Articles | Volume 3, issue 4
https://doi.org/10.5194/wcd-3-1237-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-3-1237-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The stratosphere: a review of the dynamics and variability
Neal Butchart
CORRESPONDING AUTHOR
Met Office Hadley Centre (MOHC), Exeter, EX1 3PB, UK
Related authors
Hiroaki Naoe, Jorge L. Garcia-Franco, Chang-Hyun Park, Mario Rodrigo, Froila M. Palmeiro, Federico Serva, Masakazu Taguchi, Kohei Yoshida, James A. Anstey, Javier Garcia-Serrano, Seok-Woo Son, Yoshio Kawatani, Neal Butchart, Kevin Hamilton, Chih-Chieh Chen, Anne Glanville, Tobias Kerzenmacher, Francois Lott, Clara Orbe, Scott Osprey, Mijeong Park, Jadwiga H. Richter, Stefan Versick, and Shingo Watanabe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1148, https://doi.org/10.5194/egusphere-2025-1148, 2025
Short summary
Short summary
This study examines links between the stratospheric Quasi-Biennial Oscillation (QBO) and large-scale atmospheric circulations in the tropics, subtropics, and polar regions. The QBO teleconnections and their modulation by the El Niño-Southern Oscillation (ENSO) are investigated through a series of climate model experiments. While QBO teleconnections are qualitatively reproduced by the multi-model ensemble, they are not consistent due to modelled QBO bias and other systematic model biases.
This article is included in the Encyclopedia of Geosciences
Dillon Elsbury, Federico Serva, Julie M. Caron, Seung-Yoon Back, Clara Orbe, Jadwiga H. Richter, James A. Anstey, Neal Butchart, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Yoshio Kawatani, Tobias Kerzenmacher, Francois Lott, Hiroaki Naoe, Scott Osprey, Froila M. Palmeiro, Seok-Woo Son, Masakazu Taguchi, Stefan Versick, Shingo Watanabe, and Kohei Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-3950, https://doi.org/10.5194/egusphere-2024-3950, 2025
Short summary
Short summary
This study examines how the Madden-Julian Oscillation (MJO), a major tropical weather pattern, is influenced by persistent El Niño or La Niña sea surface temperature conditions during winter. Using a coordinated set of climate model experiments, we find that El Niño strengthens Kelvin waves, speeding up MJO propagation, while La Niña strengthens Rossby waves, slowing it down. Better understanding these interactions between the MJO and ocean helps us better understand natural climate variability.
This article is included in the Encyclopedia of Geosciences
Yoshio Kawatani, Kevin Hamilton, Shingo Watanabe, James A. Anstey, Jadwiga H. Richter, Neal Butchart, Clara Orbe, Scott M. Osprey, Hiroaki Naoe, Dillon Elsbury, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Tobias Kerzenmacher, François Lott, Froila M. Palmerio, Mijeong Park, Federico Serva, Masakazu Taguchi, Stefan Versick, and Kohei Yoshioda
EGUsphere, https://doi.org/10.5194/egusphere-2024-3270, https://doi.org/10.5194/egusphere-2024-3270, 2024
Short summary
Short summary
The Quasi-Biennial Oscillation (QBO) of the tropical stratospheric mean winds has been relatively steady over the 7 decades it has been observed, but there are always cycle-to-cycle variations. This study used several global atmospheric models to investigate systematic modulation of the QBO by the El Niño/La Niña cycle. All models simulated shorter periods during El Niño, in agreement with observations. By contrast, the models disagreed even on the sign of the El Niño effect on QBO amplitude.
This article is included in the Encyclopedia of Geosciences
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
This article is included in the Encyclopedia of Geosciences
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
This article is included in the Encyclopedia of Geosciences
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
This article is included in the Encyclopedia of Geosciences
Jacob W. Smith, Peter H. Haynes, Amanda C. Maycock, Neal Butchart, and Andrew C. Bushell
Atmos. Chem. Phys., 21, 2469–2489, https://doi.org/10.5194/acp-21-2469-2021, https://doi.org/10.5194/acp-21-2469-2021, 2021
Short summary
Short summary
This paper informs realistic simulation of stratospheric water vapour by clearly attributing each of the two key influences on water vapour entry to the stratosphere. Presenting modified trajectory models, the results of this paper show temperatures dominate on annual and inter-annual variations; however, transport has a significant effect in reducing the annual cycle maximum. Furthermore, sub-seasonal variations in temperature have an important overall influence.
This article is included in the Encyclopedia of Geosciences
Hiroaki Naoe, Jorge L. Garcia-Franco, Chang-Hyun Park, Mario Rodrigo, Froila M. Palmeiro, Federico Serva, Masakazu Taguchi, Kohei Yoshida, James A. Anstey, Javier Garcia-Serrano, Seok-Woo Son, Yoshio Kawatani, Neal Butchart, Kevin Hamilton, Chih-Chieh Chen, Anne Glanville, Tobias Kerzenmacher, Francois Lott, Clara Orbe, Scott Osprey, Mijeong Park, Jadwiga H. Richter, Stefan Versick, and Shingo Watanabe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1148, https://doi.org/10.5194/egusphere-2025-1148, 2025
Short summary
Short summary
This study examines links between the stratospheric Quasi-Biennial Oscillation (QBO) and large-scale atmospheric circulations in the tropics, subtropics, and polar regions. The QBO teleconnections and their modulation by the El Niño-Southern Oscillation (ENSO) are investigated through a series of climate model experiments. While QBO teleconnections are qualitatively reproduced by the multi-model ensemble, they are not consistent due to modelled QBO bias and other systematic model biases.
This article is included in the Encyclopedia of Geosciences
Dillon Elsbury, Federico Serva, Julie M. Caron, Seung-Yoon Back, Clara Orbe, Jadwiga H. Richter, James A. Anstey, Neal Butchart, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Yoshio Kawatani, Tobias Kerzenmacher, Francois Lott, Hiroaki Naoe, Scott Osprey, Froila M. Palmeiro, Seok-Woo Son, Masakazu Taguchi, Stefan Versick, Shingo Watanabe, and Kohei Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-3950, https://doi.org/10.5194/egusphere-2024-3950, 2025
Short summary
Short summary
This study examines how the Madden-Julian Oscillation (MJO), a major tropical weather pattern, is influenced by persistent El Niño or La Niña sea surface temperature conditions during winter. Using a coordinated set of climate model experiments, we find that El Niño strengthens Kelvin waves, speeding up MJO propagation, while La Niña strengthens Rossby waves, slowing it down. Better understanding these interactions between the MJO and ocean helps us better understand natural climate variability.
This article is included in the Encyclopedia of Geosciences
Yoshio Kawatani, Kevin Hamilton, Shingo Watanabe, James A. Anstey, Jadwiga H. Richter, Neal Butchart, Clara Orbe, Scott M. Osprey, Hiroaki Naoe, Dillon Elsbury, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Tobias Kerzenmacher, François Lott, Froila M. Palmerio, Mijeong Park, Federico Serva, Masakazu Taguchi, Stefan Versick, and Kohei Yoshioda
EGUsphere, https://doi.org/10.5194/egusphere-2024-3270, https://doi.org/10.5194/egusphere-2024-3270, 2024
Short summary
Short summary
The Quasi-Biennial Oscillation (QBO) of the tropical stratospheric mean winds has been relatively steady over the 7 decades it has been observed, but there are always cycle-to-cycle variations. This study used several global atmospheric models to investigate systematic modulation of the QBO by the El Niño/La Niña cycle. All models simulated shorter periods during El Niño, in agreement with observations. By contrast, the models disagreed even on the sign of the El Niño effect on QBO amplitude.
This article is included in the Encyclopedia of Geosciences
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
This article is included in the Encyclopedia of Geosciences
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
This article is included in the Encyclopedia of Geosciences
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
This article is included in the Encyclopedia of Geosciences
Jacob W. Smith, Peter H. Haynes, Amanda C. Maycock, Neal Butchart, and Andrew C. Bushell
Atmos. Chem. Phys., 21, 2469–2489, https://doi.org/10.5194/acp-21-2469-2021, https://doi.org/10.5194/acp-21-2469-2021, 2021
Short summary
Short summary
This paper informs realistic simulation of stratospheric water vapour by clearly attributing each of the two key influences on water vapour entry to the stratosphere. Presenting modified trajectory models, the results of this paper show temperatures dominate on annual and inter-annual variations; however, transport has a significant effect in reducing the annual cycle maximum. Furthermore, sub-seasonal variations in temperature have an important overall influence.
