article is included in the Encyclopedia of Geosciences
Daniele Visioni, Giovanni Pitari, Vincenzo Rizi, Marco Iarlori, Irene Cionni, Ilaria Quaglia, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando Garcia, Patrick Joeckel, Douglas Kinnison, Jean-François Lamarque, Marion Marchand, Martine Michou, Olaf Morgenstern, Tatsuya Nagashima, Fiona M. O'Connor, Luke D. Oman, David Plummer, Eugene Rozanov, David Saint-Martin, Robyn Schofield, John Scinocca, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Holger Tost, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-525, https://doi.org/10.5194/acp-2020-525, 2020
Preprint withdrawn
Short summary
Short summary
In this work we analyse the trend in ozone profiles taken at L'Aquila (Italy, 42.4° N) for seventeen years, between 2000 and 2016 and compare them against already available measured ozone trends. We try to understand and explain the observed trends at various heights in light of the simulations from seventeen different model, highlighting the contribution of changes in circulation and chemical ozone loss during this time period.
This article is included in the Encyclopedia of Geosciences
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019, https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Short summary
In this study, we simulate the ultraviolet radiation evolution during the 21st century on Earth's surface using the output from several numerical models which participated in the Chemistry-Climate Model Initiative. We present four possible futures which depend on greenhouse gases emissions. The role of ozone-depleting substances, greenhouse gases and aerosols are investigated. Our results emphasize the important role of aerosols for future ultraviolet radiation in the Northern Hemisphere.
This article is included in the Encyclopedia of Geosciences
Petr Šácha, Roland Eichinger, Hella Garny, Petr Pišoft, Simone Dietmüller, Laura de la Torre, David A. Plummer, Patrick Jöckel, Olaf Morgenstern, Guang Zeng, Neal Butchart, and Juan A. Añel
Atmos. Chem. Phys., 19, 7627–7647, https://doi.org/10.5194/acp-19-7627-2019, https://doi.org/10.5194/acp-19-7627-2019, 2019
Short summary
Short summary
Climate models robustly project a Brewer–Dobson circulation (BDC) acceleration in the course of climate change. Analyzing mean age of stratospheric air (AoA) from a subset of climate projection simulations, we find a remarkable agreement in simulating the largest AoA trends in the extratropical stratosphere. This is shown to be related with the upward shift of the circulation, resulting in a so-called stratospheric shrinkage, which could be one of the so-far-omitted BDC acceleration drivers.
This article is included in the Encyclopedia of Geosciences
Laura E. Revell, Andrea Stenke, Fiona Tummon, Aryeh Feinberg, Eugene Rozanov, Thomas Peter, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Neal Butchart, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, Robyn Schofield, Kane Stone, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 16155–16172, https://doi.org/10.5194/acp-18-16155-2018, https://doi.org/10.5194/acp-18-16155-2018, 2018
Short summary
Short summary
Global models such as those participating in the Chemistry-Climate Model Initiative (CCMI) consistently simulate biases in tropospheric ozone compared with observations. We performed an advanced statistical analysis with one of the CCMI models to understand the cause of the bias. We found that emissions of ozone precursor gases are the dominant driver of the bias, implying either that the emissions are too large, or that the way in which the model handles emissions needs to be improved.
This article is included in the Encyclopedia of Geosciences
Blanca Ayarzagüena, Lorenzo M. Polvani, Ulrike Langematz, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Dameris, Makoto Deushi, Steven C. Hardiman, Patrick Jöckel, Andrew Klekociuk, Marion Marchand, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, David A. Plummer, Laura Revell, Eugene Rozanov, David Saint-Martin, John Scinocca, Andrea Stenke, Kane Stone, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018, https://doi.org/10.5194/acp-18-11277-2018, 2018
Short summary
Short summary
Stratospheric sudden warmings (SSWs) are natural major disruptions of the polar stratospheric circulation that also affect surface weather. In the literature there are conflicting claims as to whether SSWs will change in the future. The confusion comes from studies using different models and methods. Here we settle the question by analysing 12 models with a consistent methodology, to show that no robust changes in frequency and other features are expected over the 21st century.
This article is included in the Encyclopedia of Geosciences
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Short summary
We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.
This article is included in the Encyclopedia of Geosciences
Neal Butchart, James A. Anstey, Kevin Hamilton, Scott Osprey, Charles McLandress, Andrew C. Bushell, Yoshio Kawatani, Young-Ha Kim, Francois Lott, John Scinocca, Timothy N. Stockdale, Martin Andrews, Omar Bellprat, Peter Braesicke, Chiara Cagnazzo, Chih-Chieh Chen, Hye-Yeong Chun, Mikhail Dobrynin, Rolando R. Garcia, Javier Garcia-Serrano, Lesley J. Gray, Laura Holt, Tobias Kerzenmacher, Hiroaki Naoe, Holger Pohlmann, Jadwiga H. Richter, Adam A. Scaife, Verena Schenzinger, Federico Serva, Stefan Versick, Shingo Watanabe, Kohei Yoshida, and Seiji Yukimoto
Geosci. Model Dev., 11, 1009–1032, https://doi.org/10.5194/gmd-11-1009-2018, https://doi.org/10.5194/gmd-11-1009-2018, 2018
Short summary
Short summary
This paper documents the numerical experiments to be used in phase 1 of the Stratosphere–troposphere Processes And their Role in Climate (SPARC) Quasi-Biennial Oscillation initiative (QBOi), which was set up to improve the representation of the QBO and tropical stratospheric variability in global climate models.
This article is included in the Encyclopedia of Geosciences
Verena Schenzinger, Scott Osprey, Lesley Gray, and Neal Butchart
Geosci. Model Dev., 10, 2157–2168, https://doi.org/10.5194/gmd-10-2157-2017, https://doi.org/10.5194/gmd-10-2157-2017, 2017
Short summary
Short summary
The Quasi-Biennial Oscillation (QBO) is a pattern of winds in the equatorial stratosphere that has been observed for the past 60 years. It is thought to have long-range influences, e.g. on the Northern Hemisphere winter polar vortex and therefore Europe's winter weather. Since its period is about 2 years, being able to predict the QBO might also improve weather forecasting. Using a set of characteristic metrics, this paper examines how reliable current climate models are in simulating the QBO.
This article is included in the Encyclopedia of Geosciences
Steven C. Hardiman, Neal Butchart, Fiona M. O'Connor, and Steven T. Rumbold
Geosci. Model Dev., 10, 1209–1232, https://doi.org/10.5194/gmd-10-1209-2017, https://doi.org/10.5194/gmd-10-1209-2017, 2017
Short summary
Short summary
HadGEM3-ES is improved, with respect to the previous model, in 10 of the 14 metrics considered. A significant bias in stratospheric water vapour is reduced, allowing more accurate simulation of water vapour and ozone concentrations in the stratosphere. Dynamics are found to influence the spatial structure of the simulated ozone hole and the area of polar stratospheric clouds. This research was carried out as part of involvement in the Chemistry-Climate Model Initiative (CCM-I).
This article is included in the Encyclopedia of Geosciences
Olaf Morgenstern, Michaela I. Hegglin, Eugene Rozanov, Fiona M. O'Connor, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Neal Butchart, Martyn P. Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando R. Garcia, Steven C. Hardiman, Larry W. Horowitz, Patrick Jöckel, Beatrice Josse, Douglas Kinnison, Meiyun Lin, Eva Mancini, Michael E. Manyin, Marion Marchand, Virginie Marécal, Martine Michou, Luke D. Oman, Giovanni Pitari, David A. Plummer, Laura E. Revell, David Saint-Martin, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Geosci. Model Dev., 10, 639–671, https://doi.org/10.5194/gmd-10-639-2017, https://doi.org/10.5194/gmd-10-639-2017, 2017
Short summary
Short summary
We present a review of the make-up of 20 models participating in the Chemistry–Climate Model Initiative (CCMI). In comparison to earlier such activities, most of these models comprise a whole-atmosphere chemistry, and several of them include an interactive ocean module. This makes them suitable for studying the interactions of tropospheric air quality, stratospheric ozone, and climate. The paper lays the foundation for other studies using the CCMI simulations for scientific analysis.
This article is included in the Encyclopedia of Geosciences
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
This article is included in the Encyclopedia of Geosciences
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
This article is included in the Encyclopedia of Geosciences
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
This article is included in the Encyclopedia of Geosciences
Jacob W. Smith, Peter H. Haynes, Amanda C. Maycock, Neal Butchart, and Andrew C. Bushell
Atmos. Chem. Phys., 21, 2469–2489, https://doi.org/10.5194/acp-21-2469-2021, https://doi.org/10.5194/acp-21-2469-2021, 2021
Short summary
Short summary
This paper informs realistic simulation of stratospheric water vapour by clearly attributing each of the two key influences on water vapour entry to the stratosphere. Presenting modified trajectory models, the results of this paper show temperatures dominate on annual and inter-annual variations; however, transport has a significant effect in reducing the annual cycle maximum. Furthermore, sub-seasonal variations in temperature have an important overall influence.
This article is included in the Encyclopedia of Geosciences
Daniele Visioni, Giovanni Pitari, Vincenzo Rizi, Marco Iarlori, Irene Cionni, Ilaria Quaglia, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando Garcia, Patrick Joeckel, Douglas Kinnison, Jean-François Lamarque, Marion Marchand, Martine Michou, Olaf Morgenstern, Tatsuya Nagashima, Fiona M. O'Connor, Luke D. Oman, David Plummer, Eugene Rozanov, David Saint-Martin, Robyn Schofield, John Scinocca, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Holger Tost, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-525, https://doi.org/10.5194/acp-2020-525, 2020
Preprint withdrawn
Short summary
Short summary
In this work we analyse the trend in ozone profiles taken at L'Aquila (Italy, 42.4° N) for seventeen years, between 2000 and 2016 and compare them against already available measured ozone trends. We try to understand and explain the observed trends at various heights in light of the simulations from seventeen different model, highlighting the contribution of changes in circulation and chemical ozone loss during this time period.
This article is included in the Encyclopedia of Geosciences
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019, https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Short summary
In this study, we simulate the ultraviolet radiation evolution during the 21st century on Earth's surface using the output from several numerical models which participated in the Chemistry-Climate Model Initiative. We present four possible futures which depend on greenhouse gases emissions. The role of ozone-depleting substances, greenhouse gases and aerosols are investigated. Our results emphasize the important role of aerosols for future ultraviolet radiation in the Northern Hemisphere.
This article is included in the Encyclopedia of Geosciences
Petr Šácha, Roland Eichinger, Hella Garny, Petr Pišoft, Simone Dietmüller, Laura de la Torre, David A. Plummer, Patrick Jöckel, Olaf Morgenstern, Guang Zeng, Neal Butchart, and Juan A. Añel
Atmos. Chem. Phys., 19, 7627–7647, https://doi.org/10.5194/acp-19-7627-2019, https://doi.org/10.5194/acp-19-7627-2019, 2019
Short summary
Short summary
Climate models robustly project a Brewer–Dobson circulation (BDC) acceleration in the course of climate change. Analyzing mean age of stratospheric air (AoA) from a subset of climate projection simulations, we find a remarkable agreement in simulating the largest AoA trends in the extratropical stratosphere. This is shown to be related with the upward shift of the circulation, resulting in a so-called stratospheric shrinkage, which could be one of the so-far-omitted BDC acceleration drivers.
This article is included in the Encyclopedia of Geosciences
Laura E. Revell, Andrea Stenke, Fiona Tummon, Aryeh Feinberg, Eugene Rozanov, Thomas Peter, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Neal Butchart, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, Robyn Schofield, Kane Stone, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 16155–16172, https://doi.org/10.5194/acp-18-16155-2018, https://doi.org/10.5194/acp-18-16155-2018, 2018
Short summary
Short summary
Global models such as those participating in the Chemistry-Climate Model Initiative (CCMI) consistently simulate biases in tropospheric ozone compared with observations. We performed an advanced statistical analysis with one of the CCMI models to understand the cause of the bias. We found that emissions of ozone precursor gases are the dominant driver of the bias, implying either that the emissions are too large, or that the way in which the model handles emissions needs to be improved.
This article is included in the Encyclopedia of Geosciences
Blanca Ayarzagüena, Lorenzo M. Polvani, Ulrike Langematz, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Dameris, Makoto Deushi, Steven C. Hardiman, Patrick Jöckel, Andrew Klekociuk, Marion Marchand, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, David A. Plummer, Laura Revell, Eugene Rozanov, David Saint-Martin, John Scinocca, Andrea Stenke, Kane Stone, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018, https://doi.org/10.5194/acp-18-11277-2018, 2018
Short summary
Short summary
Stratospheric sudden warmings (SSWs) are natural major disruptions of the polar stratospheric circulation that also affect surface weather. In the literature there are conflicting claims as to whether SSWs will change in the future. The confusion comes from studies using different models and methods. Here we settle the question by analysing 12 models with a consistent methodology, to show that no robust changes in frequency and other features are expected over the 21st century.
This article is included in the Encyclopedia of Geosciences
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Short summary
We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.
This article is included in the Encyclopedia of Geosciences
Neal Butchart, James A. Anstey, Kevin Hamilton, Scott Osprey, Charles McLandress, Andrew C. Bushell, Yoshio Kawatani, Young-Ha Kim, Francois Lott, John Scinocca, Timothy N. Stockdale, Martin Andrews, Omar Bellprat, Peter Braesicke, Chiara Cagnazzo, Chih-Chieh Chen, Hye-Yeong Chun, Mikhail Dobrynin, Rolando R. Garcia, Javier Garcia-Serrano, Lesley J. Gray, Laura Holt, Tobias Kerzenmacher, Hiroaki Naoe, Holger Pohlmann, Jadwiga H. Richter, Adam A. Scaife, Verena Schenzinger, Federico Serva, Stefan Versick, Shingo Watanabe, Kohei Yoshida, and Seiji Yukimoto
Geosci. Model Dev., 11, 1009–1032, https://doi.org/10.5194/gmd-11-1009-2018, https://doi.org/10.5194/gmd-11-1009-2018, 2018
Short summary
Short summary
This paper documents the numerical experiments to be used in phase 1 of the Stratosphere–troposphere Processes And their Role in Climate (SPARC) Quasi-Biennial Oscillation initiative (QBOi), which was set up to improve the representation of the QBO and tropical stratospheric variability in global climate models.
This article is included in the Encyclopedia of Geosciences
Verena Schenzinger, Scott Osprey, Lesley Gray, and Neal Butchart
Geosci. Model Dev., 10, 2157–2168, https://doi.org/10.5194/gmd-10-2157-2017, https://doi.org/10.5194/gmd-10-2157-2017, 2017
Short summary
Short summary
The Quasi-Biennial Oscillation (QBO) is a pattern of winds in the equatorial stratosphere that has been observed for the past 60 years. It is thought to have long-range influences, e.g. on the Northern Hemisphere winter polar vortex and therefore Europe's winter weather. Since its period is about 2 years, being able to predict the QBO might also improve weather forecasting. Using a set of characteristic metrics, this paper examines how reliable current climate models are in simulating the QBO.
This article is included in the Encyclopedia of Geosciences
Steven C. Hardiman, Neal Butchart, Fiona M. O'Connor, and Steven T. Rumbold
Geosci. Model Dev., 10, 1209–1232, https://doi.org/10.5194/gmd-10-1209-2017, https://doi.org/10.5194/gmd-10-1209-2017, 2017
Short summary
Short summary
HadGEM3-ES is improved, with respect to the previous model, in 10 of the 14 metrics considered. A significant bias in stratospheric water vapour is reduced, allowing more accurate simulation of water vapour and ozone concentrations in the stratosphere. Dynamics are found to influence the spatial structure of the simulated ozone hole and the area of polar stratospheric clouds. This research was carried out as part of involvement in the Chemistry-Climate Model Initiative (CCM-I).