This article is included in the Encyclopedia of Geosciences
Cited articles
Afargan-Gerstman, H., Polkova, I., Papritz, L., Ruggieri, P., King, M. P., Athanasiadis, P. J., Baehr, J., and Domeisen, D. I. V.: Stratospheric influence on North Atlantic marine cold air outbreaks following sudden stratospheric warming events, Weather Clim. Dynam., 1, 541–553, https://doi.org/10.5194/wcd-1-541-2020, 2020. a
Albers, J. R. and Birner, T.: Vortex preconditioning due to planetary and
gravity waves prior to sudden stratospheric warmings, J. Atmos. Sci., 71, 4028–4054, https://doi.org/10.1175/JAS-D-14-0026.1, 2014. a, b
Albers, J. R., Kiladis, G. N., Birner, T., and Dias, J.: Tropical
upper-tropospheric potential vorticity intrusions during sudden stratospheric
warmings, J. Atmos. Sci., 73, 2361–2384,
https://doi.org/10.1175/JAS-D-15-0238.1, 2016. a
Allen, D. R., Coy, L., Eckermann, S. D., McCormack, J. P., Manney, G. L.,
Hogan, T. F., and Kim, Y.-J.: NOGAPS-ALPHA simulations of the 2002
Southern Hemisphere stratospheric major warming, Mon. Weather Rev.,
134, 498–518, https://doi.org/10.1175/MWR3086.1, 2006. a, b
Andrews, D. G.: On the interpretation of the Eliassen-Palm flux divergence,
Q. J. Roy. Meteor. Soc., 113, 323–338,
https://doi.org/10.1002/qj.49711347518, 1987. a
Andrews, D. G. and McIntyre, M. E.: Planetary waves in horizontal and vertical
shear: The generalized Eliassen-Palm relation and the mean zonal
acceleration, J. Atmos. Sci., 33, 2031–2048,
https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2, 1976. a, b, c
Andrews, D. G. and McIntyre, M. E.: Generalized Eliassen-Palm and
Charney-Drazin theorems for waves on axismmetric mean flows in compressible
atmospheres, J. Atmos. Sci., 35, 175–185,
https://doi.org/10.1175/1520-0469(1978)035<0175:GEPACD>2.0.CO;2, 1978. a, b, c, d
Angell, J. K. and Korshover, J.: Quasi-biennial variations in temperature,
total ozone, and tropopause height, J. Atmos. Sci., 21,
479–492, https://doi.org/10.1175/1520-0469(1964)021<0479:QBVITT>2.0.CO;2, 1964. a, b
Angell, J. K., Korshover, J., and Cotten, G. F.: Quasi-biennial variations in
the “centres of action”, Mon. Weather Rev., 97, 867–872,
https://doi.org/10.1175/1520-0493(1969)097<0867:QVITOA>2.3.CO;2, 1969. a
Anstey, J. A., Butchart, N., Hamilton, K., and Osprey, S. M.: The SPARC
Quasi-Biennial Oscillation initiative, Q. J. Roy. Meteor. Soc., 148, 1455–1458,
https://doi.org/10.1002/qj.3820, 2022a. a
Anstey, J. A., Osprey, S. M. Alexander, J., Baldwin, M. P., Butchart, N., Gray,
L. J., Kawatani, Y., Newman, P. A., and Richter, J. H.: Impacts, processes
and projections of the quasi-biennial oscillation, Nat. Rev. Earth Environ., 3, 588–603, https://doi.org/10.1038/s43017-022-00323-7,
2022b. a, b, c, d, e, f, g
Anstey, J. A., Simpson, I. R., Richter, J. H., Naoe, H., Taguchi, M., Serva,
F., Gray, L. J., Butchart, N., Hamilton, K., Osprey, S., Bellprat, O.,
Braesicke, P., Bushell, A. C., Cagnazzo, C., Chen, C.-C., Chun, H.-Y.,
Garcia, R. R., Holt, L., Kawatani, Y., Kerzenmacher, T., Kim, Y.-H., Lott,
F., McLandress, C., Scinocca, J., Stockdale, T. N., Versick, S., Watanabe,
S., Yoshida, K., and Yukimoto, S.: Teleconnections of the quasi-biennial
oscillation in a multi-model ensemble of QBO-resolving models, Q. J. Roy. Meteor. Soc., 148, 1568–1592,
https://doi.org/10.1002/qj.4048, 2022c. a, b
Assmann, R.: Über die Existenz eines wärmeren Luftstromes in der
Höhe von 10 bis 15 km (On the existence of a warmer airflow at heights
from 10 to 15 km), Sitzber. K. Preuss. Aka., 24, 495–504, 1902. a
Austin, J., Shindell, D., Beagley, S. R., Brühl, C., Dameris, M., Manzini, E., Nagashima, T., Newman, P., Pawson, S., Pitari, G., Rozanov, E., Schnadt, C., and Shepherd, T. G.: Uncertainties and assessments of chemistry-climate models of the stratosphere, Atmos. Chem. Phys., 3, 1–27, https://doi.org/10.5194/acp-3-1-2003, 2003. a, b
Ayarzagüena, B., Charlton-Perez, A. J., Butler, A. H., Hitchcock, P.,
Simpson, I. R., Polvani, L. M., Butchart, N., Gerber, E. P., Gray, L.,
Hassler, B., Lin, P., Lott, F., Manzini, E., Mizuta, R., Orbe, C., Osprey,
S., Saint-Martin, D., Sigmond, M., Taguchi, M., Volodin, E. M., and Watanabe,
S.: Uncertainty in the response of sudden stratospheric warmings and
stratosphere-troposphere coupling to quadrupled CO2 concentrations in
CMIP6 models, J. Geophys. Res.-Atmos., 125,
e2019JD032345, https://doi.org/10.1029/2019JD032345, 2020. a, b
Bal, S., Schimanke, S., Spangehl, T., and Cubasch, U.: Variable influence on
the equatorial troposphere associated with SSW using ERA-Interim, J. Earth. Syst. Sci., 126, 1–13,
https://doi.org/10.1007/s12040-017-0802-6, 2017. a, b
Baldwin, M. P. and Dunkerton, T. J.: Quasi-biennial modulation of the Southern
Hemisphere stratospheric polar vortex, Geophys. Res. Lett., 25,
3343–3346, https://doi.org/10.1029/98GL02445, 1998. a
Baldwin, M. P. and Dunkerton, T. J.: Propagation of the Arctic oscillation
from the stratosphere to the troposphere, J. Geophys. Res.-Atmos., 104, 30937–30946,
https://doi.org/10.1029/1999JD900445, 1999. a
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous
weather regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001. a, b, c, d
Baldwin, M. P. and Holton, J. R.: Climatology of the stratospheric polar vortex
and planetary wave breaking, J. Atmos. Sci., 45,
1123–1142, https://doi.org/10.1175/1520-0469(1988)045<1123:COTSPV>2.0.CO;2, 1988. a
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H.,
Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T.,
Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi,
M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229,
https://doi.org/10.1029/1999RG000073, 2001. a, b, c
Baldwin, M. P., Birner, T., Brasseur, G., Burrows, J., Butchart, N., Garcia,
R., Geller, M., Gray, L., Hamilton, K., Harnik, N., Hegglin, M. I.,
Langematz, U., Robock, A., Sato, K., and Scaife, A. A.: 100 years of progress
in understanding the stratosphere and mesosphere, Meteor. Mon.,
59, 27.1–27.62, https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0003.1, 2019. a
Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H.,
Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H.,
Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.: Sudden
stratospheric warmings, Rev. Geophys., 59, e2020RG000708,
https://doi.org/10.1029/2020RG000708, 2021. a, b, c, d, e, f, g, h
Birner, T. and Albers, J. R.: Sudden stratospheric warmings and anomalous
upward Wave activity flux, SOLA, 13A, 8–12, https://doi.org/10.2151/sola.13A-002,
2017. a
Bittner, M., Schmidt, H., Timmreck, C., and Sienz, F.: Using a large ensemble
of simulations to assess the Northern Hemisphere stratospheric dynamical
response to tropical volcanic eruptions and its uncertainty, Geophys. Res. Lett., 43, 9324–9332, https://doi.org/10.1002/2016GL070587,
2016. a
Boljka, L. and Birner, T.: Tropopause-level planetary wave source and its role in two-way troposphere–stratosphere coupling, Weather Clim. Dynam., 1, 555–575, https://doi.org/10.5194/wcd-1-555-2020, 2020. a
Boucher, O.: Stratospheric ozone, ultraviolet radiation and climate change,
Weather, 65, 105–110, https://doi.org/10.1002/wea.451, 2010. a
Boville, B. A.: The influence of the polar night jet on the tropospheric
circulation in a GCM, J. Atmos. Sci., 41, 1132–1142,
https://doi.org/10.1175/1520-0469(1984)041<1132:TIOTPN>2.0.CO;2, 1984. a, b, c
Boville, B. A.: Middle atmosphere version of CCM2 (MACCM2): annual cycle and
interannual variability, J. Geophys. Res.-Atmos., 100,
9017–9039, https://doi.org/10.1029/95JD00095, 1995. a
Boyd, J. P.: The noninteraction of waves with the zonally averaged flow on a
spherical earth and the interrelationships on eddy fluxes of energy, heat,
and momentum, J. Atmos. Sci., 33, 2285–2291,
https://doi.org/10.1175/1520-0469(1976)033<2285:TNOWWT>2.0.CO;2, 1976. a
Brewer, A. W.: Evidence for a world circulation provided by measurements of
helium and water vapour distribution in the stratosphere, Q. J. Roy. Meteor. Soc., 75, 351–363,
https://doi.org/10.1002/qj.49707532603, 1949. a
Bushell, A. C., Butchart, N., Derbyshire, S. H., Jackson, D. R., Shutts, G. J.,
Vosper, S. B., and Webster, S.: Parameterized gravity wave momentum fluxes
from sources related to convection and large-scale precipitation processes in
a global atmosphere model, J. Atmos. Sci., 72,
4349–4371, https://doi.org/10.1175/JAS-D-15-0022.1, 2015. a
Bushell, A. C., Anstey, J. A., Butchart, N., Kawatani, Y., Osprey, S. M.,
Richter, J. H., Serva, F., Braesicke, P., Cagnazzo, C., Chen, C.-C., Chun,
H.-Y., Garcia, R. R., Gray, L. J., Hamilton, K., Kerzenmacher, T., Kim,
Y.-H., Lott, F., McLandress, C., Naoe, H., Scinocca, J., Smith, A. K.,
Stockdale, T. N., Versick, S., Watanabe, S., Yoshida, K., and Yukimoto, S.:
Evaluation of the quasi-biennial oscillation in global climate models for the
SPARC QBO-initiative, Q. J. Roy. Meteor. Soc., 148, 1459–1489, https://doi.org/10.1002/qj.3765, 2022. a, b, c, d, e
Butchart, N.: The Brewer-Dobson circulation, Rev. Geophys., 52,
157–184, https://doi.org/10.1002/2013RG000448, 2014. a, b
Butchart, N. and Austin, J.: Middle atmosphere climatologies from the
troposphere-stratosphere configuration of the UKMO's Unified Model,
J. Atmos. Sci., 55, 2782–2809,
https://doi.org/10.1175/1520-0469(1998)055<2782:MACFTT>2.0.CO;2, 1998. a
Butchart, N. and Remsberg, E. E.: The area of the stratospheric polar vortex as
a diagnostic for tracer transport on an isentropic surface, J. Atmos. Sci., 43, 1319–1339,
https://doi.org/10.1175/1520-0469(1986)043<1319:TAOTSP>2.0.CO;2, 1986. a, b, c
Butchart, N., Clough, S. A., Palmer, T. N., and Trevelyan, P. J.: Simulations
of an observed stratospheric warming with quasi-geostrophic refractive index
as a model diagnostic, Q. J. Roy. Meteor. Soc.,
108, 475–502, https://doi.org/10.1002/qj.49710845702, 1982. a, b
Butchart, N., Austin, J., Knight, J. R., Scaife, A. A., and Gallani, M. L.: The
response of the stratospheric climate to projected changes in the
concentrations of well-mixed greenhouse gases from 1992 to 2051, J. Climate, 13, 2142–2159,
https://doi.org/10.1175/1520-0442(2000)013<2142:TROTSC>2.0.CO;2, 2000. a, b
Butchart, N., Scaife, A. A., Austin, J., Hare, S. H. E., and Knight, J. R.:
Quasi-biennial oscillation in ozone in a coupled chemistry-climate model,
J. Geophys. Res.-Atmos., 108, 4486,
https://doi.org/10.1029/2002JD003004, 2003. a
Butchart, N., Charlton-Perez, A. J., Cionni, I., Hardiman, S. C., Haynes,
P. H., Krüger, K., Kushner, P. J., Newman, P. A., Osprey, S. M.,
Perlwitz, J., Sigmond, M., Wang, L., Akiyoshi, H., Austin, J., Bekki, S.,
Baumgaertner, A., Braesicke, P., Brühl, C., Chipperfield, M., Dameris,
M., Dhomse, S., Eyring, V., Garcia, R., Garny, H., Jöckel, P., Lamarque,
J.-F., Marchand, M., Michou, M., Morgenstern, O., Nakamura, T., Pawson, S.,
Plummer, D., Pyle, J., Rozanov, E., Scinocca, J., Shepherd, T. G., Shibata,
K., Smale, D., Teyssèdre, H., Tian, W., Waugh, D., and Yamashita, Y.:
Multimodel climate and variability of the stratosphere, J. Geophys. Res.-Atmos., 116, D05102,
https://doi.org/10.1029/2010JD014995, 2011. a, b
Butchart, N., Anstey, J. A., Hamilton, K., Osprey, S., McLandress, C., Bushell, A. C., Kawatani, Y., Kim, Y.-H., Lott, F., Scinocca, J., Stockdale, T. N., Andrews, M., Bellprat, O., Braesicke, P., Cagnazzo, C., Chen, C.-C., Chun, H.-Y., Dobrynin, M., Garcia, R. R., Garcia-Serrano, J., Gray, L. J., Holt, L., Kerzenmacher, T., Naoe, H., Pohlmann, H., Richter, J. H., Scaife, A. A., Schenzinger, V., Serva, F., Versick, S., Watanabe, S., Yoshida, K., and Yukimoto, S.: Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi), Geosci. Model Dev., 11, 1009–1032, https://doi.org/10.5194/gmd-11-1009-2018, 2018. a
Butchart, N., Anstey, J. A., Kawatani, Y., Osprey, S. M., Richter, J. H., and
Wu, T.: QBO changes in CMIP6 climate projections, Geophys. Res. Lett., 47, e2019GL086903, https://doi.org/10.1029/2019GL086903,
2020. a
Butler, A. H. and Gerber, E. P.: Optimizing the definition of a sudden
stratospheric warming, J. Climate, 31, 2337–2344,
https://doi.org/10.1175/JCLI-D-17-0648.1, 2018. a
Butler, A. H., Polvani, L. M., and Deser, C.: Separating the stratospheric and
tropospheric pathways of El Niño Southern
Oscillation teleconnections, Environ. Res. Lett., 9, 024014,
https://doi.org/10.1088/1748-9326/9/2/024014, 2014. a
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and
Match, A.: Defining sudden stratospheric warmings, B. Am. Meteorol. Soc., 96, 1913–1928, https://doi.org/10.1175/BAMS-D-13-00173.1,
2015. a, b
Butler, A. H., Arribas, A., Athanassiadou, M., Baehr, J., Calvo, N.,
Charlton-Perez, A., Déqué, M., Domeisen, D. I. V., Fröhlich, K.,
Hendon, H., Imada, Y., Ishii, M., Iza, M., Karpechko, A. Y., Kumar, A.,
MacLachlan, C., Merryfield, W. J., Müller, W. A., O'Neill, A., Scaife,
A. A., Scinocca, J., Sigmond, M., Stockdale, T. N., and Yasuda, T.: The
Climate-system Historical Forecast Project: do stratosphere-resolving
models make better seasonal climate predictions in boreal winter?, Q. J. Roy. Meteor. Soc., 142, 1413–1427,
https://doi.org/10.1002/qj.2743, 2016. a, b
Butler, A. H., Charlton-Perez, A., Domeisen, D. I., Simpson, I. R., and
Sjoberg, J.: Predictability of Northern Hemisphere final stratospheric
warmings and their surface impacts, Geophys. Res. Lett., 46,
10578–10588, https://doi.org/10.1029/2019GL083346, 2019. a
Byrne, N. J. and Shepherd, T. G.: Seasonal persistence of circulation anomalies
in the Southern Hemisphere stratosphere and its implications for the
troposphere, J. Climate, 31, 3467–3483,
https://doi.org/10.1175/JCLI-D-17-0557.1, 2018. a
Cagnazzo, C. and Manzini, E.: Impact of the stratosphere on the winter
tropospheric teleconnections between ENSO and the North Atlantic and
European region, J. Climate, 22, 1223–1238,
https://doi.org/10.1175/2008JCLI2549.1, 2009. a
Camargo, S. J. and Sobel, A. H.: Revisiting the influence of the quasi-biennial
oscillation on tropical cyclone activity, J. Climate, 23, 5810–5825,
https://doi.org/10.1175/2010JCLI3575.1, 2010. a
Cariolle, D., Amodei, M., Déqué, M., Mahfouf, J.-F., Simon, P., and
Teyssèdre, H.: A quasi-biennial oscillation signal in general circulation
model simulations, Science, 261, 1313–1316,
https://doi.org/10.1126/science.261.5126.1313, 1993. a
Charlton, A. J. and Polvani, L. M.: A new look at stratospheric sudden
warmings. Part I: climatology and modeling benchmarks, J. Climate,
20, 449–469, https://doi.org/10.1175/JCLI3996.1, 2007. a
Charlton, A. J., O'Neill, A., Berrisford, P., and Lahoz, W. A.: Can the
dynamical impact of the stratosphere on the troposphere be described by
large-scale adjustment to the stratospheric PV distribution?, Q. J. Roy. Meteor. Soc., 131, 525–543,
https://doi.org/10.1256/qj.03.222, 2005. a
Charlton-Perez, A. J., Ferranti, L., and Lee, R. W.: The influence of the
stratospheric state on North Atlantic weather regimes, Q. J. Roy. Meteor. Soc., 144, 1140–1151,
https://doi.org/10.1002/qj.3280, 2018. a
Charney, J. G. and Drazin, P. G.: Propagation of planetary-scale disturbances
from the lower into the upper atmosphere, J. Geophys. Res., 66, 83–109, https://doi.org/10.1029/JZ066i001p00083,
1961. a, b, c, d
Charron, M., Polavarapu, S., Buehner, M., Vaillancourt, P. A., Charette, C.,
Roch, M., Morneau, J., Garand, L., Aparicio, J. M., MacPherson, S., Pellerin,
S., St-James, J., and Heilliette, S.: The Stratospheric extension of the