This article is included in the Encyclopedia of Geosciences
Olaf Morgenstern, Michaela I. Hegglin, Eugene Rozanov, Fiona M. O'Connor, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Neal Butchart, Martyn P. Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando R. Garcia, Steven C. Hardiman, Larry W. Horowitz, Patrick Jöckel, Beatrice Josse, Douglas Kinnison, Meiyun Lin, Eva Mancini, Michael E. Manyin, Marion Marchand, Virginie Marécal, Martine Michou, Luke D. Oman, Giovanni Pitari, David A. Plummer, Laura E. Revell, David Saint-Martin, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Geosci. Model Dev., 10, 639–671, https://doi.org/10.5194/gmd-10-639-2017, https://doi.org/10.5194/gmd-10-639-2017, 2017
Short summary
Short summary
We present a review of the make-up of 20 models participating in the Chemistry–Climate Model Initiative (CCMI). In comparison to earlier such activities, most of these models comprise a whole-atmosphere chemistry, and several of them include an interactive ocean module. This makes them suitable for studying the interactions of tropospheric air quality, stratospheric ozone, and climate. The paper lays the foundation for other studies using the CCMI simulations for scientific analysis.
This article is included in the Encyclopedia of Geosciences
Related subject area
Atmospheric teleconnections incl. stratosphere–troposphere coupling
Model spread in multidecadal North Atlantic Oscillation variability connected to stratosphere–troposphere coupling
Opposite spectral properties of Rossby waves during weak and strong stratospheric polar vortex events
Stratospheric influence on the winter North Atlantic storm track in subseasonal reforecasts
How do different pathways connect the stratospheric polar vortex to its tropospheric precursors?
A critical evaluation of decadal solar cycle imprints in the MiKlip historical ensemble simulations
The teleconnection of extreme El Niño–Southern Oscillation (ENSO) events to the tropical North Atlantic in coupled climate models
Using large ensembles to quantify the impact of sudden stratospheric warmings and their precursors on the North Atlantic Oscillation
Stratospheric downward wave reflection events modulate North American weather regimes and cold spells
Modulation of the El Niño teleconnection to the North Atlantic by the tropical North Atlantic during boreal spring and summer
Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems
Stratospheric modulation of Arctic Oscillation extremes as represented by extended-range ensemble forecasts
The tropical route of quasi-biennial oscillation (QBO) teleconnections in a climate model
Decline in Etesian winds after large volcanic eruptions in the last millennium
Stationary wave biases and their effect on upward troposphere– stratosphere coupling in sub-seasonal prediction models
Stratospheric wave driving events as an alternative to sudden stratospheric warmings
Tropical influence on heat-generating atmospheric circulation over Australia strengthens through spring
Sudden stratospheric warmings during El Niño and La Niña: sensitivity to atmospheric model biases
Minimal impact of model biases on Northern Hemisphere El Niño–Southern Oscillation teleconnections
Resampling of ENSO teleconnections: accounting for cold-season evolution reduces uncertainty in the North Atlantic
The wave geometry of final stratospheric warming events
Origins of multi-decadal variability in sudden stratospheric warmings
Tropospheric eddy feedback to different stratospheric conditions in idealised baroclinic life cycles
Impacts of the North Atlantic Oscillation on winter precipitations and storm track variability in southeast Canada and the northeast United States
The role of Barents–Kara sea ice loss in projected polar vortex changes
Mechanisms and predictability of sudden stratospheric warming in winter 2018
On the intermittency of orographic gravity wave hotspots and its importance for middle atmosphere dynamics
The role of North Atlantic–European weather regimes in the surface impact of sudden stratospheric warming events
Nonlinearity in the tropospheric pathway of ENSO to the North Atlantic
Rémy Bonnet, Christine M. McKenna, and Amanda C. Maycock
Weather Clim. Dynam., 5, 913–926, https://doi.org/10.5194/wcd-5-913-2024, https://doi.org/10.5194/wcd-5-913-2024, 2024
Short summary
Short summary
Climate models underestimate multidecadal winter North Atlantic Oscillation (NAO) variability. Understanding the origin of this weak variability is important for making reliable climate projections. We use multi-model climate simulations to explore statistical relationships with drivers that may contribute to NAO variability. We find a relationship between modelled stratosphere–troposphere coupling and multidecadal NAO variability, offering an avenue to improve the simulation of NAO variability.
This article is included in the Encyclopedia of Geosciences
Michael Schutte, Daniela I. V. Domeisen, and Jacopo Riboldi
Weather Clim. Dynam., 5, 733–752, https://doi.org/10.5194/wcd-5-733-2024, https://doi.org/10.5194/wcd-5-733-2024, 2024
Short summary
Short summary
The winter circulation in the stratosphere, a layer of the Earth’s atmosphere between 10 and 50 km height, is tightly linked to the circulation in the lower atmosphere determining our daily weather. This interconnection happens in the form of waves propagating in and between these two layers. Here, we use space–time spectral analysis to show that disruptions and enhancements of the stratospheric circulation modify the shape and propagation of waves in both layers.
This article is included in the Encyclopedia of Geosciences
Hilla Afargan-Gerstman, Dominik Büeler, C. Ole Wulff, Michael Sprenger, and Daniela I. V. Domeisen
Weather Clim. Dynam., 5, 231–249, https://doi.org/10.5194/wcd-5-231-2024, https://doi.org/10.5194/wcd-5-231-2024, 2024
Short summary
Short summary
The stratosphere is a layer of Earth's atmosphere found above the weather systems. Changes in the stratosphere can affect the winds and the storm tracks in the North Atlantic region for a relatively long time, lasting for several weeks and even months. We show that the stratosphere can be important for weather forecasts beyond 1 week, but more work is needed to improve the accuracy of these forecasts for 3–4 weeks.
This article is included in the Encyclopedia of Geosciences
Raphael Harry Köhler, Ralf Jaiser, and Dörthe Handorf
Weather Clim. Dynam., 4, 1071–1086, https://doi.org/10.5194/wcd-4-1071-2023, https://doi.org/10.5194/wcd-4-1071-2023, 2023
Short summary
Short summary
This study explores the local mechanisms of troposphere–stratosphere coupling on seasonal timescales during extended winter in the Northern Hemisphere. The detected tropospheric precursor regions exhibit very distinct mechanisms of coupling to the stratosphere, thus highlighting the importance of the time- and zonally resolved picture. Moreover, this study demonstrates that the ICOsahedral Non-hydrostatic atmosphere model (ICON) can realistically reproduce troposphere–stratosphere coupling.
This article is included in the Encyclopedia of Geosciences
Tobias C. Spiegl, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
Weather Clim. Dynam., 4, 789–807, https://doi.org/10.5194/wcd-4-789-2023, https://doi.org/10.5194/wcd-4-789-2023, 2023
Short summary
Short summary
We investigate the role of the solar cycle in atmospheric domains with the Max Plank Institute Earth System Model in high resolution (MPI-ESM-HR). We focus on the tropical upper stratosphere, Northern Hemisphere (NH) winter dynamics and potential surface imprints. We found robust solar signals at the tropical stratopause and a weak dynamical response in the NH during winter. However, we cannot confirm the importance of the 11-year solar cycle for decadal variability in the troposphere.
This article is included in the Encyclopedia of Geosciences
Jake W. Casselman, Joke F. Lübbecke, Tobias Bayr, Wenjuan Huo, Sebastian Wahl, and Daniela I. V. Domeisen
Weather Clim. Dynam., 4, 471–487, https://doi.org/10.5194/wcd-4-471-2023, https://doi.org/10.5194/wcd-4-471-2023, 2023
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) has remote effects on the tropical North Atlantic (TNA), but the connections' nonlinearity (strength of response to an increasing ENSO signal) is not always well represented in models. Using the Community Earth System Model version 1 – Whole Atmosphere Community Climate Mode (CESM-WACCM) and the Flexible Ocean and Climate Infrastructure version 1, we find that the TNA responds linearly to extreme El Niño but nonlinearly to extreme La Niña for CESM-WACCM.
This article is included in the Encyclopedia of Geosciences
Philip E. Bett, Adam A. Scaife, Steven C. Hardiman, Hazel E. Thornton, Xiaocen Shen, Lin Wang, and Bo Pang
Weather Clim. Dynam., 4, 213–228, https://doi.org/10.5194/wcd-4-213-2023, https://doi.org/10.5194/wcd-4-213-2023, 2023
Short summary
Short summary
Sudden-stratospheric-warming (SSW) events can severely affect the subsequent weather at the surface. We use a large ensemble of climate model hindcasts to investigate features of the climate that make strong impacts more likely through negative NAO conditions. This allows a more robust assessment than using observations alone. Air pressure over the Arctic prior to an SSW and the zonal-mean zonal wind in the lower stratosphere have the strongest relationship with the subsequent NAO response.
This article is included in the Encyclopedia of Geosciences
Gabriele Messori, Marlene Kretschmer, Simon H. Lee, and Vivien Wendt
Weather Clim. Dynam., 3, 1215–1236, https://doi.org/10.5194/wcd-3-1215-2022, https://doi.org/10.5194/wcd-3-1215-2022, 2022
Short summary
Short summary
Over 10 km above the ground, there is a region of the atmosphere called the stratosphere. While there is very little air in the stratosphere itself, its interactions with the lower parts of the atmosphere – where we live – can affect the weather. Here we study a specific example of such an interaction, whereby processes occurring at the boundary of the stratosphere can lead to a continent-wide drop in temperatures in North America during winter.
This article is included in the Encyclopedia of Geosciences
Jake W. Casselman, Bernat Jiménez-Esteve, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 1077–1096, https://doi.org/10.5194/wcd-3-1077-2022, https://doi.org/10.5194/wcd-3-1077-2022, 2022
Short summary
Short summary
Using an atmospheric general circulation model, we analyze how the tropical North Atlantic influences the El Niño–Southern Oscillation connection towards the North Atlantic European region. We also focus on the lesser-known boreal spring and summer response following an El Niño–Southern Oscillation event. Our results show that altered tropical Atlantic sea surface temperatures may cause different responses over the Caribbean region, consequently influencing the North Atlantic European region.
This article is included in the Encyclopedia of Geosciences
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irina Statnaia, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
This article is included in the Encyclopedia of Geosciences
Jonas Spaeth and Thomas Birner
Weather Clim. Dynam., 3, 883–903, https://doi.org/10.5194/wcd-3-883-2022, https://doi.org/10.5194/wcd-3-883-2022, 2022
Short summary
Short summary
Past research has demonstrated robust stratosphere–troposphere dynamical coupling following stratospheric circulation extremes. Here, we use a large set of extended-range ensemble forecasts to robustly quantify the increased risk for tropospheric circulation extremes following stratospheric extreme events. In particular, we provide estimates of the fraction of tropospheric extremes that may be attributable to preceding stratospheric extremes.
This article is included in the Encyclopedia of Geosciences
Jorge L. García-Franco, Lesley J. Gray, Scott Osprey, Robin Chadwick, and Zane Martin
Weather Clim. Dynam., 3, 825–844, https://doi.org/10.5194/wcd-3-825-2022, https://doi.org/10.5194/wcd-3-825-2022, 2022
Short summary
Short summary
This paper establishes robust links between the stratospheric quasi-biennial oscillation (QBO) and several features of tropical climate. Robust precipitation responses, as well as changes to the Walker circulation, were found to be robustly linked to the variability in the lower stratosphere associated with the QBO using a 500-year simulation of a state-of-the-art climate model.
This article is included in the Encyclopedia of Geosciences
Stergios Misios, Ioannis Logothetis, Mads F. Knudsen, Christoffer Karoff, Vassilis Amiridis, and Kleareti Tourpali
Weather Clim. Dynam., 3, 811–823, https://doi.org/10.5194/wcd-3-811-2022, https://doi.org/10.5194/wcd-3-811-2022, 2022
Short summary
Short summary
We investigate the impact of strong volcanic eruptions on the northerly Etesian winds blowing in the eastern Mediterranean. Μodel simulations of the last millennium demonstrate a robust reduction in the total number of days with Etesian winds in the post-eruption summers. The decline in the Etesian winds is attributed to a weakened Indian summer monsoon in the post-eruption summer. These findings could improve seasonal predictions of the wind circulation in the eastern Mediterranean.
This article is included in the Encyclopedia of Geosciences
Chen Schwartz, Chaim I. Garfinkel, Priyanka Yadav, Wen Chen, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 679–692, https://doi.org/10.5194/wcd-3-679-2022, https://doi.org/10.5194/wcd-3-679-2022, 2022
Short summary
Short summary
Eleven operational forecast models that run on subseasonal timescales (up to 2 months) are examined to assess errors in their simulated large-scale stationary waves in the Northern Hemisphere winter. We found that models with a more finely resolved stratosphere generally do better in simulating the waves in both the stratosphere (10–50 km) and troposphere below. Moreover, a connection exists between errors in simulated time-mean convection in tropical regions and errors in the simulated waves.
This article is included in the Encyclopedia of Geosciences
Thomas Reichler and Martin Jucker
Weather Clim. Dynam., 3, 659–677, https://doi.org/10.5194/wcd-3-659-2022, https://doi.org/10.5194/wcd-3-659-2022, 2022
Short summary
Short summary
Variations in the stratospheric polar vortex, so-called vortex events, can improve predictions of surface weather and climate. There are various ways to detect such events, and here we use the amount of wave energy that propagates into the stratosphere. The new definition is tested against so-called stratospheric sudden warmings (SSWs). We find that the wave definition has advantages over SSWs, for example in terms of a stronger surface response that follows the events.
This article is included in the Encyclopedia of Geosciences
Roseanna C. McKay, Julie M. Arblaster, and Pandora Hope
Weather Clim. Dynam., 3, 413–428, https://doi.org/10.5194/wcd-3-413-2022, https://doi.org/10.5194/wcd-3-413-2022, 2022
Short summary
Short summary
Understanding what makes it hot in Australia in spring helps us better prepare for harmful impacts. We look at how the higher latitudes and tropics change the atmospheric circulation from early to late spring and how that changes maximum temperatures in Australia. We find that the relationship between maximum temperatures and the tropics is stronger in late spring than early spring. These findings could help improve forecasts of hot months in Australia in spring.
This article is included in the Encyclopedia of Geosciences
Nicholas L. Tyrrell, Juho M. Koskentausta, and Alexey Yu. Karpechko
Weather Clim. Dynam., 3, 45–58, https://doi.org/10.5194/wcd-3-45-2022, https://doi.org/10.5194/wcd-3-45-2022, 2022
Short summary
Short summary
El Niño events are known to effect the variability of the wintertime stratospheric polar vortex. The observed relationship differs from what is seen in climate models. Climate models have errors in their average winds and temperature, and in this work we artificially reduce those errors to see how that changes the communication of El Niño events to the polar stratosphere. We find reducing errors improves stratospheric variability, but does not explain the differences with observations.
This article is included in the Encyclopedia of Geosciences
Nicholas L. Tyrrell and Alexey Yu. Karpechko
Weather Clim. Dynam., 2, 913–925, https://doi.org/10.5194/wcd-2-913-2021, https://doi.org/10.5194/wcd-2-913-2021, 2021
Short summary
Short summary
Tropical Pacific sea surface temperatures (El Niño) affect the global climate. The Pacific-to-Europe connection relies on interactions of large atmospheric waves with winds and surface pressure. We looked at how mean errors in a climate model affect its ability to simulate the Pacific-to-Europe connection. We found that even large errors in the seasonal winds did not affect the response of the model to an El Niño event, which is good news for seasonal forecasts which rely on these connections.
This article is included in the Encyclopedia of Geosciences
Martin P. King, Camille Li, and Stefan Sobolowski
Weather Clim. Dynam., 2, 759–776, https://doi.org/10.5194/wcd-2-759-2021, https://doi.org/10.5194/wcd-2-759-2021, 2021
Short summary
Short summary
We re-examine the uncertainty of ENSO teleconnection to the North Atlantic by considering the November–December and January–February months in the cold season, in addition to the conventional DJF months. This is motivated by previous studies reporting varying teleconnected atmospheric anomalies and the mechanisms concerned. Our results indicate an improved confidence in the patterns of the teleconnection. The finding may also have implications on research in predictability and climate impact.
This article is included in the Encyclopedia of Geosciences
Amy H. Butler and Daniela I. V. Domeisen
Weather Clim. Dynam., 2, 453–474, https://doi.org/10.5194/wcd-2-453-2021, https://doi.org/10.5194/wcd-2-453-2021, 2021
Short summary
Short summary
We classify by wave geometry the stratospheric polar vortex during the final warming that occurs every spring in both hemispheres due to a combination of radiative and dynamical processes. We show that the shape of the vortex, as well as the timing of the seasonal transition, is linked to total column ozone prior to and surface weather following the final warming. These results have implications for prediction and our understanding of stratosphere–troposphere coupling processes in springtime.