Canadian global deterministic medium-range weather forecasting system and
its impact on tropospheric forecasts, Mon. Weather Rev., 140,
1924–1944, https://doi.org/10.1175/MWR-D-11-00097.1, 2012. a
Chipperfield, M. P., Cariolle, D., Simon, P., Ramaroson, R., and Lary, D. J.: A
three-dimensional modeling study of trace species in the Arctic lower
stratosphere during winter 1989–1990, J. Geophys. Res.-Atmos., 98, 7199–7218, https://doi.org/10.1029/92JD02977, 1993. a
Christiansen, B.: Stratospheric vacillations in a general circulation model,
J. Atmos. Sci., 56, 1858–1872,
https://doi.org/10.1175/1520-0469(1999)056<1858:SVIAGC>2.0.CO;2, 1999. a
Christiansen, B., Yang, S., and Madsen, M. S.: Do strong warm ENSO events
control the phase of the stratospheric QBO?, Geophys. Res. Lett.,
43, 10,489–10,495, https://doi.org/10.1002/2016GL070751, 2016. a
Cohen, J. and Jones, J.: Tropospheric precursors and stratospheric warmings,
J. Climate, 24, 6562–6572, https://doi.org/10.1175/2011JCLI4160.1, 2011. a
Committee on Extension of Standard Atmosphere (COSEA): US Standard Atmosphere, 1976, US Government Printing Office, Washington, DC, 1976. a
Coy, L., Wargan, K., Molod, A. M., McCarty, W. R., and Pawson, S.: Structure
and dynamics of the quasi-biennial oscillation in MERRA-2, J. Climate, 29, 5339–5354, https://doi.org/10.1175/JCLI-D-15-0809.1, 2016. a
Coy, L., Newman, P. A., Pawson, S., and Lait, L. R.: Dynamics of the disrupted
2015/16 quasi-biennial oscillation, J. Climate, 30, 5661–5674,
https://doi.org/10.1175/JCLI-D-16-0663.1, 2017. a
Coy, L., Newman, P. A., Strahan, S., and Pawson, S.: Seasonal variation of the
quasi-biennial oscillation descent, J. Geophys. Res.-Atmos., 125, e2020JD033077,
https://doi.org/10.1029/2020JD033077, 2020. a
Coy, L., Newman, P. A., Molod, A., Pawson, S., Alexander, M. J., and Holt, L.:
Seasonal prediction of the quasi-biennial oscillation, J. Geophys. Res.-Atmos., 127, e2021JD036124,
https://doi.org/10.1029/2021JD036124, 2022. a, b
Craig, R. A. and Hering, W. S.: The stratospheric warming of
January-February 1957, J. Atmos. Sci., 16, 91–107,
https://doi.org/10.1175/1520-0469(1959)016<0091:TSWOJF>2.0.CO;2, 1959. a
de la Cámara, A., Albers, J. R., Birner, T., Garcia, R. R., Hitchcock, P.,
Kinnison, D. E., and Smith, A. K.: Sensitivity of sudden stratospheric
warmings to previous stratospheric conditions, J. Atmos. Sci., 74, 2857–2877, https://doi.org/10.1175/JAS-D-17-0136.1, 2017. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011. a, b, c, d
Dickinson, R. E.: Planetary Rossby waves propagating vertically through weak
westerly wind wave-guides, J. Atmos. Sci., 25,
984–1002, https://doi.org/10.1175/1520-0469(1968)025<0984:PRWPVT>2.0.CO;2, 1968. a
Dobson, G. M. B., Harrison, D. N., and Lawrence, J.: Measurements of the amount
of ozone in the Earth’s atmosphere and its relation to other geophysical
conditions, P. R. Soc. A, 122, 456–486,
https://doi.org/10.1098/rspa.1929.0034, 1929. a
Domeisen, D. and Butler, A.: Stratospheric drivers of extreme events at the
Earth’s surface, Commun. Earth Environ., 1, 59,
https://doi.org/10.1038/s43247-020-00060-z, 2020. a, b, c, d
Domeisen, D. I. V.: Estimating the frequency of sudden stratospheric warming
events from surface observations of the North Atlantic oscillation, J. Geophys. Res.-Atmos., 124, 3180–3194,
https://doi.org/10.1029/2018JD030077, 2019. a, b, c
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B.,
Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim,
E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and
Taguchi, M.: The role of the stratosphere in subseasonal to seasonal
prediction: 2. Predictability arising from stratosphere-troposphere
coupling, J. Geophys. Res.-Atmos., 125, e2019JD030923,
https://doi.org/10.1029/2019JD030923, 2020a. a, b
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B.,
Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim,
E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and
Taguchi, M.: The role of the stratosphere in subseasonal to seasonal
prediction: 1. Predictability of the stratosphere, J. Geophys. Res.-Atmos., 125, e2019JD030920,
https://doi.org/10.1029/2019JD030920, 2020b. a, b, c, d
Dunkerton, T.: On the mean meridional mass motions of the stratosphere and
mesosphere, J. Atmos. Sci., 35, 2325–2333,
https://doi.org/10.1175/1520-0469(1978)035<2325:OTMMMM>2.0.CO;2, 1978. a, b
Dunkerton, T. J.: Laterally‐propagating Rossby waves in the easterly
acceleration phase of the quasi‐biennial oscillation, Atmosphere-Ocean, 21,
55–68, https://doi.org/10.1080/07055900.1983.9649155, 1983. a
Dunkerton, T. J.: Nonlinear propagation of zonal winds in an atmosphere with
Newtonian cooling and equatorial wave driving, J. Atmos. Sci., 48, 236–263,
https://doi.org/10.1175/1520-0469(1991)048<0236:NPOZWI>2.0.CO;2, 1991. a
Dunkerton, T. J.: The role of gravity waves in the quasi-biennial oscillation,
J. Geophys. Res.-Atmos., 102, 26053–26076,
https://doi.org/10.1029/96JD02999, 1997. a
Dunkerton, T. J.: The quasi-biennial oscillation of 2015–2016: hiccup or
death spiral?, Geophys. Res. Lett., 43, 10547–10552,
https://doi.org/10.1002/2016GL070921, 2016. a
Dunstone, N., Smith, D., Scaife, A. A., Hermanson, L., Eade, R., Robinson, N.,
Andrews, M., and Knight, J.: Skillful predictions of the winter North
Atlantic Oscillation one year ahead, Nat. Geosci., 9, 809–814,
https://doi.org/10.1038/ngeo2824, 2016. a
Ebdon, R. A.: The quasi-biennial oscillation and its association with
tropospheric circulation patterns, Meteorol. Mag., 104, 282–297,
1975. a
Ebdon, R. A. and Veryard, R. G.: Fluctuations in equatorial stratospheric
winds, Nature, 189, 791–793, https://doi.org/10.1038/189791a0, 1961. a, b
Elsbury, D., Peings, Y., and Magnusdottir, G.: CMIP6 models underestimate the
Holton-Tan effect, Geophys. Res. Lett., 48, e2021GL094083,
https://doi.org/10.1029/2021GL094083, 2021. a
English, S. J., Renshaw, R. J., Dibben, P. C., Smith, A. J., Rayer, P. J.,
Poulsen, C., Saunders, F. W., and Eyre, J. R.: A comparison of the impact of
TOVS arid ATOVS satellite sounding data on the accuracy of numerical
weather forecasts, Q. J. Roy. Meteor. Soc.,
126, 2911–2931, https://doi.org/10.1002/qj.49712656915, 2000. a
European Centre for Medium-Range Weather Forecasts: ERA-Interim reanalysis data, ECMWF [data set], https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/, last access: 3 November 2022. a
Eyring, V., Butchart, N., Waugh, D. W., Akiyoshi, H., Austin, J., Bekki, S.,
Bodeker, G. E., Boville, B. A., Brühl, C., Chipperfield, M. P., Cordero, E.,
Dameris, M., Deushi, M., Fioletov, V. E., Frith, S. M., Garcia, R. R.,
Gettelman, A., Giorgetta, M. A., Grewe, V., Jourdain, L., Kinnison, D. E.,
Mancini, E., Manzini, E., Marchand, M., Marsh, D. R., Nagashima, T., Newman,
P. A., Nielsen, J. E., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E.,
Schraner, M., Shepherd, T. G., Shibata, K., Stolarski, R. S., Struthers, H.,
Tian, W., and Yoshiki, M.: Assessment of temperature, trace species, and
ozone in chemistry-climate model simulations of the recent past, J. Geophys. Res.-Atmos., 111, D22308,
https://doi.org/10.1029/2006JD007327, 2006. a
Eyring, V., Gleckler, P. J., Heinze, C., Stouffer, R. J., Taylor, K. E., Balaji, V., Guilyardi, E., Joussaume, S., Kindermann, S., Lawrence, B. N., Meehl, G. A., Righi, M., and Williams, D. N.: Towards improved and more routine Earth system model evaluation in CMIP, Earth Syst. Dynam., 7, 813–830, https://doi.org/10.5194/esd-7-813-2016, 2016. a
Farman, J., Gardiner, B., and Shanklin, J.: Large losses of total ozone in
Antarctica reveal seasonal ClO NOx interaction., Nature, 315,
207–210, https://doi.org/10.1038/315207a0, 1985. a
Fels, S. B., Mahlman, J. D., Schwarzkopf, M. D., and Sinclair, R. W.:
Stratospheric sensitivity to perturbations in ozone and carbon dioxide:
radiative and dynamical response, J. Atmos. Sci., 37,
2265–2297,
https://doi.org/10.1175/1520-0469(1980)037<2265:SSTPIO>2.0.CO;2,
1980. a
Feser, F., Graf, H. F., and Perlwitz, J.: Secular variability of the coupled
tropospheric and stratospheric circulation in the GCM ECHAM 3/LSG,
Theor. Appl. Climatol., 65, 1–15,
https://doi.org/10.1007/s007040050001, 2000. a
Funk, J. P. and Garnham, G. L.: Australian ozone observations and a suggested
24 month cycle, Tellus, 14, 378–382,
https://doi.org/10.1111/j.2153-3490.1962.tb01350.x, 1962. a
Garfinkel, C. I. and Hartmann, D. L.: Effects of the El Niño–southern
oscillation and the quasi-biennial oscillation on polar temperatures in the
stratosphere, J. Geophys. Res.-Atmos., 112, D19112,
https://doi.org/10.1029/2007JD008481, 2007. a
Garfinkel, C. I., Shaw, T. A., Hartmann, D. L., and Waugh, D. W.: Does the
Holton-Tan mechanism explain how the quasi-biennial oscillation modulates
the Arctic polar vortex?, J. Atmos. Sci., 69,
1713–1733, https://doi.org/10.1175/JAS-D-11-0209.1, 2012. a
Garfinkel, C. I., Schwartz, C., White, I. P., and Rao, J.: Predictability of
the early winter Arctic oscillation from autumn Eurasian snow cover in
subseasonal forecast models, Clim. Dynam., 55, 961–974,
https://doi.org/10.1007/s00382-020-05305-3, 2020a. a
Garfinkel, C. I., White, I., Gerber, E. P., Jucker, M., and Erez, M.: The
building blocks of Northern Hemisphere wintertime stationary waves, J. Climate, 33, 5611–5633, https://doi.org/10.1175/JCLI-D-19-0181.1,
2020b. a
Garfinkel, C. I., Gerber, E. P., Shamir, O., Rao, J., Jucker, M., White, I.,
and Paldor, N.: A QBO cookbook: sensitivity of the quasi-biennial
oscillation to resolution, resolved waves, and parameterized gravity waves,
J. Adv. Model. Earth Sy., 14, e2021MS002568,
https://doi.org/10.1029/2021MS002568, 2022. a
Garreaud, R.: Record-breaking climate anomalies lead to severe drought and
environmental disruption in western Patagonia in 2016, Clim. Res.,
74, 217–229, https://doi.org/10.3354/cr01505, 2018. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a, b
Gerber, E. P. and Manzini, E.: The Dynamics and Variability Model Intercomparison Project (DynVarMIP) for CMIP6: assessing the stratosphere–troposphere system, Geosci. Model Dev., 9, 3413–3425, https://doi.org/10.5194/gmd-9-3413-2016, 2016. a
Gerber, E. P. and Martineau, P.: Quantifying the variability of the annular modes: reanalysis uncertainty vs. sampling uncertainty, Atmos. Chem. Phys., 18, 17099–17117, https://doi.org/10.5194/acp-18-17099-2018, 2018. a
Gerber, E. P., Butler, A., Calvo, N., Charlton-Perez, A., Giorgetta, M.,
Manzini, E., Perlwitz, J., Polvani, L. M., Sassi, F., Scaife, A. A., Shaw,
T. A., Son, S.-W., and Watanabe, S.: Assessing and understanding the impact
of stratospheric dynamics and variability on the Earth system, B. Am. Meteorol. Soc., 93, 845–859,
https://doi.org/10.1175/BAMS-D-11-00145.1, 2012. a
Gillett, N. P., Kell, T. D., and Jones, P. D.: Regional climate impacts of the
Southern Annular Mode, Geophys. Res. Lett., 33, L23704,
https://doi.org/10.1029/2006GL027721, 2006. a
Goss, M., Lindgren, E. A., Sheshadri, A., and Diffenbaugh, N. S.: The
Atlantic jet response to stratospheric events: a regime perspective,
J. Geophys. Res.-Atmos., 126, e2020JD033358,
https://doi.org/10.1029/2020JD033358, 2021. a
Gray, L. J., Scaife, A. A., Mitchell, D. M., Osprey, S., Ineson, S., Hardiman,
S., Butchart, N., Knight, J., Sutton, R., and Kodera, K.: A lagged response
to the 11 year solar cycle in observed winter Atlantic/European weather
patterns, J. Geophys. Res.-Atmos., 118, 13,405–13,420,
https://doi.org/10.1002/2013JD020062, 2013. a
Gray, W. M.: Atlantic seasonal hurricane frequency. Part I: El Niño and
30 mb quasi-biennial oscillation influences, Mon. Weather Rev., 112,
1649–1668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2, 1984. a
Hall, R. J., Mitchell, D. M., Seviour, W. J. M., and Wright, C. J.: Tracking
the stratosphere-to-surface impact of sudden stratospheric warmings, J. Geophys. Res.-Atmos., 126, e2020JD033881,
https://doi.org/10.1029/2020JD033881, 2021a. a, b, c
Hall, R. J., Mitchell, D. M., Seviour, W. J. M., and Wright, C. J.: Persistent
model biases in the CMIP6 representation of stratospheric polar vortex
variability, J. Geophys. Res.-Atmos., 126,
e2021JD034759, https://doi.org/10.1029/2021JD034759,
2021b. a, b
Hamilton, K.: Interannual variability in the Northern Hemisphere winter
middle atmosphere in control and perturbed experiments with the GFDL SKYHI
general circulation model., J. Atmos. Sci., 52, 44–66,
https://doi.org/10.1175/1520-0469(1995)052<0044:IVITNH>2.0.CO;2, 1995. a
Hamilton, K., Wilson, R. J., and Hemler, R.: Middle atmosphere simulated with
high vertical and horizontal resolution versions of a GCM: Improvement in the
cold pole bias and generation of a QBO-like oscillation in the tropics,
J. Atmos. Sci., 56, 3829–3846,
https://doi.org/10.1175/1520-0469(1999)056<3829:MASWHV>2.0.CO;2, 1999. a, b
Hamilton, K., Hertzog, A., Vial, F., and Stenchikov, G.: Longitudinal variation
of the stratospheric quasi-biennial oscillation, J. Atmos. Sci., 61, 383–402,
https://doi.org/10.1175/1520-0469(2004)061<0383:LVOTSQ>2.0.CO;2, 2004. a
Hampson, J. and Haynes, P.: Phase alignment of the tropical stratospheric QBO
in the annual cycle, J. Atmos. Sci., 61, 2627–2637,
https://doi.org/10.1175/JAS3276.1, 2004. a
Hardiman, S. C., Kushner, P. J., and Cohen, J.: Investigating the ability of
general circulation models to capture the effects of Eurasian snow cover on
winter climate, J. Geophys. Res.-Atmos., 113, D21123,
https://doi.org/10.1029/2008JD010623, 2008. a
Hardiman, S. C., Butchart, N., Charlton-Perez, A. J., Shaw, T. A., Akiyoshi,
H., Baumgaertner, A., Bekki, S., Braesicke, P., Chipperfield, M., Dameris,
M., Garcia, R. R., Michou, M., Pawson, S., Rozanov, E., and Shibata, K.:
Improved predictability of the troposphere using stratospheric final
warmings, J. Geophys. Res.-Atmos., 116, D18113,
https://doi.org/10.1029/2011JD015914, 2011. a
Hardiman, S. C., Butchart, N., Hinton, T. J., Osprey, S. M., and Gray, L. J.:
The effect of a well-resolved stratosphere on surface climate: differences
between CMIP5 simulations with high and low top versions of the Met
Office climate model, J. Climate, 25, 7083–7099,
https://doi.org/10.1175/JCLI-D-11-00579.1, 2012. a
Hardiman, S. C., Scaife, A. A., Dunstone, N. J., and Wang, L.: Subseasonal
vacillations in the winter stratosphere, Geophys. Res. Lett., 47,
e2020GL087766, https://doi.org/10.1029/2020GL087766, 2020. a, b
Hatfield, L. A. and Scott, R. K.: Internal interannual variability of the
winter polar vortex in a simple model of the seasonally evolving
stratosphere, Q. J. Roy. Meteor. Soc., 145,
3057–3073, https://doi.org/10.1002/qj.3604, 2019. a
Haynes, P. H. and Shepherd, T. G.: The importance of surface-pressure changes
in the response of the atmosphere to zonally-symmetric thermal and mechanical
forcing, Q. J. Roy. Meteor. Soc., 115,
1181–1208, https://doi.org/10.1002/qj.49711549002, 1989. a
Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J., and Shine,
K. P.: On the “downward control” of extratropical diabatic circulations
by eddy-induced mean zonal forces, J. Atmos. Sci., 48,
651–678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2, 1991. a, b, c, d
Held, I. M.: 100 years of progress in understanding the general circulation of
the atmosphere, Meteor. Mon., 59, 6.1–6.23,
https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0017.1, 2019. a
Held, I. M., Ting, M., and Wang, H.: Northern winter stationary waves: Theory