This article is included in the Encyclopedia of Geosciences
Oscar Dimdore-Miles, Lesley Gray, and Scott Osprey
Weather Clim. Dynam., 2, 205–231, https://doi.org/10.5194/wcd-2-205-2021, https://doi.org/10.5194/wcd-2-205-2021, 2021
Short summary
Short summary
Observations of the stratosphere span roughly half a century, preventing analysis of multi-decadal variability in circulation using these data. Instead, we rely on long simulations of climate models. Here, we use a model to examine variations in northern polar stratospheric winds and find they vary with a period of around 90 years. We show that this is possibly due to variations in the size of winds over the Equator. This result may improve understanding of Equator–polar stratospheric coupling.
This article is included in the Encyclopedia of Geosciences
Philip Rupp and Thomas Birner
Weather Clim. Dynam., 2, 111–128, https://doi.org/10.5194/wcd-2-111-2021, https://doi.org/10.5194/wcd-2-111-2021, 2021
Short summary
Short summary
We use the simple framework of an idealised baroclinic life cycle to study the tropospheric eddy feedback to different stratospheric conditions and, hence, obtain insights into the fundamental processes of stratosphere–troposphere coupling – in particular, the processes involved in creating the robust equatorward shift in the tropospheric mid-latitude jet that has been observed following sudden stratospheric warming events.
This article is included in the Encyclopedia of Geosciences
Julien Chartrand and Francesco S. R. Pausata
Weather Clim. Dynam., 1, 731–744, https://doi.org/10.5194/wcd-1-731-2020, https://doi.org/10.5194/wcd-1-731-2020, 2020
Short summary
Short summary
This study explores the relationship between the North Atlantic Oscillation and the winter climate of eastern North America using reanalysis data. Results show that negative phases are linked with an increase in frequency of winter storms developing on the east coast of the United States, resulting in much heavier snowfall over the eastern United States. On the contrary, an increase in cyclone activity over southeastern Canada results in slightly heavier precipitation during positive phases.
This article is included in the Encyclopedia of Geosciences
Marlene Kretschmer, Giuseppe Zappa, and Theodore G. Shepherd
Weather Clim. Dynam., 1, 715–730, https://doi.org/10.5194/wcd-1-715-2020, https://doi.org/10.5194/wcd-1-715-2020, 2020
Short summary
Short summary
The winds in the polar stratosphere affect the weather in the mid-latitudes, making it important to understand potential changes in response to global warming. However, climate model projections disagree on how this so-called polar vortex will change in the future. Here we show that sea ice loss in the Barents and Kara (BK) seas plays a central role in this. The time when the BK seas become ice-free differs between models, which explains some of the disagreement regarding vortex projections.
This article is included in the Encyclopedia of Geosciences
Irina A. Statnaia, Alexey Y. Karpechko, and Heikki J. Järvinen
Weather Clim. Dynam., 1, 657–674, https://doi.org/10.5194/wcd-1-657-2020, https://doi.org/10.5194/wcd-1-657-2020, 2020
Short summary
Short summary
In this paper we investigate the role of the tropospheric forcing in the occurrence of the sudden stratospheric warming (SSW) that took place in February 2018, its predictability and teleconnection with the Madden–Julian oscillation (MJO) by analysing the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecast. The purpose of the paper is to present the results of the analysis of the atmospheric circulation before and during the SSW and clarify the driving mechanisms.
This article is included in the Encyclopedia of Geosciences
Ales Kuchar, Petr Sacha, Roland Eichinger, Christoph Jacobi, Petr Pisoft, and Harald E. Rieder
Weather Clim. Dynam., 1, 481–495, https://doi.org/10.5194/wcd-1-481-2020, https://doi.org/10.5194/wcd-1-481-2020, 2020
Short summary
Short summary
Our study focuses on the impact of topographic structures such as the Himalayas and Rocky Mountains, so-called orographic gravity-wave hotspots. These hotspots play an important role in the dynamics of the middle atmosphere, in particular in the lower stratosphere. We study intermittency and zonally asymmetric character of these hotspots and their effects on the upper stratosphere and mesosphere using a new detection method in various modeling and observational datasets.
This article is included in the Encyclopedia of Geosciences
Daniela I. V. Domeisen, Christian M. Grams, and Lukas Papritz
Weather Clim. Dynam., 1, 373–388, https://doi.org/10.5194/wcd-1-373-2020, https://doi.org/10.5194/wcd-1-373-2020, 2020
Short summary
Short summary
We cannot currently predict the weather over Europe beyond 2 weeks. The stratosphere provides a promising opportunity to go beyond that limit by providing a change in probability of certain weather regimes at the surface. However, not all stratospheric extreme events are followed by the same surface weather evolution. We show that this weather evolution is related to the tropospheric weather regime around the onset of the stratospheric extreme event for many stratospheric events.
This article is included in the Encyclopedia of Geosciences
Bernat Jiménez-Esteve and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 225–245, https://doi.org/10.5194/wcd-1-225-2020, https://doi.org/10.5194/wcd-1-225-2020, 2020
Short summary
Short summary
Atmospheric predictability over Europe on subseasonal to seasonal timescales remains limited. However, the remote impact from the El Niño–Southern Oscillation (ENSO) can help to improve predictability. Research has suggested that the ENSO impact in the North Atlantic region is affected by nonlinearities. Here, we isolate the nonlinearities in the tropospheric pathway through the North Pacific, finding that a strong El Niño leads to a stronger and distinct impact compared to a strong La Niña.
This article is included in the Encyclopedia of Geosciences
Cited articles
Afargan-Gerstman, H., Polkova, I., Papritz, L., Ruggieri, P., King, M. P., Athanasiadis, P. J., Baehr, J., and Domeisen, D. I. V.: Stratospheric influence on North Atlantic marine cold air outbreaks following sudden stratospheric warming events, Weather Clim. Dynam., 1, 541–553, https://doi.org/10.5194/wcd-1-541-2020, 2020. a
Albers, J. R. and Birner, T.: Vortex preconditioning due to planetary and
gravity waves prior to sudden stratospheric warmings, J. Atmos. Sci., 71, 4028–4054, https://doi.org/10.1175/JAS-D-14-0026.1, 2014. a, b
Albers, J. R., Kiladis, G. N., Birner, T., and Dias, J.: Tropical
upper-tropospheric potential vorticity intrusions during sudden stratospheric
warmings, J. Atmos. Sci., 73, 2361–2384,
https://doi.org/10.1175/JAS-D-15-0238.1, 2016. a
Allen, D. R., Coy, L., Eckermann, S. D., McCormack, J. P., Manney, G. L.,
Hogan, T. F., and Kim, Y.-J.: NOGAPS-ALPHA simulations of the 2002
Southern Hemisphere stratospheric major warming, Mon. Weather Rev.,
134, 498–518, https://doi.org/10.1175/MWR3086.1, 2006. a, b
Andrews, D. G.: On the interpretation of the Eliassen-Palm flux divergence,
Q. J. Roy. Meteor. Soc., 113, 323–338,
https://doi.org/10.1002/qj.49711347518, 1987. a
Andrews, D. G. and McIntyre, M. E.: Planetary waves in horizontal and vertical
shear: The generalized Eliassen-Palm relation and the mean zonal
acceleration, J. Atmos. Sci., 33, 2031–2048,
https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2, 1976. a, b, c
Andrews, D. G. and McIntyre, M. E.: Generalized Eliassen-Palm and
Charney-Drazin theorems for waves on axismmetric mean flows in compressible
atmospheres, J. Atmos. Sci., 35, 175–185,
https://doi.org/10.1175/1520-0469(1978)035<0175:GEPACD>2.0.CO;2, 1978. a, b, c, d
Angell, J. K. and Korshover, J.: Quasi-biennial variations in temperature,
total ozone, and tropopause height, J. Atmos. Sci., 21,
479–492, https://doi.org/10.1175/1520-0469(1964)021<0479:QBVITT>2.0.CO;2, 1964. a, b
Angell, J. K., Korshover, J., and Cotten, G. F.: Quasi-biennial variations in
the “centres of action”, Mon. Weather Rev., 97, 867–872,
https://doi.org/10.1175/1520-0493(1969)097<0867:QVITOA>2.3.CO;2, 1969. a
Anstey, J. A., Butchart, N., Hamilton, K., and Osprey, S. M.: The SPARC
Quasi-Biennial Oscillation initiative, Q. J. Roy. Meteor. Soc., 148, 1455–1458,
https://doi.org/10.1002/qj.3820, 2022a. a
Anstey, J. A., Osprey, S. M. Alexander, J., Baldwin, M. P., Butchart, N., Gray,
L. J., Kawatani, Y., Newman, P. A., and Richter, J. H.: Impacts, processes
and projections of the quasi-biennial oscillation, Nat. Rev. Earth Environ., 3, 588–603, https://doi.org/10.1038/s43017-022-00323-7,
2022b. a, b, c, d, e, f, g
Anstey, J. A., Simpson, I. R., Richter, J. H., Naoe, H., Taguchi, M., Serva,
F., Gray, L. J., Butchart, N., Hamilton, K., Osprey, S., Bellprat, O.,
Braesicke, P., Bushell, A. C., Cagnazzo, C., Chen, C.-C., Chun, H.-Y.,
Garcia, R. R., Holt, L., Kawatani, Y., Kerzenmacher, T., Kim, Y.-H., Lott,
F., McLandress, C., Scinocca, J., Stockdale, T. N., Versick, S., Watanabe,
S., Yoshida, K., and Yukimoto, S.: Teleconnections of the quasi-biennial
oscillation in a multi-model ensemble of QBO-resolving models, Q. J. Roy. Meteor. Soc., 148, 1568–1592,
https://doi.org/10.1002/qj.4048, 2022c. a, b
Assmann, R.: Über die Existenz eines wärmeren Luftstromes in der
Höhe von 10 bis 15 km (On the existence of a warmer airflow at heights
from 10 to 15 km), Sitzber. K. Preuss. Aka., 24, 495–504, 1902. a
Austin, J., Shindell, D., Beagley, S. R., Brühl, C., Dameris, M., Manzini, E., Nagashima, T., Newman, P., Pawson, S., Pitari, G., Rozanov, E., Schnadt, C., and Shepherd, T. G.: Uncertainties and assessments of chemistry-climate models of the stratosphere, Atmos. Chem. Phys., 3, 1–27, https://doi.org/10.5194/acp-3-1-2003, 2003. a, b
Ayarzagüena, B., Charlton-Perez, A. J., Butler, A. H., Hitchcock, P.,
Simpson, I. R., Polvani, L. M., Butchart, N., Gerber, E. P., Gray, L.,
Hassler, B., Lin, P., Lott, F., Manzini, E., Mizuta, R., Orbe, C., Osprey,
S., Saint-Martin, D., Sigmond, M., Taguchi, M., Volodin, E. M., and Watanabe,
S.: Uncertainty in the response of sudden stratospheric warmings and
stratosphere-troposphere coupling to quadrupled CO2 concentrations in
CMIP6 models, J. Geophys. Res.-Atmos., 125,
e2019JD032345, https://doi.org/10.1029/2019JD032345, 2020. a, b
Bal, S., Schimanke, S., Spangehl, T., and Cubasch, U.: Variable influence on
the equatorial troposphere associated with SSW using ERA-Interim, J. Earth. Syst. Sci., 126, 1–13,
https://doi.org/10.1007/s12040-017-0802-6, 2017. a, b
Baldwin, M. P. and Dunkerton, T. J.: Quasi-biennial modulation of the Southern
Hemisphere stratospheric polar vortex, Geophys. Res. Lett., 25,
3343–3346, https://doi.org/10.1029/98GL02445, 1998. a
Baldwin, M. P. and Dunkerton, T. J.: Propagation of the Arctic oscillation
from the stratosphere to the troposphere, J. Geophys. Res.-Atmos., 104, 30937–30946,
https://doi.org/10.1029/1999JD900445, 1999. a
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous
weather regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001. a, b, c, d
Baldwin, M. P. and Holton, J. R.: Climatology of the stratospheric polar vortex
and planetary wave breaking, J. Atmos. Sci., 45,
1123–1142, https://doi.org/10.1175/1520-0469(1988)045<1123:COTSPV>2.0.CO;2, 1988. a
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H.,
Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T.,
Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi,
M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229,
https://doi.org/10.1029/1999RG000073, 2001. a, b, c
Baldwin, M. P., Birner, T., Brasseur, G., Burrows, J., Butchart, N., Garcia,
R., Geller, M., Gray, L., Hamilton, K., Harnik, N., Hegglin, M. I.,
Langematz, U., Robock, A., Sato, K., and Scaife, A. A.: 100 years of progress
in understanding the stratosphere and mesosphere, Meteor. Mon.,
59, 27.1–27.62, https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0003.1, 2019. a
Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H.,
Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H.,
Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.: Sudden
stratospheric warmings, Rev. Geophys., 59, e2020RG000708,
https://doi.org/10.1029/2020RG000708, 2021. a, b, c, d, e, f, g, h
Birner, T. and Albers, J. R.: Sudden stratospheric warmings and anomalous
upward Wave activity flux, SOLA, 13A, 8–12, https://doi.org/10.2151/sola.13A-002,
2017. a
Bittner, M., Schmidt, H., Timmreck, C., and Sienz, F.: Using a large ensemble
of simulations to assess the Northern Hemisphere stratospheric dynamical
response to tropical volcanic eruptions and its uncertainty, Geophys. Res. Lett., 43, 9324–9332, https://doi.org/10.1002/2016GL070587,
2016. a
Boljka, L. and Birner, T.: Tropopause-level planetary wave source and its role in two-way troposphere–stratosphere coupling, Weather Clim. Dynam., 1, 555–575, https://doi.org/10.5194/wcd-1-555-2020, 2020. a
Boucher, O.: Stratospheric ozone, ultraviolet radiation and climate change,
Weather, 65, 105–110, https://doi.org/10.1002/wea.451, 2010. a
Boville, B. A.: The influence of the polar night jet on the tropospheric
circulation in a GCM, J. Atmos. Sci., 41, 1132–1142,
https://doi.org/10.1175/1520-0469(1984)041<1132:TIOTPN>2.0.CO;2, 1984. a, b, c
Boville, B. A.: Middle atmosphere version of CCM2 (MACCM2): annual cycle and
interannual variability, J. Geophys. Res.-Atmos., 100,
9017–9039, https://doi.org/10.1029/95JD00095, 1995. a
Boyd, J. P.: The noninteraction of waves with the zonally averaged flow on a
spherical earth and the interrelationships on eddy fluxes of energy, heat,
and momentum, J. Atmos. Sci., 33, 2285–2291,
https://doi.org/10.1175/1520-0469(1976)033<2285:TNOWWT>2.0.CO;2, 1976. a
Brewer, A. W.: Evidence for a world circulation provided by measurements of
helium and water vapour distribution in the stratosphere, Q. J. Roy. Meteor. Soc., 75, 351–363,
https://doi.org/10.1002/qj.49707532603, 1949. a
Bushell, A. C., Butchart, N., Derbyshire, S. H., Jackson, D. R., Shutts, G. J.,
Vosper, S. B., and Webster, S.: Parameterized gravity wave momentum fluxes
from sources related to convection and large-scale precipitation processes in
a global atmosphere model, J. Atmos. Sci., 72,
4349–4371, https://doi.org/10.1175/JAS-D-15-0022.1, 2015. a
Bushell, A. C., Anstey, J. A., Butchart, N., Kawatani, Y., Osprey, S. M.,
Richter, J. H., Serva, F., Braesicke, P., Cagnazzo, C., Chen, C.-C., Chun,
H.-Y., Garcia, R. R., Gray, L. J., Hamilton, K., Kerzenmacher, T., Kim,
Y.-H., Lott, F., McLandress, C., Naoe, H., Scinocca, J., Smith, A. K.,
Stockdale, T. N., Versick, S., Watanabe, S., Yoshida, K., and Yukimoto, S.:
Evaluation of the quasi-biennial oscillation in global climate models for the