and modeling, J. Climate, 15, 2125–2144,
https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2, 2002. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b, c, d
Hertzog, A.: How can we improve the driving of the quasi-biennial oscillation
in climate models?, J. Geophys. Res.-Atmos., 125,
e2020JD033411, https://doi.org/10.1029/2020JD033411, 2020. a
Hitchcock, P. and Haynes, P. H.: Stratospheric control of planetary waves,
Geophys. Res. Lett., 43, 11,884–11,892,
https://doi.org/10.1002/2016GL071372, 2016. a
Hitchcock, P. and Simpson, I. R.: The downward influence of stratospheric
sudden warmings, J. Atmos. Sci., 71, 3856–3876,
https://doi.org/10.1175/JAS-D-14-0012.1, 2014. a
Hitchcock, P. and Simpson, I. R.: Quantifying eddy feedbacks and forcings in
the tropospheric response to stratospheric sudden warmings, J. Atmos. Sci., 73, 3641–3657, https://doi.org/10.1175/JAS-D-16-0056.1, 2016. a
Hitchcock, P., Haynes, P. H., Randel, W. J., and Birner, T.: The emergence of
shallow easterly jets within QBO westerlies, J. Atmos. Sci., 75, 21–40, https://doi.org/10.1175/JAS-D-17-0108.1, 2018. a
Hitchman, M. H., Yoden, S., Haynes, P. H., Kumar, V., and Tegtmeir, S.: An
observational history of the direct influence of the stratospheric
quasi-biennial oscillation on the tropical and subtropical upper troposphere
and lower stratosphere, J. Meteorol. Soc. Jpn., 99, 239–267, https://doi.org/10.2151/jmsj.2021-012, 2021. a
Ho, C.-H., Kim, H.-S., Jeong, J.-H., and Son, S.-W.: Influence of stratospheric
quasi-biennial oscillation on tropical cyclone tracks in the western North
Pacific, Geophys. Res. Lett., 36, L06702,
https://doi.org/10.1029/2009GL037163, 2009. a
Holt, L. A., Lott, F., Garcia, R. R., Kiladis, G. N., Cheng, Y.-M., Anstey,
J. A., Braesicke, P., Bushell, A. C., Butchart, N., Cagnazzo, C., Chen,
C.-C., Chun, H.-Y., Kawatani, Y., Kerzenmacher, T., Kim, Y.-H., McLandress,
C., Naoe, H., Osprey, S., Richter, J. H., Scaife, A. A., Scinocca, J., Serva,
F., Versick, S., Watanabe, S., Yoshida, K., and Yukimoto, S.: An evaluation
of tropical waves and wave forcing of the QBO in the QBOi models,
Q. J. Roy. Meteor. Soc., 148, 1541–1567,
https://doi.org/10.1002/qj.3827, 2022. a
Holton, J. R. and Lindzen, R. S.: An updated theory for the quasi-biennial
cycle of the tropical stratosphere, J. Atmos. Sci., 29,
1076–1080,
https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2, 1972. a, b
Holton, J. R. and Mass, C.: Stratospheric vacillation cycles, J. Atmos. Sci., 33, 2218–2225,
https://doi.org/10.1175/1520-0469(1976)033<2218:SVC>2.0.CO;2, 1976. a
Holton, J. R. and Tan, H. C.: The influence of the equatorial
quasi-biennial oscillation on the global circulation at 50 mb, J. Atmos. Sci., 37, 2200–2207,
https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2, 1980. a, b, c
Horinouchi, T. and Yoden, S.: Wave–mean flow interaction associated with a
QBO-like oscillation simulated in a simplified GCM, J. Atmos. Sci., 55, 502–526,
https://doi.org/10.1175/1520-0469(1998)055<0502:WMFIAW>2.0.CO;2, 1998. a
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W.: On the use and
significance of isentropic potential vorticity maps, Q. J. R. Meteorol. Soc., 111, 877–946,
https://doi.org/10.1002/qj.49711147002, 1985. a
Ichimaru, T., Noguchi, S., Hirooka, T., and Mukougawa, H.: Predictability
changes of stratospheric circulations in Northern Hemisphere winter,
J. Meteorol. Soc. Jpn., 94, 7–24,
https://doi.org/10.2151/jmsj.2016-001, 2016. a
Ineson, S. and Scaife, A. A.: The role of the stratosphere in the European
climate response to El Niño, Nat. Geosci., 2, 32–36,
https://doi.org/10.1038/ngeo381, 2009. a
Jia, L., Yang, X., Vecchi, G., Gudgel, R., Delworth, T., Fueglistaler, S., Lin,
P., Scaife, A. A., Underwood, S., and Lin, S.-J.: Seasonal prediction skill
of northern extratropical surface temperature driven by the stratosphere,
J. Climate, 30, 4463–4475, https://doi.org/10.1175/JCLI-D-16-0475.1, 2017. a
Jucker, M.: Scaling of Eliassen-Palm flux vectors, Atmos. Sci. Lett., 22, e1020, https://doi.org/10.1002/asl.1020, 2021. a
Jucker, M. and Gerber, E. P.: Untangling the annual cycle of the tropical
tropopause layer with an idealized moist model, J. Climate, 30,
7339–7358, https://doi.org/10.1175/JCLI-D-17-0127.1, 2017. a
Jucker, M., Reichler, T., and Waugh, D. W.: How frequent are Antarctic sudden
stratospheric warmings in present and future climate?, Geophys. Res. Lett., 48, e2021GL093215, https://doi.org/10.1029/2021GL093215,
2021. a
Kang, M.-J. and Chun, H.-Y.: Contributions of equatorial waves and small-scale convective gravity waves to the 2019/20 quasi-biennial oscillation (QBO) disruption, Atmos. Chem. Phys., 21, 9839–9857, https://doi.org/10.5194/acp-21-9839-2021, 2021. a
Kang, M.-J., Chun, H.-Y., and Garcia, R. R.: Role of equatorial waves and convective gravity waves in the 2015/16 quasi-biennial oscillation disruption, Atmos. Chem. Phys., 20, 14669–14693, https://doi.org/10.5194/acp-20-14669-2020, 2020. a
Karpechko, A. Y.: Predictability of sudden stratospheric warmings in the ECMWF
extended-range forecast system, Mon. Weather Rev., 146, 1063–1075,
https://doi.org/10.1175/MWR-D-17-0317.1, 2018. a
Karpechko, A. Y., Hitchcock, P., Peters, D. H. W., and Schneidereit, A.:
Predictability of downward propagation of major sudden stratospheric
warmings, Q. J. Roy. Meteor. Soc., 143,
1459–1470, https://doi.org/10.1002/qj.3017, 2017. a
Karpechko, A. Y., Tyrrell, N. L., and Rast, S.: Sensitivity of QBO
teleconnection to model circulation biases, Q. J. Roy. Meteor. Soc., 147, 2147–2159,
https://doi.org/10.1002/qj.4014, 2021. a, b
Kasahara, A. and Sasamori, T.: Simulation experiments with a 12-layer
stratospheric global circulation model. II. Momentum balance and
energetics in the stratosphere, J. Atmos. Sci., 31,
408–422,
https://doi.org/10.1175/1520-0469(1974)031<0408:SEWALS>2.0.CO;2,
1974. a
Kawatani, Y. and Hamilton, K.: Weakened stratospheric quasi-biennial
oscillation driven by increased tropical mean upwelling, Nature, 497,
478–481, https://doi.org/10.1038/nature12140, 2013. a
Kawatani, Y., Hamilton, K., Gray, L. J., Osprey, S. M., Watanabe, S., and
Yamashita, Y.: The effects of a well-resolved stratosphere on the simulated
boreal winter circulation in a climate model, J. Atmos. Sci., 76, 1203–1226, https://doi.org/10.1175/JAS-D-18-0206.1, 2019. a
Kawatani, Y., Hirooka, T., Hamilton, K., Smith, A. K., and Fujiwara, M.: Representation of the equatorial stratopause semiannual oscillation in global atmospheric reanalyses, Atmos. Chem. Phys., 20, 9115–9133, https://doi.org/10.5194/acp-20-9115-2020, 2020. a
Keegan, T. J.: Large-scale disturbances of atmospheric circulation between 30
and 70 kilometers in winter, J. Geophys. Res., 67,
1831–1838, https://doi.org/10.1029/JZ067i005p01831, 1962. a
Kim, B.-M., Son, S.-W., Min, S.-K., Jeong, J.-H., Kim, S.-J., Zhang, X., Shim,
T., and Yoon, J.-H.: Weakening of the stratospheric polar vortex by Arctic
sea-ice loss, Nat. Commun., 5, 1–8,
https://doi.org/10.1038/ncomms5646, 2014. a
Kim, H., Son, S.-W., and Yoo, C.: QBO modulation of the MJO-related
precipitation in East Asia, J. Geophys. Res.-Atmos.,
125, e2019JD031929, https://doi.org/10.1029/2019JD031929, 2020. a
King, A. D., Butler, A. H., Jucker, M., Earl, N. O., and Rudeva, I.: Observed
relationships between sudden stratospheric warmings and European climate
extremes, J. Geophys. Res.-Atmos., 124,
13943–13961, https://doi.org/10.1029/2019JD030480, 2019. a
Klotzbach, P., Abhik, S., Hendon, H. H., Bell, M., Lucas, C., Marshall, A. G.,
and Oliver, E. C. J.: On the emerging relationship between the stratospheric
quasi-biennial oscillation and the Madden-Julian oscillation, Sci.