SPARC QBO-initiative, Q. J. Roy. Meteor. Soc., 148, 1459–1489, https://doi.org/10.1002/qj.3765, 2022. a, b, c, d, e
Butchart, N.: The Brewer-Dobson circulation, Rev. Geophys., 52,
157–184, https://doi.org/10.1002/2013RG000448, 2014. a, b
Butchart, N. and Austin, J.: Middle atmosphere climatologies from the
troposphere-stratosphere configuration of the UKMO's Unified Model,
J. Atmos. Sci., 55, 2782–2809,
https://doi.org/10.1175/1520-0469(1998)055<2782:MACFTT>2.0.CO;2, 1998. a
Butchart, N. and Remsberg, E. E.: The area of the stratospheric polar vortex as
a diagnostic for tracer transport on an isentropic surface, J. Atmos. Sci., 43, 1319–1339,
https://doi.org/10.1175/1520-0469(1986)043<1319:TAOTSP>2.0.CO;2, 1986. a, b, c
Butchart, N., Clough, S. A., Palmer, T. N., and Trevelyan, P. J.: Simulations
of an observed stratospheric warming with quasi-geostrophic refractive index
as a model diagnostic, Q. J. Roy. Meteor. Soc.,
108, 475–502, https://doi.org/10.1002/qj.49710845702, 1982. a, b
Butchart, N., Austin, J., Knight, J. R., Scaife, A. A., and Gallani, M. L.: The
response of the stratospheric climate to projected changes in the
concentrations of well-mixed greenhouse gases from 1992 to 2051, J. Climate, 13, 2142–2159,
https://doi.org/10.1175/1520-0442(2000)013<2142:TROTSC>2.0.CO;2, 2000. a, b
Butchart, N., Scaife, A. A., Austin, J., Hare, S. H. E., and Knight, J. R.:
Quasi-biennial oscillation in ozone in a coupled chemistry-climate model,
J. Geophys. Res.-Atmos., 108, 4486,
https://doi.org/10.1029/2002JD003004, 2003. a
Butchart, N., Charlton-Perez, A. J., Cionni, I., Hardiman, S. C., Haynes,
P. H., Krüger, K., Kushner, P. J., Newman, P. A., Osprey, S. M.,
Perlwitz, J., Sigmond, M., Wang, L., Akiyoshi, H., Austin, J., Bekki, S.,
Baumgaertner, A., Braesicke, P., Brühl, C., Chipperfield, M., Dameris,
M., Dhomse, S., Eyring, V., Garcia, R., Garny, H., Jöckel, P., Lamarque,
J.-F., Marchand, M., Michou, M., Morgenstern, O., Nakamura, T., Pawson, S.,
Plummer, D., Pyle, J., Rozanov, E., Scinocca, J., Shepherd, T. G., Shibata,
K., Smale, D., Teyssèdre, H., Tian, W., Waugh, D., and Yamashita, Y.:
Multimodel climate and variability of the stratosphere, J. Geophys. Res.-Atmos., 116, D05102,
https://doi.org/10.1029/2010JD014995, 2011. a, b
Butchart, N., Anstey, J. A., Hamilton, K., Osprey, S., McLandress, C., Bushell, A. C., Kawatani, Y., Kim, Y.-H., Lott, F., Scinocca, J., Stockdale, T. N., Andrews, M., Bellprat, O., Braesicke, P., Cagnazzo, C., Chen, C.-C., Chun, H.-Y., Dobrynin, M., Garcia, R. R., Garcia-Serrano, J., Gray, L. J., Holt, L., Kerzenmacher, T., Naoe, H., Pohlmann, H., Richter, J. H., Scaife, A. A., Schenzinger, V., Serva, F., Versick, S., Watanabe, S., Yoshida, K., and Yukimoto, S.: Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi), Geosci. Model Dev., 11, 1009–1032, https://doi.org/10.5194/gmd-11-1009-2018, 2018. a
Butchart, N., Anstey, J. A., Kawatani, Y., Osprey, S. M., Richter, J. H., and
Wu, T.: QBO changes in CMIP6 climate projections, Geophys. Res. Lett., 47, e2019GL086903, https://doi.org/10.1029/2019GL086903,
2020. a
Butler, A. H. and Gerber, E. P.: Optimizing the definition of a sudden
stratospheric warming, J. Climate, 31, 2337–2344,
https://doi.org/10.1175/JCLI-D-17-0648.1, 2018. a
Butler, A. H., Polvani, L. M., and Deser, C.: Separating the stratospheric and
tropospheric pathways of El Niño Southern
Oscillation teleconnections, Environ. Res. Lett., 9, 024014,
https://doi.org/10.1088/1748-9326/9/2/024014, 2014. a
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and
Match, A.: Defining sudden stratospheric warmings, B. Am. Meteorol. Soc., 96, 1913–1928, https://doi.org/10.1175/BAMS-D-13-00173.1,
2015. a, b
Butler, A. H., Arribas, A., Athanassiadou, M., Baehr, J., Calvo, N.,
Charlton-Perez, A., Déqué, M., Domeisen, D. I. V., Fröhlich, K.,
Hendon, H., Imada, Y., Ishii, M., Iza, M., Karpechko, A. Y., Kumar, A.,
MacLachlan, C., Merryfield, W. J., Müller, W. A., O'Neill, A., Scaife,
A. A., Scinocca, J., Sigmond, M., Stockdale, T. N., and Yasuda, T.: The
Climate-system Historical Forecast Project: do stratosphere-resolving
models make better seasonal climate predictions in boreal winter?, Q. J. Roy. Meteor. Soc., 142, 1413–1427,
https://doi.org/10.1002/qj.2743, 2016. a, b
Butler, A. H., Charlton-Perez, A., Domeisen, D. I., Simpson, I. R., and
Sjoberg, J.: Predictability of Northern Hemisphere final stratospheric
warmings and their surface impacts, Geophys. Res. Lett., 46,
10578–10588, https://doi.org/10.1029/2019GL083346, 2019. a
Byrne, N. J. and Shepherd, T. G.: Seasonal persistence of circulation anomalies
in the Southern Hemisphere stratosphere and its implications for the
troposphere, J. Climate, 31, 3467–3483,
https://doi.org/10.1175/JCLI-D-17-0557.1, 2018. a
Cagnazzo, C. and Manzini, E.: Impact of the stratosphere on the winter
tropospheric teleconnections between ENSO and the North Atlantic and
European region, J. Climate, 22, 1223–1238,
https://doi.org/10.1175/2008JCLI2549.1, 2009. a
Camargo, S. J. and Sobel, A. H.: Revisiting the influence of the quasi-biennial
oscillation on tropical cyclone activity, J. Climate, 23, 5810–5825,
https://doi.org/10.1175/2010JCLI3575.1, 2010. a
Cariolle, D., Amodei, M., Déqué, M., Mahfouf, J.-F., Simon, P., and
Teyssèdre, H.: A quasi-biennial oscillation signal in general circulation
model simulations, Science, 261, 1313–1316,
https://doi.org/10.1126/science.261.5126.1313, 1993. a
Charlton, A. J. and Polvani, L. M.: A new look at stratospheric sudden
warmings. Part I: climatology and modeling benchmarks, J. Climate,
20, 449–469, https://doi.org/10.1175/JCLI3996.1, 2007. a
Charlton, A. J., O'Neill, A., Berrisford, P., and Lahoz, W. A.: Can the
dynamical impact of the stratosphere on the troposphere be described by
large-scale adjustment to the stratospheric PV distribution?, Q. J. Roy. Meteor. Soc., 131, 525–543,
https://doi.org/10.1256/qj.03.222, 2005. a
Charlton-Perez, A. J., Ferranti, L., and Lee, R. W.: The influence of the
stratospheric state on North Atlantic weather regimes, Q. J. Roy. Meteor. Soc., 144, 1140–1151,
https://doi.org/10.1002/qj.3280, 2018. a
Charney, J. G. and Drazin, P. G.: Propagation of planetary-scale disturbances
from the lower into the upper atmosphere, J. Geophys. Res., 66, 83–109, https://doi.org/10.1029/JZ066i001p00083,
1961. a, b, c, d
Charron, M., Polavarapu, S., Buehner, M., Vaillancourt, P. A., Charette, C.,
Roch, M., Morneau, J., Garand, L., Aparicio, J. M., MacPherson, S., Pellerin,
S., St-James, J., and Heilliette, S.: The Stratospheric extension of the
Canadian global deterministic medium-range weather forecasting system and
its impact on tropospheric forecasts, Mon. Weather Rev., 140,
1924–1944, https://doi.org/10.1175/MWR-D-11-00097.1, 2012. a
Chipperfield, M. P., Cariolle, D., Simon, P., Ramaroson, R., and Lary, D. J.: A
three-dimensional modeling study of trace species in the Arctic lower
stratosphere during winter 1989–1990, J. Geophys. Res.-Atmos., 98, 7199–7218, https://doi.org/10.1029/92JD02977, 1993. a
Christiansen, B.: Stratospheric vacillations in a general circulation model,
J. Atmos. Sci., 56, 1858–1872,
https://doi.org/10.1175/1520-0469(1999)056<1858:SVIAGC>2.0.CO;2, 1999. a
Christiansen, B., Yang, S., and Madsen, M. S.: Do strong warm ENSO events
control the phase of the stratospheric QBO?, Geophys. Res. Lett.,
43, 10,489–10,495, https://doi.org/10.1002/2016GL070751, 2016. a
Cohen, J. and Jones, J.: Tropospheric precursors and stratospheric warmings,
J. Climate, 24, 6562–6572, https://doi.org/10.1175/2011JCLI4160.1, 2011. a
Committee on Extension of Standard Atmosphere (COSEA): US Standard Atmosphere, 1976, US Government Printing Office, Washington, DC, 1976. a
Coy, L., Wargan, K., Molod, A. M., McCarty, W. R., and Pawson, S.: Structure
and dynamics of the quasi-biennial oscillation in MERRA-2, J. Climate, 29, 5339–5354, https://doi.org/10.1175/JCLI-D-15-0809.1, 2016. a
Coy, L., Newman, P. A., Pawson, S., and Lait, L. R.: Dynamics of the disrupted
2015/16 quasi-biennial oscillation, J. Climate, 30, 5661–5674,
https://doi.org/10.1175/JCLI-D-16-0663.1, 2017. a
Coy, L., Newman, P. A., Strahan, S., and Pawson, S.: Seasonal variation of the
quasi-biennial oscillation descent, J. Geophys. Res.-Atmos., 125, e2020JD033077,
https://doi.org/10.1029/2020JD033077, 2020. a
Coy, L., Newman, P. A., Molod, A., Pawson, S., Alexander, M. J., and Holt, L.:
Seasonal prediction of the quasi-biennial oscillation, J. Geophys. Res.-Atmos., 127, e2021JD036124,
https://doi.org/10.1029/2021JD036124, 2022. a, b
Craig, R. A. and Hering, W. S.: The stratospheric warming of
January-February 1957, J. Atmos. Sci., 16, 91–107,
https://doi.org/10.1175/1520-0469(1959)016<0091:TSWOJF>2.0.CO;2, 1959. a
de la Cámara, A., Albers, J. R., Birner, T., Garcia, R. R., Hitchcock, P.,
Kinnison, D. E., and Smith, A. K.: Sensitivity of sudden stratospheric
warmings to previous stratospheric conditions, J. Atmos. Sci., 74, 2857–2877, https://doi.org/10.1175/JAS-D-17-0136.1, 2017. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011. a, b, c, d
Dickinson, R. E.: Planetary Rossby waves propagating vertically through weak
westerly wind wave-guides, J. Atmos. Sci., 25,
984–1002, https://doi.org/10.1175/1520-0469(1968)025<0984:PRWPVT>2.0.CO;2, 1968. a
Dobson, G. M. B., Harrison, D. N., and Lawrence, J.: Measurements of the amount
of ozone in the Earth’s atmosphere and its relation to other geophysical
conditions, P. R. Soc. A, 122, 456–486,
https://doi.org/10.1098/rspa.1929.0034, 1929. a
Domeisen, D. and Butler, A.: Stratospheric drivers of extreme events at the
Earth’s surface, Commun. Earth Environ., 1, 59,
https://doi.org/10.1038/s43247-020-00060-z, 2020. a, b, c, d
Domeisen, D. I. V.: Estimating the frequency of sudden stratospheric warming
events from surface observations of the North Atlantic oscillation, J. Geophys. Res.-Atmos., 124, 3180–3194,
https://doi.org/10.1029/2018JD030077, 2019. a, b, c
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B.,
Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim,
E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and
Taguchi, M.: The role of the stratosphere in subseasonal to seasonal
prediction: 2. Predictability arising from stratosphere-troposphere
coupling, J. Geophys. Res.-Atmos., 125, e2019JD030923,
https://doi.org/10.1029/2019JD030923, 2020a. a, b
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B.,
Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim,
E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and
Taguchi, M.: The role of the stratosphere in subseasonal to seasonal
prediction: 1. Predictability of the stratosphere, J. Geophys. Res.-Atmos., 125, e2019JD030920,
https://doi.org/10.1029/2019JD030920, 2020b. a, b, c, d
Dunkerton, T.: On the mean meridional mass motions of the stratosphere and
mesosphere, J. Atmos. Sci., 35, 2325–2333,
https://doi.org/10.1175/1520-0469(1978)035<2325:OTMMMM>2.0.CO;2, 1978. a, b
Dunkerton, T. J.: Laterally‐propagating Rossby waves in the easterly
acceleration phase of the quasi‐biennial oscillation, Atmosphere-Ocean, 21,
55–68, https://doi.org/10.1080/07055900.1983.9649155, 1983. a
Dunkerton, T. J.: Nonlinear propagation of zonal winds in an atmosphere with
Newtonian cooling and equatorial wave driving, J. Atmos. Sci., 48, 236–263,
https://doi.org/10.1175/1520-0469(1991)048<0236:NPOZWI>2.0.CO;2, 1991. a
Dunkerton, T. J.: The role of gravity waves in the quasi-biennial oscillation,
J. Geophys. Res.-Atmos., 102, 26053–26076,
https://doi.org/10.1029/96JD02999, 1997. a
Dunkerton, T. J.: The quasi-biennial oscillation of 2015–2016: hiccup or
death spiral?, Geophys. Res. Lett., 43, 10547–10552,
https://doi.org/10.1002/2016GL070921, 2016. a
Dunstone, N., Smith, D., Scaife, A. A., Hermanson, L., Eade, R., Robinson, N.,
Andrews, M., and Knight, J.: Skillful predictions of the winter North
Atlantic Oscillation one year ahead, Nat. Geosci., 9, 809–814,
https://doi.org/10.1038/ngeo2824, 2016. a
Ebdon, R. A.: The quasi-biennial oscillation and its association with
tropospheric circulation patterns, Meteorol. Mag., 104, 282–297,
1975. a
Ebdon, R. A. and Veryard, R. G.: Fluctuations in equatorial stratospheric
winds, Nature, 189, 791–793, https://doi.org/10.1038/189791a0, 1961. a, b
Elsbury, D., Peings, Y., and Magnusdottir, G.: CMIP6 models underestimate the
Holton-Tan effect, Geophys. Res. Lett., 48, e2021GL094083,
https://doi.org/10.1029/2021GL094083, 2021. a
English, S. J., Renshaw, R. J., Dibben, P. C., Smith, A. J., Rayer, P. J.,
Poulsen, C., Saunders, F. W., and Eyre, J. R.: A comparison of the impact of
TOVS arid ATOVS satellite sounding data on the accuracy of numerical
weather forecasts, Q. J. Roy. Meteor. Soc.,
126, 2911–2931, https://doi.org/10.1002/qj.49712656915, 2000. a
European Centre for Medium-Range Weather Forecasts: ERA-Interim reanalysis data, ECMWF [data set], https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/, last access: 3 November 2022. a
Eyring, V., Butchart, N., Waugh, D. W., Akiyoshi, H., Austin, J., Bekki, S.,
Bodeker, G. E., Boville, B. A., Brühl, C., Chipperfield, M. P., Cordero, E.,
Dameris, M., Deushi, M., Fioletov, V. E., Frith, S. M., Garcia, R. R.,
Gettelman, A., Giorgetta, M. A., Grewe, V., Jourdain, L., Kinnison, D. E.,
Mancini, E., Manzini, E., Marchand, M., Marsh, D. R., Nagashima, T., Newman,
P. A., Nielsen, J. E., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E.,
Schraner, M., Shepherd, T. G., Shibata, K., Stolarski, R. S., Struthers, H.,
Tian, W., and Yoshiki, M.: Assessment of temperature, trace species, and
ozone in chemistry-climate model simulations of the recent past, J. Geophys. Res.-Atmos., 111, D22308,
https://doi.org/10.1029/2006JD007327, 2006. a
Eyring, V., Gleckler, P. J., Heinze, C., Stouffer, R. J., Taylor, K. E., Balaji, V., Guilyardi, E., Joussaume, S., Kindermann, S., Lawrence, B. N., Meehl, G. A., Righi, M., and Williams, D. N.: Towards improved and more routine Earth system model evaluation in CMIP, Earth Syst. Dynam., 7, 813–830, https://doi.org/10.5194/esd-7-813-2016, 2016. a
Farman, J., Gardiner, B., and Shanklin, J.: Large losses of total ozone in
Antarctica reveal seasonal ClO NOx interaction., Nature, 315,
207–210, https://doi.org/10.1038/315207a0, 1985. a
Fels, S. B., Mahlman, J. D., Schwarzkopf, M. D., and Sinclair, R. W.:
Stratospheric sensitivity to perturbations in ozone and carbon dioxide:
radiative and dynamical response, J. Atmos. Sci., 37,
2265–2297,
https://doi.org/10.1175/1520-0469(1980)037<2265:SSTPIO>2.0.CO;2,
1980. a
Feser, F., Graf, H. F., and Perlwitz, J.: Secular variability of the coupled
tropospheric and stratospheric circulation in the GCM ECHAM 3/LSG,
Theor. Appl. Climatol., 65, 1–15,
https://doi.org/10.1007/s007040050001, 2000. a
Funk, J. P. and Garnham, G. L.: Australian ozone observations and a suggested
24 month cycle, Tellus, 14, 378–382,
https://doi.org/10.1111/j.2153-3490.1962.tb01350.x, 1962. a
Garfinkel, C. I. and Hartmann, D. L.: Effects of the El Niño–southern
oscillation and the quasi-biennial oscillation on polar temperatures in the
stratosphere, J. Geophys. Res.-Atmos., 112, D19112,
https://doi.org/10.1029/2007JD008481, 2007. a
Garfinkel, C. I., Shaw, T. A., Hartmann, D. L., and Waugh, D. W.: Does the
Holton-Tan mechanism explain how the quasi-biennial oscillation modulates
the Arctic polar vortex?, J. Atmos. Sci., 69,
1713–1733, https://doi.org/10.1175/JAS-D-11-0209.1, 2012. a
Garfinkel, C. I., Schwartz, C., White, I. P., and Rao, J.: Predictability of
the early winter Arctic oscillation from autumn Eurasian snow cover in
subseasonal forecast models, Clim. Dynam., 55, 961–974,
https://doi.org/10.1007/s00382-020-05305-3, 2020a. a
Garfinkel, C. I., White, I., Gerber, E. P., Jucker, M., and Erez, M.: The
building blocks of Northern Hemisphere wintertime stationary waves, J. Climate, 33, 5611–5633, https://doi.org/10.1175/JCLI-D-19-0181.1,
2020b. a
Garfinkel, C. I., Gerber, E. P., Shamir, O., Rao, J., Jucker, M., White, I.,
and Paldor, N.: A QBO cookbook: sensitivity of the quasi-biennial
oscillation to resolution, resolved waves, and parameterized gravity waves,
J. Adv. Model. Earth Sy., 14, e2021MS002568,
https://doi.org/10.1029/2021MS002568, 2022. a
Garreaud, R.: Record-breaking climate anomalies lead to severe drought and
environmental disruption in western Patagonia in 2016, Clim. Res.,
74, 217–229, https://doi.org/10.3354/cr01505, 2018. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a, b
Gerber, E. P. and Manzini, E.: The Dynamics and Variability Model Intercomparison Project (DynVarMIP) for CMIP6: assessing the stratosphere–troposphere system, Geosci. Model Dev., 9, 3413–3425, https://doi.org/10.5194/gmd-9-3413-2016, 2016. a
Gerber, E. P. and Martineau, P.: Quantifying the variability of the annular modes: reanalysis uncertainty vs. sampling uncertainty, Atmos. Chem. Phys., 18, 17099–17117, https://doi.org/10.5194/acp-18-17099-2018, 2018. a
Gerber, E. P., Butler, A., Calvo, N., Charlton-Perez, A., Giorgetta, M.,
Manzini, E., Perlwitz, J., Polvani, L. M., Sassi, F., Scaife, A. A., Shaw,
T. A., Son, S.-W., and Watanabe, S.: Assessing and understanding the impact
of stratospheric dynamics and variability on the Earth system, B. Am. Meteorol. Soc., 93, 845–859,
https://doi.org/10.1175/BAMS-D-11-00145.1, 2012. a
Gillett, N. P., Kell, T. D., and Jones, P. D.: Regional climate impacts of the
Southern Annular Mode, Geophys. Res. Lett., 33, L23704,
https://doi.org/10.1029/2006GL027721, 2006. a
Goss, M., Lindgren, E. A., Sheshadri, A., and Diffenbaugh, N. S.: The
Atlantic jet response to stratospheric events: a regime perspective,
J. Geophys. Res.-Atmos., 126, e2020JD033358,
https://doi.org/10.1029/2020JD033358, 2021. a
Gray, L. J., Scaife, A. A., Mitchell, D. M., Osprey, S., Ineson, S., Hardiman,
S., Butchart, N., Knight, J., Sutton, R., and Kodera, K.: A lagged response
to the 11 year solar cycle in observed winter Atlantic/European weather
patterns, J. Geophys. Res.-Atmos., 118, 13,405–13,420,
https://doi.org/10.1002/2013JD020062, 2013. a
Gray, W. M.: Atlantic seasonal hurricane frequency. Part I: El Niño and
30 mb quasi-biennial oscillation influences, Mon. Weather Rev., 112,
1649–1668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2, 1984. a
Hall, R. J., Mitchell, D. M., Seviour, W. J. M., and Wright, C. J.: Tracking
the stratosphere-to-surface impact of sudden stratospheric warmings, J. Geophys. Res.-Atmos., 126, e2020JD033881,
https://doi.org/10.1029/2020JD033881, 2021a. a, b, c
Hall, R. J., Mitchell, D. M., Seviour, W. J. M., and Wright, C. J.: Persistent
model biases in the CMIP6 representation of stratospheric polar vortex
variability, J. Geophys. Res.-Atmos., 126,
e2021JD034759, https://doi.org/10.1029/2021JD034759,
2021b. a, b
Hamilton, K.: Interannual variability in the Northern Hemisphere winter
middle atmosphere in control and perturbed experiments with the GFDL SKYHI
general circulation model., J. Atmos. Sci., 52, 44–66,
https://doi.org/10.1175/1520-0469(1995)052<0044:IVITNH>2.0.CO;2, 1995. a
Hamilton, K., Wilson, R. J., and Hemler, R.: Middle atmosphere simulated with
high vertical and horizontal resolution versions of a GCM: Improvement in the
cold pole bias and generation of a QBO-like oscillation in the tropics,
J. Atmos. Sci., 56, 3829–3846,
https://doi.org/10.1175/1520-0469(1999)056<3829:MASWHV>2.0.CO;2, 1999. a, b
Hamilton, K., Hertzog, A., Vial, F., and Stenchikov, G.: Longitudinal variation
of the stratospheric quasi-biennial oscillation, J. Atmos. Sci., 61, 383–402,
https://doi.org/10.1175/1520-0469(2004)061<0383:LVOTSQ>2.0.CO;2, 2004. a
Hampson, J. and Haynes, P.: Phase alignment of the tropical stratospheric QBO
in the annual cycle, J. Atmos. Sci., 61, 2627–2637,
https://doi.org/10.1175/JAS3276.1, 2004. a
Hardiman, S. C., Kushner, P. J., and Cohen, J.: Investigating the ability of
general circulation models to capture the effects of Eurasian snow cover on
winter climate, J. Geophys. Res.-Atmos., 113, D21123,
https://doi.org/10.1029/2008JD010623, 2008. a
Hardiman, S. C., Butchart, N., Charlton-Perez, A. J., Shaw, T. A., Akiyoshi,
H., Baumgaertner, A., Bekki, S., Braesicke, P., Chipperfield, M., Dameris,
M., Garcia, R. R., Michou, M., Pawson, S., Rozanov, E., and Shibata, K.:
Improved predictability of the troposphere using stratospheric final
warmings, J. Geophys. Res.-Atmos., 116, D18113,
https://doi.org/10.1029/2011JD015914, 2011. a
Hardiman, S. C., Butchart, N., Hinton, T. J., Osprey, S. M., and Gray, L. J.:
The effect of a well-resolved stratosphere on surface climate: differences
between CMIP5 simulations with high and low top versions of the Met
Office climate model, J. Climate, 25, 7083–7099,
https://doi.org/10.1175/JCLI-D-11-00579.1, 2012. a
Hardiman, S. C., Scaife, A. A., Dunstone, N. J., and Wang, L.: Subseasonal
vacillations in the winter stratosphere, Geophys. Res. Lett., 47,
e2020GL087766, https://doi.org/10.1029/2020GL087766, 2020. a, b
Hatfield, L. A. and Scott, R. K.: Internal interannual variability of the
winter polar vortex in a simple model of the seasonally evolving
stratosphere, Q. J. Roy. Meteor. Soc., 145,
3057–3073, https://doi.org/10.1002/qj.3604, 2019. a
Haynes, P. H. and Shepherd, T. G.: The importance of surface-pressure changes
in the response of the atmosphere to zonally-symmetric thermal and mechanical
forcing, Q. J. Roy. Meteor. Soc., 115,
1181–1208, https://doi.org/10.1002/qj.49711549002, 1989. a
Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J., and Shine,
K. P.: On the “downward control” of extratropical diabatic circulations
by eddy-induced mean zonal forces, J. Atmos. Sci., 48,
651–678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2, 1991. a, b, c, d
Held, I. M.: 100 years of progress in understanding the general circulation of
the atmosphere, Meteor. Mon., 59, 6.1–6.23,
https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0017.1, 2019. a
Held, I. M., Ting, M., and Wang, H.: Northern winter stationary waves: Theory
and modeling, J. Climate, 15, 2125–2144,
https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2, 2002. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b, c, d
Hertzog, A.: How can we improve the driving of the quasi-biennial oscillation
in climate models?, J. Geophys. Res.-Atmos., 125,
e2020JD033411, https://doi.org/10.1029/2020JD033411, 2020. a
Hitchcock, P. and Haynes, P. H.: Stratospheric control of planetary waves,
Geophys. Res. Lett., 43, 11,884–11,892,
https://doi.org/10.1002/2016GL071372, 2016. a
Hitchcock, P. and Simpson, I. R.: The downward influence of stratospheric
sudden warmings, J. Atmos. Sci., 71, 3856–3876,
https://doi.org/10.1175/JAS-D-14-0012.1, 2014. a
Hitchcock, P. and Simpson, I. R.: Quantifying eddy feedbacks and forcings in
the tropospheric response to stratospheric sudden warmings, J. Atmos. Sci., 73, 3641–3657, https://doi.org/10.1175/JAS-D-16-0056.1, 2016. a
Hitchcock, P., Haynes, P. H., Randel, W. J., and Birner, T.: The emergence of
shallow easterly jets within QBO westerlies, J. Atmos. Sci., 75, 21–40, https://doi.org/10.1175/JAS-D-17-0108.1, 2018. a
Hitchman, M. H., Yoden, S., Haynes, P. H., Kumar, V., and Tegtmeir, S.: An
observational history of the direct influence of the stratospheric
quasi-biennial oscillation on the tropical and subtropical upper troposphere
and lower stratosphere, J. Meteorol. Soc. Jpn., 99, 239–267, https://doi.org/10.2151/jmsj.2021-012, 2021. a
Ho, C.-H., Kim, H.-S., Jeong, J.-H., and Son, S.-W.: Influence of stratospheric
quasi-biennial oscillation on tropical cyclone tracks in the western North
Pacific, Geophys. Res. Lett., 36, L06702,
https://doi.org/10.1029/2009GL037163, 2009. a
Holt, L. A., Lott, F., Garcia, R. R., Kiladis, G. N., Cheng, Y.-M., Anstey,
J. A., Braesicke, P., Bushell, A. C., Butchart, N., Cagnazzo, C., Chen,
C.-C., Chun, H.-Y., Kawatani, Y., Kerzenmacher, T., Kim, Y.-H., McLandress,
C., Naoe, H., Osprey, S., Richter, J. H., Scaife, A. A., Scinocca, J., Serva,
F., Versick, S., Watanabe, S., Yoshida, K., and Yukimoto, S.: An evaluation
of tropical waves and wave forcing of the QBO in the QBOi models,
Q. J. Roy. Meteor. Soc., 148, 1541–1567,
https://doi.org/10.1002/qj.3827, 2022. a
Holton, J. R. and Lindzen, R. S.: An updated theory for the quasi-biennial
cycle of the tropical stratosphere, J. Atmos. Sci., 29,
1076–1080,
https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2, 1972. a, b
Holton, J. R. and Mass, C.: Stratospheric vacillation cycles, J. Atmos. Sci., 33, 2218–2225,
https://doi.org/10.1175/1520-0469(1976)033<2218:SVC>2.0.CO;2, 1976. a
Holton, J. R. and Tan, H. C.: The influence of the equatorial
quasi-biennial oscillation on the global circulation at 50 mb, J. Atmos. Sci., 37, 2200–2207,
https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2, 1980. a, b, c
Horinouchi, T. and Yoden, S.: Wave–mean flow interaction associated with a
QBO-like oscillation simulated in a simplified GCM, J. Atmos. Sci., 55, 502–526,
https://doi.org/10.1175/1520-0469(1998)055<0502:WMFIAW>2.0.CO;2, 1998. a
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W.: On the use and
significance of isentropic potential vorticity maps, Q. J. R. Meteorol. Soc., 111, 877–946,
https://doi.org/10.1002/qj.49711147002, 1985. a
Ichimaru, T., Noguchi, S., Hirooka, T., and Mukougawa, H.: Predictability
changes of stratospheric circulations in Northern Hemisphere winter,
J. Meteorol. Soc. Jpn., 94, 7–24,
https://doi.org/10.2151/jmsj.2016-001, 2016. a
Ineson, S. and Scaife, A. A.: The role of the stratosphere in the European
climate response to El Niño, Nat. Geosci., 2, 32–36,
https://doi.org/10.1038/ngeo381, 2009. a
Jia, L., Yang, X., Vecchi, G., Gudgel, R., Delworth, T., Fueglistaler, S., Lin,
P., Scaife, A. A., Underwood, S., and Lin, S.-J.: Seasonal prediction skill
of northern extratropical surface temperature driven by the stratosphere,
J. Climate, 30, 4463–4475, https://doi.org/10.1175/JCLI-D-16-0475.1, 2017. a
Jucker, M.: Scaling of Eliassen-Palm flux vectors, Atmos. Sci. Lett., 22, e1020, https://doi.org/10.1002/asl.1020, 2021. a
Jucker, M. and Gerber, E. P.: Untangling the annual cycle of the tropical
tropopause layer with an idealized moist model, J. Climate, 30,
7339–7358, https://doi.org/10.1175/JCLI-D-17-0127.1, 2017. a
Jucker, M., Reichler, T., and Waugh, D. W.: How frequent are Antarctic sudden
stratospheric warmings in present and future climate?, Geophys. Res. Lett., 48, e2021GL093215, https://doi.org/10.1029/2021GL093215,
2021. a
Kang, M.-J. and Chun, H.-Y.: Contributions of equatorial waves and small-scale convective gravity waves to the 2019/20 quasi-biennial oscillation (QBO) disruption, Atmos. Chem. Phys., 21, 9839–9857, https://doi.org/10.5194/acp-21-9839-2021, 2021. a
Kang, M.-J., Chun, H.-Y., and Garcia, R. R.: Role of equatorial waves and convective gravity waves in the 2015/16 quasi-biennial oscillation disruption, Atmos. Chem. Phys., 20, 14669–14693, https://doi.org/10.5194/acp-20-14669-2020, 2020. a
Karpechko, A. Y.: Predictability of sudden stratospheric warmings in the ECMWF
extended-range forecast system, Mon. Weather Rev., 146, 1063–1075,
https://doi.org/10.1175/MWR-D-17-0317.1, 2018. a
Karpechko, A. Y., Hitchcock, P., Peters, D. H. W., and Schneidereit, A.:
Predictability of downward propagation of major sudden stratospheric
warmings, Q. J. Roy. Meteor. Soc., 143,
1459–1470, https://doi.org/10.1002/qj.3017, 2017. a
Karpechko, A. Y., Tyrrell, N. L., and Rast, S.: Sensitivity of QBO
teleconnection to model circulation biases, Q. J. Roy. Meteor. Soc., 147, 2147–2159,
https://doi.org/10.1002/qj.4014, 2021. a, b
Kasahara, A. and Sasamori, T.: Simulation experiments with a 12-layer
stratospheric global circulation model. II. Momentum balance and
energetics in the stratosphere, J. Atmos. Sci., 31,
408–422,
https://doi.org/10.1175/1520-0469(1974)031<0408:SEWALS>2.0.CO;2,
1974. a
Kawatani, Y. and Hamilton, K.: Weakened stratospheric quasi-biennial
oscillation driven by increased tropical mean upwelling, Nature, 497,
478–481, https://doi.org/10.1038/nature12140, 2013. a
Kawatani, Y., Hamilton, K., Gray, L. J., Osprey, S. M., Watanabe, S., and
Yamashita, Y.: The effects of a well-resolved stratosphere on the simulated
boreal winter circulation in a climate model, J. Atmos. Sci., 76, 1203–1226, https://doi.org/10.1175/JAS-D-18-0206.1, 2019. a
Kawatani, Y., Hirooka, T., Hamilton, K., Smith, A. K., and Fujiwara, M.: Representation of the equatorial stratopause semiannual oscillation in global atmospheric reanalyses, Atmos. Chem. Phys., 20, 9115–9133, https://doi.org/10.5194/acp-20-9115-2020, 2020. a
Keegan, T. J.: Large-scale disturbances of atmospheric circulation between 30
and 70 kilometers in winter, J. Geophys. Res., 67,
1831–1838, https://doi.org/10.1029/JZ067i005p01831, 1962. a
Kim, B.-M., Son, S.-W., Min, S.-K., Jeong, J.-H., Kim, S.-J., Zhang, X., Shim,
T., and Yoon, J.-H.: Weakening of the stratospheric polar vortex by Arctic
sea-ice loss, Nat. Commun., 5, 1–8,
https://doi.org/10.1038/ncomms5646, 2014. a
Kim, H., Son, S.-W., and Yoo, C.: QBO modulation of the MJO-related
precipitation in East Asia, J. Geophys. Res.-Atmos.,
125, e2019JD031929, https://doi.org/10.1029/2019JD031929, 2020. a
King, A. D., Butler, A. H., Jucker, M., Earl, N. O., and Rudeva, I.: Observed
relationships between sudden stratospheric warmings and European climate
extremes, J. Geophys. Res.-Atmos., 124,
13943–13961, https://doi.org/10.1029/2019JD030480, 2019. a
Klotzbach, P., Abhik, S., Hendon, H. H., Bell, M., Lucas, C., Marshall, A. G.,
and Oliver, E. C. J.: On the emerging relationship between the stratospheric
quasi-biennial oscillation and the Madden-Julian oscillation, Sci.