Rep., 9, 2981, https://doi.org/10.1038/s41598-019-40034-6, 2019. a, b
Kodera, K.: Influence of stratospheric sudden warming on the equatorial
troposphere, Geophys. Res. Lett., 33, L06804,
https://doi.org/10.1029/2005GL024510, 2006. a
Kodera, K. and Yamada, K.: Impact of the SH major stratospheric warming on
the Hadley circulation: A case study, Pap. Meteorol. Geophys.,
54, 111–116, https://doi.org/10.2467/mripapers.54.111, 2004. a
Kodera, K., Yamazaki, K., Chiba, K., and Shibata, K.: Downward propagation of
upper stratospheric mean zonal wind perturbation to the troposphere,
Geophys. Res. Lett., 17, 1263–1266,
https://doi.org/10.1029/GL017i009p01263, 1990. a
Kodera, K., Mukougawa, H., and Kuroda, Y.: A general circulation model study of
the impact of a stratospheric sudden warming event on tropical convection,
SOLA, 7, 197–200, https://doi.org/10.2151/sola.2011-050, 2011. a
Kretschmer, M., Zappa, G., and Shepherd, T. G.: The role of Barents–Kara sea ice loss in projected polar vortex changes, Weather Clim. Dynam., 1, 715–730, https://doi.org/10.5194/wcd-1-715-2020, 2020. a
Kuroda, Y. and Kodera, K.: Interannual variability in the troposphere and
stratosphere of the Southern Hemisphere winter, J. Geophys. Res.-Atmos., 103, 13787–13799,
https://doi.org/10.1029/98JD01042, 1998. a
Kuroda, Y. and Kodera, K.: Variability of the polar night jet in the Northern
and Southern Hemispheres, J. Geophys. Res.-Atmos., 106,
20703–20713, https://doi.org/10.1029/2001JD900226, 2001. a
Labitzke, K.: On the interannual variability of the middle stratosphere during
the northern winters, J. Meteorol. Soc. Jpn., 60, 124–139, https://doi.org/10.2151/jmsj1965.60.1_124, 1982. a
Lahoz, W. A.: Predictive skill of the UKMO unified model in the lower
stratosphere, Q. J. Roy. Meteor. Soc., 125,
2205–2238, https://doi.org/10.1002/qj.49712555813, 1999. a
Larson, E. J. L., Portmann, R. W., Rosenlof, K. H., Fahey, D. W., Daniel,
J. S., and Ross, M. N.: Global atmospheric response to emissions from a
proposed reusable space launch system, Earth's Future, 5, 37–48,
https://doi.org/10.1002/2016EF000399, 2017. a
Leovy, C. B.: Simple models of thermally driven mesospheric circulation,
J. Atmos. Sci., 21, 327–341,
https://doi.org/10.1175/1520-0469(1964)021<0327:SMOTDM>2.0.CO;2, 1964. a
Lim, E.-P., Hendon, H. H., and Thompson, D. W. J.: Seasonal evolution of
stratosphere-troposphere coupling in the Southern Hemisphere and
implications for the predictability of surface climate, J. Geophys. Res.-Atmos., 123, 12002–12016,
https://doi.org/10.1029/2018JD029321, 2018. a, b
Lim, E.-P., Hendon, H. H., Boschat, G., Hudson, D., Thompson, D. W. J., Dowdy,
A. J., and Arblaster, J. M.: Australian hot and dry extremes induced by
weakenings of the stratospheric polar vortex, Nat. Geosci., 12,
896–901, https://doi.org/10.1038/s41561-019-0456-x, 2019a. a
Lim, E.-P., Hendon, H. H., Butler, A. H., Thompson, D. W. J., Lawrence, Z. D.,
Scaife, A. A., Shepherd, T. G., Polichtchouk, I., Nakamura, H., Kobayashi,
C., Comer, R., Coy, L., Dowdy, A., Garreaud, R. D., Newman, P. A., and Wang,
G.: The 2019 Southern Hemisphere stratospheric polar vortex weakening and
its impacts, B. American Meteorol. Soc., 102,
E1150–E1171, https://doi.org/10.1175/BAMS-D-20-0112.1, 2021. a
Lim, Y., Son, S.-W., Marshall, A. G., Hendon, H. H., and Seo, K.-H.: Influence
of the QBO on MJO prediction skill in the subseasonal-to-seasonal
prediction models, Clim. Dynam., 53, 1681–1695,
https://doi.org/10.1007/s00382-019-04719-y, 2019b. a, b
Lin, P., Held, I., and Ming, Y.: The early development of the 2015/16
quasi-biennial oscillation disruption, J. Atmos. Sci.,
76, 821–836,
https://doi.org/10.1175/JAS-D-18-0292.1,
2019. a
Lindzen, R. and Holton, J. R.: A theory of the quasi-biennial
oscillation, J. Atmos. Sci., 25, 1095–1107,
https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2, 1968. a, b, c
Lott, F. and Guez, L.: A stochastic parameterization of the gravity waves due
to convection and its impact on the equatorial stratosphere, J. Geophys. Res.-Atmos., 118, 8897–8909, https://doi.org/10.1002/jgrd.50705,
2013. a
Lu, H., Bracegirdle, T. J., Phillips, T., and Turner, J.: A comparative study
of wave forcing derived from the ERA-40 and ERA-Interim reanalysis
datasets, J. Climate, 28, 2291–2311,
https://doi.org/10.1175/JCLI-D-14-00356.1, 2015. a
Ma, T., Chen, W., Huangfu, J., Song, L., and Cai, Q.: The observed influence of
the quasi-biennial oscillation in the lower equatorial stratosphere on the
East Asian winter monsoon during early boreal winter, Int. J.