Rep., 9, 2981, https://doi.org/10.1038/s41598-019-40034-6, 2019. a, b
Kodera, K.: Influence of stratospheric sudden warming on the equatorial
troposphere, Geophys. Res. Lett., 33, L06804,
https://doi.org/10.1029/2005GL024510, 2006. a
Kodera, K. and Yamada, K.: Impact of the SH major stratospheric warming on
the Hadley circulation: A case study, Pap. Meteorol. Geophys.,
54, 111–116, https://doi.org/10.2467/mripapers.54.111, 2004. a
Kodera, K., Yamazaki, K., Chiba, K., and Shibata, K.: Downward propagation of
upper stratospheric mean zonal wind perturbation to the troposphere,
Geophys. Res. Lett., 17, 1263–1266,
https://doi.org/10.1029/GL017i009p01263, 1990. a
Kodera, K., Mukougawa, H., and Kuroda, Y.: A general circulation model study of
the impact of a stratospheric sudden warming event on tropical convection,
SOLA, 7, 197–200, https://doi.org/10.2151/sola.2011-050, 2011. a
Kretschmer, M., Zappa, G., and Shepherd, T. G.: The role of Barents–Kara sea ice loss in projected polar vortex changes, Weather Clim. Dynam., 1, 715–730, https://doi.org/10.5194/wcd-1-715-2020, 2020. a
Kuroda, Y. and Kodera, K.: Interannual variability in the troposphere and
stratosphere of the Southern Hemisphere winter, J. Geophys. Res.-Atmos., 103, 13787–13799,
https://doi.org/10.1029/98JD01042, 1998. a
Kuroda, Y. and Kodera, K.: Variability of the polar night jet in the Northern
and Southern Hemispheres, J. Geophys. Res.-Atmos., 106,
20703–20713, https://doi.org/10.1029/2001JD900226, 2001. a
Labitzke, K.: On the interannual variability of the middle stratosphere during
the northern winters, J. Meteorol. Soc. Jpn., 60, 124–139, https://doi.org/10.2151/jmsj1965.60.1_124, 1982. a
Lahoz, W. A.: Predictive skill of the UKMO unified model in the lower
stratosphere, Q. J. Roy. Meteor. Soc., 125,
2205–2238, https://doi.org/10.1002/qj.49712555813, 1999. a
Larson, E. J. L., Portmann, R. W., Rosenlof, K. H., Fahey, D. W., Daniel,
J. S., and Ross, M. N.: Global atmospheric response to emissions from a
proposed reusable space launch system, Earth's Future, 5, 37–48,
https://doi.org/10.1002/2016EF000399, 2017. a
Leovy, C. B.: Simple models of thermally driven mesospheric circulation,
J. Atmos. Sci., 21, 327–341,
https://doi.org/10.1175/1520-0469(1964)021<0327:SMOTDM>2.0.CO;2, 1964. a
Lim, E.-P., Hendon, H. H., and Thompson, D. W. J.: Seasonal evolution of
stratosphere-troposphere coupling in the Southern Hemisphere and
implications for the predictability of surface climate, J. Geophys. Res.-Atmos., 123, 12002–12016,
https://doi.org/10.1029/2018JD029321, 2018. a, b
Lim, E.-P., Hendon, H. H., Boschat, G., Hudson, D., Thompson, D. W. J., Dowdy,
A. J., and Arblaster, J. M.: Australian hot and dry extremes induced by
weakenings of the stratospheric polar vortex, Nat. Geosci., 12,
896–901, https://doi.org/10.1038/s41561-019-0456-x, 2019a. a
Lim, E.-P., Hendon, H. H., Butler, A. H., Thompson, D. W. J., Lawrence, Z. D.,
Scaife, A. A., Shepherd, T. G., Polichtchouk, I., Nakamura, H., Kobayashi,
C., Comer, R., Coy, L., Dowdy, A., Garreaud, R. D., Newman, P. A., and Wang,
G.: The 2019 Southern Hemisphere stratospheric polar vortex weakening and
its impacts, B. American Meteorol. Soc., 102,
E1150–E1171, https://doi.org/10.1175/BAMS-D-20-0112.1, 2021. a
Lim, Y., Son, S.-W., Marshall, A. G., Hendon, H. H., and Seo, K.-H.: Influence
of the QBO on MJO prediction skill in the subseasonal-to-seasonal
prediction models, Clim. Dynam., 53, 1681–1695,
https://doi.org/10.1007/s00382-019-04719-y, 2019b. a, b
Lin, P., Held, I., and Ming, Y.: The early development of the 2015/16
quasi-biennial oscillation disruption, J. Atmos. Sci.,
76, 821–836,
https://doi.org/10.1175/JAS-D-18-0292.1,
2019. a
Lindzen, R. and Holton, J. R.: A theory of the quasi-biennial
oscillation, J. Atmos. Sci., 25, 1095–1107,
https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2, 1968. a, b, c
Lott, F. and Guez, L.: A stochastic parameterization of the gravity waves due
to convection and its impact on the equatorial stratosphere, J. Geophys. Res.-Atmos., 118, 8897–8909, https://doi.org/10.1002/jgrd.50705,
2013. a
Lu, H., Bracegirdle, T. J., Phillips, T., and Turner, J.: A comparative study
of wave forcing derived from the ERA-40 and ERA-Interim reanalysis
datasets, J. Climate, 28, 2291–2311,
https://doi.org/10.1175/JCLI-D-14-00356.1, 2015. a
Ma, T., Chen, W., Huangfu, J., Song, L., and Cai, Q.: The observed influence of
the quasi-biennial oscillation in the lower equatorial stratosphere on the
East Asian winter monsoon during early boreal winter, Int. J.
Climatol., 41, 6254–6269, https://doi.org/10.1002/joc.7192, 2021. a
Manabe, S. and Hunt, B. G.: Experiments with a stratospheric general
circulation model I: Radiative and dynamic aspects, Mon. Weather Rev.,
96, 477–502, https://doi.org/10.1175/1520-0493(1968)096<0477:EWASGC>2.0.CO;2, 1968. a
Manney, G. L., Schwartz, M. J., Krüger, K., Santee, M. L., Pawson, S., Lee,
J. N., Daffer, W. H., Fuller, R. A., and Livesey, N. J.: Aura Microwave Limb
Sounder observations of dynamics and transport during the record-breaking
2009 Arctic stratospheric major warming, Geophys. Res. Lett., 36, L12815,,
https://doi.org/10.1029/2009GL038586, 2009. a
Manzini, E. and Bengtsson, L.: Stratospheric climate and variability from a
general circulation model and observations, Clim. Dynam., 12, 615–639,
https://doi.org/10.1007/BF00216270, 1996. a
Manzini, E., McFarlane, N. A., and McLandress, C.: Impact of the Doppler
spread parameterization on the simulation of the middle atmosphere
circulation using the MA/ECHAM4 general circulation model, J. Geophys. Res.-Atmos., 102, 25751–25762,
https://doi.org/10.1029/97JD01096, 1997. a
Manzini, E., Steil, B., Brühl, C., Giorgetta, M. A., and Krüger, K.: A
new interactive chemistry-climate model: 2. Sensitivity of the middle
atmosphere to ozone depletion and increase in greenhouse gases and
implications for recent stratospheric cooling, J. Geophys. Res.-Atmos., 108, 4429, https://doi.org/10.1029/2002JD002977, 2003. a
Manzini, E., Cagnazzo, C., Fogli, P. G., Bellucci, A., and Müller, W. A.:
Stratosphere-troposphere coupling at inter-decadal time scales: Implications
for the North Atlantic Ocean, Geophys. Res. Lett., 39, L05801,
https://doi.org/10.1029/2011GL050771, 2012. a
Marshall, A. G. and Scaife, A. A.: Improved predictability of stratospheric
sudden warming events in an atmospheric general circulation model with
enhanced stratospheric resolution, J. Geophys. Res.-Atmos., 115, D16114, https://doi.org/10.1029/2009JD012643, 2010. a
Marshall, A. G., Hendon, H. H., Son, S.-W., and Lim, Y.: Impact of the
quasi-biennial oscillation on predictability of the Madden–Julian
oscillation, Clim. Dynam., 49, 1365–1377,
https://doi.org/10.1007/s00382-016-3392-0, 2017. a, b
Martin, Z., Son, S.-W., Butler, A., Hendon, H., Kim, H., Sobel, A., Yoden, S.,
and Zhang, C.: The influence of the quasi-biennial oscillation on the
Madden–Julian oscillation, Nat. Rev. Earth Environ., 2,
477–489, https://doi.org/10.1038/s43017-021-00173-9, 2021. a, b, c, d
Martius, O., Polvani, L. M., and Davies, H. C.: Blocking precursors to
stratospheric sudden warming events, Geophys. Res. Lett., 36,
L14806, https://doi.org/10.1029/2009GL038776, 2009. a
Match, A. and Fueglistaler, S.: Mean-flow damping forms the buffer zone of the
quasi-biennial oscillation: 1D Theory, J. Atmos. Sci.,
77, 1955–1967, https://doi.org/10.1175/JAS-D-19-0293.1, 2020. a
Matsuno, T.: Vertical propagation of stationary planetary waves in the winter
Northern Hemisphere, J. Atmos. Sci., 27, 871–883,
https://doi.org/10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2, 1970. a
Matsuno, T.: A dynamical model of the stratospheric sudden warming, J. Atmos. Sci., 28, 1479–1494,
https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2, 1971. a, b, c
Matthewman, N. J. and Esler, J. G.: Stratospheric sudden warmings as
self-tuning resonances. Part I: vortex splitting events, J. Atmos. Sci., 68, 2481–2504, https://doi.org/10.1175/JAS-D-11-07.1, 2011. a
Matthias, V., Stober, G., Kozlovsky, A., Lester, M., Belova, E., and Kero, J.:
Vertical structure of the Arctic spring transition in the middle
atmosphere, J. Geophys. Res.-Atmos., 126,
e2020JD034353, https://doi.org/10.1029/2020JD034353, 2021. a
Maycock, A. C. and Hitchcock, P.: Do split and displacement sudden
stratospheric warmings have different annular mode signatures?, Geophys. Res. Lett., 42, 10943–10951,
https://doi.org/10.1002/2015GL066754, 2015. a
Maycock, A. C., Masukwedza, G. I. T., Hitchcock, P., and Simpson, I. R.: A
regime perspective on the North Atlantic eddy-driven jet response to sudden
stratospheric warmings, J. Climate, 33, 3901–3917,
https://doi.org/10.1175/JCLI-D-19-0702.1, 2020. a
McElroy, C. T. and Fogal, P. F.: Ozone: From discovery to protection,
Atmos. Ocean, 46, 1–13, https://doi.org/10.3137/ao.460101, 2008. a
McIntyre, M. E. and Palmer, T. N.: Breaking planetary waves in the
stratosphere, Nature, 305, 593–600, https://doi.org/10.1038/305593a0,
1983. a, b, c, d
McIntyre, M. E. and Palmer, T. N.: The “surf zone” in the stratosphere,
J. Atmos. Terr. Phys., 46, 825–849,
https://doi.org/10.1016/0021-9169(84)90063-1, 1984. a, b
McLandress, C.: On the importance of gravity waves in the middle atmosphere and
their parameterization in general circulation models, J. Atmos. Sol.-Terr. Phy., 60, 1357–1383,
https://doi.org/10.1016/S1364-6826(98)00061-3, 1998. a
Mechoso, C. R., Yamazaki, K., Kitoh, A., and Arakawa, A.: Numerical forecasts of
stratospheric warming events during the winter of 1979, Mon. Weather Rev., 113, 1015–1030,
https://doi.org/10.1175/1520-0493(1985)113<1015:NFOSWE>2.0.CO;2, 1985. a
Miller, D. E., Brownscombe, J. L., Carruthers, G. P., Pick, D. R., Stewart,
K. H., Massey, H. S. W., Beynon, W. J. G., Houghton, J. T., and Thomas, L.:
Operational temperature sounding of the stratosphere, Philos. T. R. Soc. A, 296, 65–71, https://doi.org/10.1098/rsta.1980.0156, 1980. a
Minzner, R.: The 1976 Standard Atmosphere and its relationship to earlier
standards, Rev. Geophys., 15, 375–384,
https://doi.org/10.1029/RG015i003p00375, 1977. a
Mitchell, D. M., Charlton-Perez, A. J., and Gray, L. J.: Characterizing the
variability and extremes of the stratospheric polar vortices using 2D
moment analysis, J. Atmos. Sci., 68, 1194–1213,
https://doi.org/10.1175/2010JAS3555.1, 2011. a
Miyakoda, K., Strickler, R. F., and Hembree, G. D.: Numerical simulation of the
breakdown of a polar-night vortex in the stratosphere, J. Atmos. Sci., 27, 139–154,
https://doi.org/10.1175/1520-0469(1970)027<0139:NSOTBO>2.0.CO;2, 1970. a
Mukougawa, H. and Hirooka, T.: Predictability of stratospheric sudden warming:
A case study for 1998/99 winter, Mon. Weather Rev., 132, 1764–1776,
https://doi.org/10.1175/1520-0493(2004)132<1764:POSSWA>2.0.CO;2, 2004. a
Naito, Y. and Hirota, I.: Interannual Variability of the Northern Winter
Stratospheric Circulation Related to the QBO and the solar cycle, J. Meteorol. Soc. Jpn., 75, 925–937,
https://doi.org/10.2151/jmsj1965.75.4_925, 1997. a
Newman, P. A., Nash, E. R., and Rosenfield, J. E.: What controls the
temperature of the Arctic stratosphere during the spring?, J. Geophys. Res.-Atmos., 106, 19999–20010,
https://doi.org/10.1029/2000JD000061, 2001. a, b, c
Nishimoto, E. and Yoden, S.: Influence of the stratospheric quasi-biennial
oscillation on the Madden–Julian oscillation during Austral summer,
J. Atmos. Sci., 74, 1105–1125,
https://doi.org/10.1175/JAS-D-16-0205.1, 2017. a
Noguchi, S., Mukougawa, H., Kuroda, Y., Mizuta, R., Yabu, S., and Yoshimura,
H.: Predictability of the stratospheric polar vortex breakdown: An ensemble
reforecast experiment for the splitting event in January 2009, J. Geophys. Res.-Atmos., 121, 3388–3404,
https://doi.org/10.1002/2015JD024581, 2016. a
Noguchi, S., Kuroda, Y., Kodera, K., and Watanabe, S.: Robust enhancement of
tropical convective activity by the 2019 Antarctic sudden stratospheric
warming, Geophys. Res. Lett., 47, e2020GL088743,
https://doi.org/10.1029/2020GL088743, 2020. a
Omrani, N.-E., Bader, J., Keenlyside, N. S., and Manzini, E.:
Troposphere–stratosphere response to large-scale North Atlantic Ocean
variability in an atmosphere/ocean coupled model, Clim. Dynam., 46,
1397–1415, https://doi.org/10.1007/s00382-015-2654-6, 2016. a
O'Neill, A. and Taylor, B. F.: A study of the major stratospheric warming of
1976/77, Q. J. Roy. Meteor. Soc., 105, 71–92,
https://doi.org/10.1002/qj.49710544306, 1979. a
Osprey, S. M., Gray, L. J., Hardiman, S. C., Butchart, N., Bushell, A. C., and
Hinton, T. J.: The climatology of the middle atmosphere in a vertically
extended version of the Met Office's climate model. Part II:
Variability, J. Atmos. Sci., 67, 3637–3651,
https://doi.org/10.1175/2010JAS3338.1, 2010. a
O'Sullivan, D.: Interaction of extratropical Rossby waves with westerly
quasi-biennial oscillation winds, J. Geophys. Res.-Atmos., 102, 19461–19469, https://doi.org/10.1029/97JD01524, 1997. a, b
Pahlavan, H. A., Fu, Q., Wallace, J. M., and Kiladis, G. N.: Revisiting the
quasi-biennial oscillation as seen in ERA5. Part I: description and
momentum budget, J. Atmos. Sci., 78, 673–691,
https://doi.org/10.1175/JAS-D-20-0248.1, 2021a. a, b
Pahlavan, H. A., Wallace, J. M., Fu, Q., and Kiladis, G. N.: Revisiting the
quasi-biennial oscillation as seen in ERA5. Part II: evaluation of waves
and wave forcing, J. Atmos. Sci., 78, 693–707,
https://doi.org/10.1175/JAS-D-20-0249.1, 2021b. a
Palmer, C. E.: The stratospheric polar vortex in winter, J. Geophys. Res., 64, 749–764,
https://doi.org/10.1029/JZ064i007p00749, 1959. a
Palmer, T. N.: Aspects of stratospheric sudden warmings studied from a
transformed Eulerian-mean viewpoint, J. Geophys. Res.-Oceans, 86, 9679–9687, https://doi.org/10.1029/JC086iC10p09679,
1981a. a, b
Palmer, T. N.: Diagnostic study of a wavenumber-2 stratospheric sudden warming
in a transformed Eulerian-mean formalism, J. Atmos. Sci., 38, 844–855,
https://doi.org/10.1175/1520-0469(1981)038<0844:DSOAWS>2.0.CO;2, 1981b. a
Pascoe, C. L., Gray, L. J., Crooks, S. A., Juckes, M. N., and Baldwin, M. P.:
The quasi-biennial oscillation: Analysis using ERA-40 data, J. Geophys. Res.-Atmos., 110, D08105,
https://doi.org/10.1029/2004JD004941, 2005. a, b, c
Pawson, S., Kodera, K., Hamilton, K., Shepherd, T. G., Beagley, S. R., Boville,
B. A., Farrara, J. D., Fairlie, T. D. A., Kitoh, A., Lahoz, W. A., Langematz,
U., Manzini, E., Rind, D. H., Scaife, A. A., Shibata, K., Simon, P.,
Swinbank, R., Takacs, L., Wilson, R. J., Al-Saadi, J. A., Amodei, M., Chiba,
M., Coy, L., de Grandpré, J., Eckman, R. S., Fiorino, M., Grose, W. L.,
Koide, H., Koshyk, J. N., Li, D., Lerner, J., Mahlman, J. D., McFarlane,
N. A., Mechoso, C. R., Molod, A., O'Neill, A., Pierce, R. B., Randel, W. J.,
Rood, R. B., and Wu, F.: The GCM–Reality Intercomparison Project for SPARC
(GRIPS): Scientific issues and initial results, B. Am. Meteorol. Soc., 81, 781–796,
https://doi.org/10.1175/1520-0477(2000)081<0781:TGIPFS>2.3.CO;2, 2000. a
Peña Ortiz, C., Ribera, P., García-Herrera, R., Giorgetta, M. A., and
García, R. R.: Forcing mechanism of the seasonally asymmetric
quasi-biennial oscillation secondary circulation in ERA-40 and MAECHAM5,
J. Geophys. Res.-Atmos., 113, D16103,
https://doi.org/10.1029/2007JD009288, 2008. a
Perlwitz, J. and Graf, H.-F.: The statistical connection between tropospheric
and stratospheric circulation of the Northern Hemisphere in winter, J. Climate, 8, 2281–2295,
https://doi.org/10.1175/1520-0442(1995)008<2281:TSCBTA>2.0.CO;2, 1995. a
Perlwitz, J. and Harnik, N.: Downward coupling between the stratosphere and
troposphere: The relative roles of wave and zonal mean processes, J. Climate, 17, 4902–4909, https://doi.org/10.1175/JCLI-3247.1, 2004. a
Plougonven, R., de la Cámara, A., Hertzog, A., and Lott, F.: How does
knowledge of atmospheric gravity waves guide their parameterizations?,
Q. J. Roy. Meteor. Soc., 146, 1529–1543,
https://doi.org/10.1002/qj.3732, 2020. a
Plumb, R. A.: Instability of the distorted polar night vortex: A theory of
stratospheric warmings, J. Atmos. Sci., 38, 2514–2531,
https://doi.org/10.1175/1520-0469(1981)038<2514:IOTDPN>2.0.CO;2, 1981. a
Plumb, R. A. and Bell, R. C.: A model of the quasi-biennial oscillation on an
equatorial beta-plane, Q. J. Roy. Meteor. Soc.,
108, 335–352, https://doi.org/10.1002/qj.49710845604, 1982. a, b
Pohlmann, H., Müller, W. A., Kulkarni, K., Kameswarrao, M., Matei, D.,
Vamborg, F. S. E., Kadow, C., Illing, S., and Marotzke, J.: Improved forecast
skill in the tropics in the new MiKlip decadal climate predictions,
Geophys. Res. Lett., 40, 5798–5802,
https://doi.org/10.1002/2013GL058051, 2013. a
Pohlmann, H., Müller, W. A., Bittner, M., Hettrich, S., Modali, K.,
Pankatz, K., and Marotzke, J.: Realistic quasi-biennial oscillation
variability in historical and decadal hindcast simulations using CMIP6
forcing, Geophys. Res. Lett., 46, 14118–14125,
https://doi.org/10.1029/2019GL084878, 2019. a, b
Polavarapu, S., Shepherd, T. G., Rochon, Y., and Ren, S.: Some challenges of
middle atmosphere data assimilation, Q. J. Roy. Meteor. Soc., 131, 3513–3527,
https://doi.org/10.1256/qj.05.87, 2005. a
Portal, A., Ruggieri, P., Palmeiro, F. M., García-Serrano, J., Domeisen, D.
I. V., and Gualdi, S.: Seasonal prediction of the Boreal winter
stratosphere, Clim. Dynam., 58, 2109–2130,
https://doi.org/10.1007/s00382-021-05787-9, 2022. a, b
Quiroz, R. S.: The association of stratospheric warmings with tropospheric
blocking, J. Geophys. Res.-Atmos., 91, 5277–5285,
https://doi.org/10.1029/JD091iD04p05277, 1986. a
Rajendran, K., Moroz, I. M., Osprey, S. M., and Read, P. L.: Descent rate
models of the synchronization of the quasi-biennial oscillation by the annual
cycle in tropical upwelling, J. Atmos. Sci., 75,
2281–2297, https://doi.org/10.1175/JAS-D-17-0267.1, 2018. a
Randel, W. J., Wu, F., Swinbank, R., Nash, J., and O’Neill, A.: Global QBO
circulation derived from UKMO stratospheric analyses, J. Atmos. Sci., 56, 457–474,
https://doi.org/10.1175/1520-0469(1999)056<0457:GQCDFU>2.0.CO;2, 1999. a
Rao, J., Ren, R., Chen, H., Yu, Y., and Zhou, Y.: The stratospheric sudden
warming event in February 2018 and its prediction by a climate system
model, J. Geophys. Res.-Atmos., 123, 13332–13345,
https://doi.org/10.1029/2018JD028908, 2018. a
Rao, J., Ren, R., Chen, H., Liu, X., Yu, Y., Hu, J., and Zhou, Y.:
Predictability of stratospheric sudden warmings in the Beijing Climate
Center forecast system with statistical error corrections, J. Geophys. Res.-Atmos., 124, 8385–8400,
https://doi.org/10.1029/2019JD030900, 2019. a
Reed, R. J., Campbell, W. J., Rasmussen, L. A., and Rogers, D. G.: Evidence of
a downward-propagating, annual wind reversal in the equatorial stratosphere,
J. Geophys. Res., 66, 813–818,
https://doi.org/10.1029/JZ066i003p00813, 1961. a, b
Reed, R. J., Wolfe, J. L., and Nishimoto, H.: A spectral analysis of the
energetics of the stratospheric sudden warming of early 1957, J. Atmos. Sci., 20, 256–275,
https://doi.org/10.1175/1520-0469(1963)020<0256:ASAOTE>2.0.CO;2, 1963. a
Richter, J. H., Sassi, F., and Garcia, R. R.: Toward a physically based gravity
wave source parameterization in a general circulation model, J. Atmos. Sci., 67, 136–156, https://doi.org/10.1175/2009JAS3112.1, 2010. a
Richter, J. H., Anstey, J. A., Butchart, N., Kawatani, Y., Meehl, G. A.,
Osprey, S., and Simpson, I. R.: Progress in simulating the quasi-biennial
oscillation in CMIP models, J. Geophys. Res.-Atmos.,
125, e2019JD032362, https://doi.org/10.1029/2019JD032362, 2020. a, b, c
Richter, J. H., Butchart, N., Kawatani, Y., Bushell, A. C., Holt, L., Serva,
F., Anstey, J., Simpson, I. R., Osprey, S., Hamilton, K., Braesicke, P.,
Cagnazzo, C., Chen, C.-C., Garcia, R. R., Gray, L. J., Kerzenmacher, T.,
Lott, F., McLandress, C., Naoe, H., Scinocca, J., Stockdale, T. N., Versick,
S., Watanabe, S., Yoshida, K., and Yukimoto, S.: Response of the
quasi-biennial oscillation to a warming climate in global climate models,
Q. J. Roy. Meteor. Soc., 148, 1490–1518,
https://doi.org/10.1002/qj.3749, 2022. a, b, c, d
Rind, D., Suozzo, R., and Balachandran, N. K.: The GISS Global Climate-Middle Atmosphere Model. Part II. Model Variability Due to Interactions between Planetary Waves, the Mean Circulation and Gravity Wave Drag, J. Atmos. Sci., 45, 371–386,
https://doi.org/10.1175/1520-0469(1988)045<0371:TGGCMA>2.0.CO;2, 1988. a
Roff, G., Thompson, D. W. J., and Hendon, H.: Does increasing model
stratospheric resolution improve extended-range forecast skill?, Geophys. Res. Lett., 38, L05809, https://doi.org/10.1029/2010GL046515, 2011. a, b, c
Runde, T., Dameris, M., Garny, H., and Kinnison, D. E.: Classification of
stratospheric extreme events according to their downward propagation to the
troposphere, Geophys. Res. Lett., 43, 6665–6672,
https://doi.org/10.1002/2016GL069569, 2016. a
Rupp, P. and Birner, T.: Tropospheric eddy feedback to different stratospheric conditions in idealised baroclinic life cycles, Weather Clim. Dynam., 2, 111–128, https://doi.org/10.5194/wcd-2-111-2021, 2021. a
Ryan, R. G., Marais, E. A., Balhatchet, C. J., and Eastham, S. D.: Impact of
rocket launch and space debris air pollutant emissions on stratospheric ozone
and global climate, Earth's Future, 10, e2021EF002612,
https://doi.org/10.1029/2021EF002612, 2022. a
Scaife, A. A., Butchart, N., Warner, C. D., Stainforth, D., Norton, W., and
Austin, J.: Realistic quasi-biennial oscillations in a simulation of the
global climate, Geophys. Res. Lett., 27, 3481–3484,
https://doi.org/10.1029/2000GL011625, 2000. a
Scaife, A. A., Butchart, N., Warner, C. D., and Swinbank, R.: Impact of a
spectral gravity wave parametrization on the stratosphere in the Met
Office Unified Model, J. Atmos. Sci., 59,
1473–1489, https://doi.org/10.1175/1520-0469(2002)059<1473:IOASGW>2.0.CO;2, 2002. a, b
Scaife, A. A., Athanassiadou, M., Andrews, M., Arribas, A., Baldwin, M.,
Dunstone, N., Knight, J., MacLachlan, C., Manzini, E., Müller, W. A.,
Pohlmann, H., Smith, D., Stockdale, T., and Williams, A.: Predictability of
the quasi-biennial oscillation and its northern winter teleconnection on
seasonal to decadal timescales, Geophys. Res. Lett., 41, 1752–1758,
https://doi.org/10.1002/2013GL059160, 2014. a
Scaife, A. A., Baldwin, M. P., Butler, A. H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Hardiman, S. C., Haynes, P., Karpechko, A. Y., Lim, E.-P., Noguchi, S., Perlwitz, J., Polvani, L., Richter, J. H., Scinocca, J., Sigmond, M., Shepherd, T. G., Son, S.-W., and Thompson, D. W. J.: Long-range prediction and the stratosphere, Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, 2022. a, b
Schenzinger, V., Osprey, S., Gray, L., and Butchart, N.: Defining metrics of the Quasi-Biennial Oscillation in global climate models, Geosci. Model Dev., 10, 2157–2168, https://doi.org/10.5194/gmd-10-2157-2017, 2017. a
Scherhag, R.: Stratospheric temperature changes and the associated changes in
pressure distribution, J. Atmos. Sci., 17, 575–583,
https://doi.org/10.1175/1520-0469(1960)017<0575:STCATA>2.0.CO;2, 1960. a
Schirber, S.: Influence of ENSO on the QBO: Results from an ensemble of
idealized simulations, J. Geophys. Res.-Atmos., 120,
1109–1122, https://doi.org/10.1002/2014JD022460, 2015. a
Scott, R. K.: A new class of vacillations of the stratospheric polar vortex,
Q. J. Roy. Meteor. Soc., 142, 1948–1957,
https://doi.org/10.1002/qj.2788, 2016. a
Scott, R. K. and Haynes, P. H.: Internal interannual variability of the
extratropical stratospheric circulation: The low-latitude flywheel, Q. J. Roy. Meteor. Soc., 124, 2149–2173,
https://doi.org/10.1002/qj.49712455016, 1998. a
Serva, F., Cagnazzo, C., Christiansen, B., and Yang, S.: The influence of ENSO
events on the stratospheric QBO in a multi-model ensemble, Clim. Dynam.,
54, 2561–2575, https://doi.org/10.1007/s00382-020-05131-7, 2020. a
Seviour, W. J. M., Hardiman, S. C., Gray, L. J., Butchart, N., MacLachlan, C.,
and Scaife, A. A.: Skillful seasonal prediction of the Southern Annular Mode
and Antarctic ozone, J. Climate, 27, 7462–7474,
https://doi.org/10.1175/JCLI-D-14-00264.1, 2014. a, b, c
Seviour, W. J. M., Gray, L. J., and Mitchell, D. M.: Stratospheric polar vortex
splits and displacements in the high-top CMIP5 climate models, J. Geophys. Res.-Atmos., 121, 1400–1413,
https://doi.org/10.1002/2015JD024178, 2016. a
Sheshadri, A., Plumb, R. A., Lindgren, E. A., and Domeisen, D. I. V.: The
vertical structure of annular modes, J. Atmos. Sci., 75,
3507–3519, https://doi.org/10.1175/JAS-D-17-0399.1, 2018. a
Shine, K. P.: The middle atmosphere in the absence of dynamical heat fluxes,
Q. J. Roy. Meteor. Soc., 113, 603–633,
https://doi.org/10.1002/qj.49711347610, 1987. a, b, c, d
Shiotani, M., Shimoda, N., and Hirota, I.: Interannual variability of the
stratospheric circulation in the Southern Hemisphere, Q. J. Roy. Meteor. Soc., 119, 531–546,
https://doi.org/10.1002/qj.49711951110, 1993. a
Shuckburgh, E., Norton, W., Iwi, A., and Haynes, P.: Influence of the
quasi-biennial oscillation on isentropic transport and mixing in the tropics
and subtropics, J. Geophys. Res.-Atmos., 106,
14327–14337, https://doi.org/10.1029/2000JD900664, 2001. a
Sigmond, M., Scinocca, J. F., Kharin, V. V., and Shepherd, T. G.: Enhanced
seasonal forecast skill following stratospheric sudden warmings, Nat. Geosci., 6, 98–102, https://doi.org/10.1038/ngeo1698, 2013. a
Simmons, A. J. and Strüfing, R.: Numerical forecasts of stratospheric
warming events using a model with a hybrid vertical coordinate, Q. J. Roy. Meteor. Soc., 109, 81–111,
https://doi.org/10.1002/qj.49710945905, 1983. a
Simpson, I. R., Hitchcock, P., Seager, R., Wu, Y., and Callaghan, P.: The
downward influence of uncertainty in the Northern Hemisphere stratospheric
polar vortex response to climate change, J. Climate, 31, 6371–6391,
https://doi.org/10.1175/JCLI-D-18-0041.1, 2018. a
Smith, W., Bhattarai, U., Bingaman, D. C., Mace, J. L., and Rice, C. V.: Review
of possible very high-altitude platforms for stratospheric aerosol injection,
Environmental Research Communications, 4, 031002,
https://doi.org/10.1088/2515-7620/ac4f5d, 2022. a
Smy, L. A. and Scott, R. K.: The influence of stratospheric potential vorticity
on baroclinic instability, Q. J. Roy. Meteor. Soc., 135, 1673–1683, https://doi.org/10.1002/qj.484, 2009. a
Son, S.-W., Lim, Y., Yoo, C., Hendon, H. H., and Kim, J.: Stratospheric control
of the Madden–Julian oscillation, J. Climate, 30, 1909–1922,
https://doi.org/10.1175/JCLI-D-16-0620.1, 2017. a
Song, K., Son, S.-W., and Charlton-Perez, A.: Deterministic prediction of
stratospheric sudden warming events in the Global/Regional Integrated Model
system (GRIMs), Clim. Dynam., 55, 1209––1223,
https://doi.org/10.1007/s00382-020-05320-4, 2020. a, b
Song, Y. and Robinson, W. A.: Dynamical mechanisms for stratospheric influences
on the troposphere, J. Atmos. Sci., 61, 1711–1725,
https://doi.org/10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2, 2004. a, b
Stockdale, T. N., Kim, Y.-H., Anstey, J. A., Palmeiro, F. M., Butchart, N.,
Scaife, A. A., Andrews, M., Bushell, A. C., Dobrynin, M., Garcia-Serrano, J.,
Hamilton, K., Kawatani, Y., Lott, F., McLandress, C., Naoe, H., Osprey, S.,
Pohlmann, H., Scinocca, J., Watanabe, S., Yoshida, K., and Yukimoto, S.:
Prediction of the quasi-biennial oscillation with a multi-model ensemble of
QBO-resolving models, Q. J. Roy. Meteor. Soc., 148, 1519–1540, https://doi.org/10.1002/qj.3919, 2022. a, b, c, d, e
Stocker, M., Ladstädter, F., and Steiner, A. K.: Observing the climate
impact of large wildfires on stratospheric temperature, Nat. Sci.
Rep., 11, 22994, https://doi.org/10.1038/s41598-021-02335-7, 2021. a
Sun, L., Robinson, W. A., and Chen, G.: The predictability of stratospheric
warming events: more from the troposphere or the stratosphere?, J. Atmos. Sci., 69, 768–783, https://doi.org/10.1175/JAS-D-11-0144.1, 2012. a
Taguchi, M.: Predictability of major stratospheric sudden warmings: analysis
results from JMA operational 1-month ensemble predictions from 2001/02 to
2012/13, J. Atmos. Sci., 73, 789–806,
https://doi.org/10.1175/JAS-D-15-0201.1, 2016. a
Taguchi, M.: Comparison of subseasonal-to-seasonal model forecasts for major
stratospheric sudden warmings, J. Geophys. Res.-Atmos.,
123, 10231–10247, https://doi.org/10.1029/2018JD028755,
2018a. a
Taguchi, M.: Seasonal winter forecasts of the northern stratosphere and
troposphere: Results from JMA seasonal hindcast experiments, J. Atmos. Sci., 75, 827–840, https://doi.org/10.1175/JAS-D-17-0276.1,
2018b. a
Taguchi, M. and Hartmann, D. L.: Increased occurrence of stratospheric sudden
warmings during El Niño as simulated by WACCM, J. Climate,
19, 324–332, https://doi.org/10.1175/JCLI3655.1, 2006. a
Takahashi, M.: Simulation of the stratospheric quasi-biennial oscillation using
a general circulation model, Geophys. Res. Lett., 23, 661–664,
https://doi.org/10.1029/95GL03413, 1996. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Teweles, S.: Anomalous warming of the stratosphere over North America in
early 1957, Mon. Weather Rev., 86, 377–396,
https://doi.org/10.1175/1520-0493(1958)086<0377:AWOTSO>2.0.CO;2, 1958. a
Teweles, S. and Finger, F. G.: An abrupt change in stratospheric circulation
beginning in mid-January 1958, Mon. Weather Rev., 86, 23–28,
https://doi.org/10.1175/1520-0493(1958)086<0023:AACISC>2.0.CO;2, 1958. a
Thompson, D. W. J. and Solomon, S.: Interpretation of recent Southern
Hemisphere climate change, Science, 296, 895–899,
https://doi.org/10.1126/science.1069270, 2002. a
Thompson, D. W. J. and Wallace, J. M.: The Arctic oscillation signature in the
wintertime geopotential height and temperature fields, Geophys. Res. Lett., 25, 1297–1300, https://doi.org/10.1029/98GL00950, 1998. a
Thompson, D. W. J. and Wallace, J. M.: Annular modes in the extratropical
circulation. Part I: month-to-month variability, J. Climate, 13,
1000–1016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2, 2000. a, b
Thompson, D. W. J., Baldwin, M. P., and Solomon, S.: Stratosphere-troposphere
coupling in the Southern Hemisphere, J. Atmos. Sci.,
62, 708–715, https://doi.org/10.1175/JAS-3321.1, 2005. a, b, c
Tian, W., Chipperfield, M. P., Gray, L. J., and Zawodny, J. M.: Quasi-biennial
oscillation and tracer distributions in a coupled chemistry-climate model,
J. Geophys. Res.-Atmos., 111, D20301,
https://doi.org/10.1029/2005JD006871, 2006. a
Tilmes, S., Richter, J. H., Mills, M. J., Kravitz, B., MacMartin, D. G.,
Garcia, R. R., Kinnison, D. E., Lamarque, J.-F., Tribbia, J., and Vitt, F.:
Effects of different dtratospheric SO2 injection altitudes on
stratospheric chemistry and dynamics, J. Geophys. Res.-Atmos., 123, 4654–4673, https://doi.org/10.1002/2017JD028146,
2018. a
Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Eckermann,
S. D., Gerber, E., Harrison, R. G., Jackson, D. R., Kim, B.-M., Kuroda, Y.,
Lang, A., Mahmood, S., Mizuta, R., Roff, G., Sigmond, M., and Son, S.-W.: The
predictability of the extratropical stratosphere on monthly time-scales and
its impact on the skill of tropospheric forecasts, Q. J. Roy. Meteor. Soc., 141, 987–1003,
https://doi.org/10.1002/qj.2432, 2015. a, b
Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Cheung, J.
C. H., Eckermann, S. D., Gerber, E., Jackson, D. R., Kuroda, Y., Lang, A.,
McLay, J., Mizuta, R., Reynolds, C., Roff, G., Sigmond, M., Son, S.-W., and
Stockdale, T.: Examining the predictability of the stratospheric sudden
warming of January 2013 using multiple NWP systems, Mon. Weather Rev., 144, 1935–1960, https://doi.org/10.1175/MWR-D-15-0010.1, 2016. a
Tuck, A. F.: Perspective on aircraft in the stratosphere: 50 years from
COMESA through the ozone hole to climate, Q. J. Roy. Meteor. Soc., 147, 713–727, https://doi.org/10.1002/qj.3958,
2021. a
Tung, K. K. and Lindzen, R. S.: A theory of stationary long waves. Part II:
Resonant Rossby waves in the presence of realistic vertical shears, Mon. Weather Rev., 107, 735–750,
https://doi.org/10.1175/1520-0493(1979)107<0735:ATOSLW>2.0.CO;2, 1979. a
Uryu, M.: On the transport of energy and momentum in stationary waves in a
rotating stratified fluid, J. Meteorol. Soc. Jpn.,
51, 86–92, https://doi.org/10.2151/jmsj1965.51.2_86, 1973. a
Uryu, M.: Mean zonal flows induced by a vertically propagating Rossby wave
packet, J. Meteorol. Soc. Jpn., 52,
481–490, https://doi.org/10.2151/jmsj1965.52.6_481, 1974. a
Vincent, R. A. and Alexander, M. J.: Balloon-borne observations of short
vertical wavelength gravity waves and interaction with QBO winds, J. Geophys. Res.-Atmos., 125, e2020JD032779,
https://doi.org/10.1029/2020JD032779, 2020. a
Wang, F., Han, Y., Zhang, S., and Zhang, R.: Influence of stratospheric sudden
warming on the tropical intraseasonal convection, Environ. Res. Lett., 15, 084027, https://doi.org/10.1088/1748-9326/ab98b5, 2020a. a
Wang, L., Hardiman, S. C., Bett, P. E., Comer, R. E., Kent, C., and Scaife,
A. A.: What chance of a sudden stratospheric warming in the Southern
Hemisphere?, Environ. Res. Lett., 15, 104038,
https://doi.org/10.1088/1748-9326/aba8c1, 2020b. a
Wang, S., Tippett, M. K., Sobel, A. H., Martin, Z. K., and Vitart, F.: Impact
of the QBO on prediction and predictability of the MJO convection,
J. Geophys. Res.-Atmos., 124, 11766–11782,
https://doi.org/10.1029/2019JD030575, 2019. a
Watanabe, S., Hamilton, K., Osprey, S., Kawatani, Y., and Nishimoto, E.: First
successful hindcasts of the 2016 disruption of the stratospheric
quasi-biennial oscillation, Geophys. Res. Lett., 45, 1602–1610,
https://doi.org/10.1002/2017GL076406, 2018. a
Waugh, D. N. W.: Elliptical diagnostics of stratospheric polar vortices,
Q. J. Roy. Meteor. Soc., 123, 1725–1748,
https://doi.org/10.1002/qj.49712354213, 1997. a, b
Waugh, D. W., Sisson, J. M., and Karoly, D. J.: Predictive skill of an NWP
system in the southern lower stratosphere, Q. J. Roy. Meteor. Soc., 124, 2181–2200,
https://doi.org/10.1002/qj.49712455102, 1998.
a
Woo, S.-H., Sung, M.-K., Son, S.-W., and Kug, J.-S.: Connection between weak
stratospheric vortex events and the Pacific decadal oscillation, Clim. Dynam., 45, 3481–3492,
https://doi.org/10.1007/s00382-015-2551-z, 2015. a
Yamazaki, K., Nakamura, T., Ukita, J., and Hoshi, K.: A tropospheric pathway of the stratospheric quasi-biennial oscillation (QBO) impact on the boreal winter polar vortex, Atmos. Chem. Phys., 20, 5111–5127, https://doi.org/10.5194/acp-20-5111-2020, 2020. a
Yoo, C. and Son, S.-W.: Modulation of the boreal wintertime Madden-Julian
oscillation by the stratospheric quasi-biennial oscillation, Geophys. Res. Lett., 43, 1392–1398, https://doi.org/10.1002/2016GL067762,
2016. a, b, c
Yoshida, K. and Mizuta, R.: Do sudden stratospheric warmings boost convective
activity in the Tropics?, Geophys. Res. Lett., 48, e2021GL093688,
https://doi.org/10.1029/2021GL093688, 2021. a, b
Yulaeva, E., Holton, J. R., and Wallace, J. M.: On the cause of the annual
cycle in tropical lower-stratospheric temperatures, J. Atmos. Sci., 51, 169–174,
https://doi.org/10.1175/1520-0469(1994)051<0169:OTCOTA>2.0.CO;2, 1994. a
Zhang, C.: Madden-Julian oscillation, Rev. Geophys., 43, RG2003,
https://doi.org/10.1029/2004RG000158, 2005. a
Zhang, J., Xie, F., Ma, Z., Zhang, C., Xu, M., Wang, T., and Zhang, R.:
Seasonal evolution of the quasi-biennial oscillation impact on the Northern
Hemisphere polar vortex in winter, J. Geophys. Res.-Atmos., 124, 12568–12586,
https://doi.org/10.1029/2019JD030966, 2019. a
Zhang, J., Zhang, C., Zhang, K., Xu, M., Duan, J., Chipperfield, M. P., Feng,
W., Zhao, S., and Xie, F.: The role of chemical processes in the
quasi-biennial oscillation (QBO) signal in stratospheric ozone, Atmos. Environ., 244, 117906,
https://doi.org/10.1016/j.atmosenv.2020.117906, 2021. a
Zhang, P., Wu, Y., Simpson, I. R., Smith, K. L., Zhang, X., De, B., and
Callaghan, P.: A stratospheric pathway linking a colder Siberia to
Barents-Kara Sea sea ice loss, Sci. Adv., 4, eaat6025,
https://doi.org/10.1126/sciadv.aat6025, 2018. a
Short summary
In recent years, it has emerged that there is an affinity between stratospheric variability and surface events. Waves from the troposphere interacting with the mean flow drive much of the variability in the polar vortex, sudden stratospheric warmings and tropical quasi-biennial oscillation. Here we review the historical evolution of established knowledge of the stratosphere's global structure and dynamical variability, along with recent advances and theories, and identify outstanding challenges.
In recent years, it has emerged that there is an affinity between stratospheric variability and...