Climatol., 41, 6254–6269, https://doi.org/10.1002/joc.7192, 2021. a
Manabe, S. and Hunt, B. G.: Experiments with a stratospheric general
circulation model I: Radiative and dynamic aspects, Mon. Weather Rev.,
96, 477–502, https://doi.org/10.1175/1520-0493(1968)096<0477:EWASGC>2.0.CO;2, 1968. a
Manney, G. L., Schwartz, M. J., Krüger, K., Santee, M. L., Pawson, S., Lee,
J. N., Daffer, W. H., Fuller, R. A., and Livesey, N. J.: Aura Microwave Limb
Sounder observations of dynamics and transport during the record-breaking
2009 Arctic stratospheric major warming, Geophys. Res. Lett., 36, L12815,,
https://doi.org/10.1029/2009GL038586, 2009. a
Manzini, E. and Bengtsson, L.: Stratospheric climate and variability from a
general circulation model and observations, Clim. Dynam., 12, 615–639,
https://doi.org/10.1007/BF00216270, 1996. a
Manzini, E., McFarlane, N. A., and McLandress, C.: Impact of the Doppler
spread parameterization on the simulation of the middle atmosphere
circulation using the MA/ECHAM4 general circulation model, J. Geophys. Res.-Atmos., 102, 25751–25762,
https://doi.org/10.1029/97JD01096, 1997. a
Manzini, E., Steil, B., Brühl, C., Giorgetta, M. A., and Krüger, K.: A
new interactive chemistry-climate model: 2. Sensitivity of the middle
atmosphere to ozone depletion and increase in greenhouse gases and
implications for recent stratospheric cooling, J. Geophys. Res.-Atmos., 108, 4429, https://doi.org/10.1029/2002JD002977, 2003. a
Manzini, E., Cagnazzo, C., Fogli, P. G., Bellucci, A., and Müller, W. A.:
Stratosphere-troposphere coupling at inter-decadal time scales: Implications
for the North Atlantic Ocean, Geophys. Res. Lett., 39, L05801,
https://doi.org/10.1029/2011GL050771, 2012. a
Marshall, A. G. and Scaife, A. A.: Improved predictability of stratospheric
sudden warming events in an atmospheric general circulation model with
enhanced stratospheric resolution, J. Geophys. Res.-Atmos., 115, D16114, https://doi.org/10.1029/2009JD012643, 2010. a
Marshall, A. G., Hendon, H. H., Son, S.-W., and Lim, Y.: Impact of the
quasi-biennial oscillation on predictability of the Madden–Julian
oscillation, Clim. Dynam., 49, 1365–1377,
https://doi.org/10.1007/s00382-016-3392-0, 2017. a, b
Martin, Z., Son, S.-W., Butler, A., Hendon, H., Kim, H., Sobel, A., Yoden, S.,
and Zhang, C.: The influence of the quasi-biennial oscillation on the
Madden–Julian oscillation, Nat. Rev. Earth Environ., 2,
477–489, https://doi.org/10.1038/s43017-021-00173-9, 2021. a, b, c, d
Martius, O., Polvani, L. M., and Davies, H. C.: Blocking precursors to
stratospheric sudden warming events, Geophys. Res. Lett., 36,
L14806, https://doi.org/10.1029/2009GL038776, 2009. a
Match, A. and Fueglistaler, S.: Mean-flow damping forms the buffer zone of the
quasi-biennial oscillation: 1D Theory, J. Atmos. Sci.,
77, 1955–1967, https://doi.org/10.1175/JAS-D-19-0293.1, 2020. a
Matsuno, T.: Vertical propagation of stationary planetary waves in the winter
Northern Hemisphere, J. Atmos. Sci., 27, 871–883,
https://doi.org/10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2, 1970. a
Matsuno, T.: A dynamical model of the stratospheric sudden warming, J. Atmos. Sci., 28, 1479–1494,
https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2, 1971. a, b, c
Matthewman, N. J. and Esler, J. G.: Stratospheric sudden warmings as
self-tuning resonances. Part I: vortex splitting events, J. Atmos. Sci., 68, 2481–2504, https://doi.org/10.1175/JAS-D-11-07.1, 2011. a
Matthias, V., Stober, G., Kozlovsky, A., Lester, M., Belova, E., and Kero, J.:
Vertical structure of the Arctic spring transition in the middle
atmosphere, J. Geophys. Res.-Atmos., 126,
e2020JD034353, https://doi.org/10.1029/2020JD034353, 2021. a
Maycock, A. C. and Hitchcock, P.: Do split and displacement sudden
stratospheric warmings have different annular mode signatures?, Geophys. Res. Lett., 42, 10943–10951,
https://doi.org/10.1002/2015GL066754, 2015. a
Maycock, A. C., Masukwedza, G. I. T., Hitchcock, P., and Simpson, I. R.: A
regime perspective on the North Atlantic eddy-driven jet response to sudden
stratospheric warmings, J. Climate, 33, 3901–3917,
https://doi.org/10.1175/JCLI-D-19-0702.1, 2020. a
McElroy, C. T. and Fogal, P. F.: Ozone: From discovery to protection,
Atmos. Ocean, 46, 1–13, https://doi.org/10.3137/ao.460101, 2008. a
McIntyre, M. E. and Palmer, T. N.: Breaking planetary waves in the
stratosphere, Nature, 305, 593–600, https://doi.org/10.1038/305593a0,
1983. a, b, c, d
McIntyre, M. E. and Palmer, T. N.: The “surf zone” in the stratosphere,
J. Atmos. Terr. Phys., 46, 825–849,
https://doi.org/10.1016/0021-9169(84)90063-1, 1984. a, b
McLandress, C.: On the importance of gravity waves in the middle atmosphere and
their parameterization in general circulation models, J. Atmos. Sol.-Terr. Phy., 60, 1357–1383,
https://doi.org/10.1016/S1364-6826(98)00061-3, 1998. a
Mechoso, C. R., Yamazaki, K., Kitoh, A., and Arakawa, A.: Numerical forecasts of
stratospheric warming events during the winter of 1979, Mon. Weather Rev., 113, 1015–1030,
https://doi.org/10.1175/1520-0493(1985)113<1015:NFOSWE>2.0.CO;2, 1985. a
Miller, D. E., Brownscombe, J. L., Carruthers, G. P., Pick, D. R., Stewart,
K. H., Massey, H. S. W., Beynon, W. J. G., Houghton, J. T., and Thomas, L.:
Operational temperature sounding of the stratosphere, Philos. T. R. Soc. A, 296, 65–71, https://doi.org/10.1098/rsta.1980.0156, 1980. a
Minzner, R.: The 1976 Standard Atmosphere and its relationship to earlier
standards, Rev. Geophys., 15, 375–384,
https://doi.org/10.1029/RG015i003p00375, 1977. a
Mitchell, D. M., Charlton-Perez, A. J., and Gray, L. J.: Characterizing the
variability and extremes of the stratospheric polar vortices using 2D
moment analysis, J. Atmos. Sci., 68, 1194–1213,
https://doi.org/10.1175/2010JAS3555.1, 2011. a
Miyakoda, K., Strickler, R. F., and Hembree, G. D.: Numerical simulation of the
breakdown of a polar-night vortex in the stratosphere, J. Atmos. Sci., 27, 139–154,
https://doi.org/10.1175/1520-0469(1970)027<0139:NSOTBO>2.0.CO;2, 1970. a
Mukougawa, H. and Hirooka, T.: Predictability of stratospheric sudden warming:
A case study for 1998/99 winter, Mon. Weather Rev., 132, 1764–1776,
https://doi.org/10.1175/1520-0493(2004)132<1764:POSSWA>2.0.CO;2, 2004. a
Naito, Y. and Hirota, I.: Interannual Variability of the Northern Winter
Stratospheric Circulation Related to the QBO and the solar cycle, J. Meteorol. Soc. Jpn., 75, 925–937,
https://doi.org/10.2151/jmsj1965.75.4_925, 1997. a
Newman, P. A., Nash, E. R., and Rosenfield, J. E.: What controls the
temperature of the Arctic stratosphere during the spring?, J. Geophys. Res.-Atmos., 106, 19999–20010,
https://doi.org/10.1029/2000JD000061, 2001. a, b, c
Nishimoto, E. and Yoden, S.: Influence of the stratospheric quasi-biennial
oscillation on the Madden–Julian oscillation during Austral summer,
J. Atmos. Sci., 74, 1105–1125,
https://doi.org/10.1175/JAS-D-16-0205.1, 2017. a
Noguchi, S., Mukougawa, H., Kuroda, Y., Mizuta, R., Yabu, S., and Yoshimura,
H.: Predictability of the stratospheric polar vortex breakdown: An ensemble
reforecast experiment for the splitting event in January 2009, J. Geophys. Res.-Atmos., 121, 3388–3404,
https://doi.org/10.1002/2015JD024581, 2016. a
Noguchi, S., Kuroda, Y., Kodera, K., and Watanabe, S.: Robust enhancement of
tropical convective activity by the 2019 Antarctic sudden stratospheric
warming, Geophys. Res. Lett., 47, e2020GL088743,
https://doi.org/10.1029/2020GL088743, 2020. a
Omrani, N.-E., Bader, J., Keenlyside, N. S., and Manzini, E.:
Troposphere–stratosphere response to large-scale North Atlantic Ocean
variability in an atmosphere/ocean coupled model, Clim. Dynam., 46,
1397–1415, https://doi.org/10.1007/s00382-015-2654-6, 2016. a
O'Neill, A. and Taylor, B. F.: A study of the major stratospheric warming of
1976/77, Q. J. Roy. Meteor. Soc., 105, 71–92,
https://doi.org/10.1002/qj.49710544306, 1979. a
Osprey, S. M., Gray, L. J., Hardiman, S. C., Butchart, N., Bushell, A. C., and
Hinton, T. J.: The climatology of the middle atmosphere in a vertically
extended version of the Met Office's climate model. Part II:
Variability, J. Atmos. Sci., 67, 3637–3651,
https://doi.org/10.1175/2010JAS3338.1, 2010. a
O'Sullivan, D.: Interaction of extratropical Rossby waves with westerly
quasi-biennial oscillation winds, J. Geophys. Res.-Atmos., 102, 19461–19469, https://doi.org/10.1029/97JD01524, 1997. a, b
Pahlavan, H. A., Fu, Q., Wallace, J. M., and Kiladis, G. N.: Revisiting the
quasi-biennial oscillation as seen in ERA5. Part I: description and
momentum budget, J. Atmos. Sci., 78, 673–691,
https://doi.org/10.1175/JAS-D-20-0248.1, 2021a. a, b
Pahlavan, H. A., Wallace, J. M., Fu, Q., and Kiladis, G. N.: Revisiting the
quasi-biennial oscillation as seen in ERA5. Part II: evaluation of waves
and wave forcing, J. Atmos. Sci., 78, 693–707,
https://doi.org/10.1175/JAS-D-20-0249.1, 2021b. a
Palmer, C. E.: The stratospheric polar vortex in winter, J. Geophys. Res., 64, 749–764,
https://doi.org/10.1029/JZ064i007p00749, 1959. a
Palmer, T. N.: Aspects of stratospheric sudden warmings studied from a
transformed Eulerian-mean viewpoint, J. Geophys. Res.-Oceans, 86, 9679–9687, https://doi.org/10.1029/JC086iC10p09679,
1981a. a, b
Palmer, T. N.: Diagnostic study of a wavenumber-2 stratospheric sudden warming
in a transformed Eulerian-mean formalism, J. Atmos. Sci., 38, 844–855,
https://doi.org/10.1175/1520-0469(1981)038<0844:DSOAWS>2.0.CO;2, 1981b. a
Pascoe, C. L., Gray, L. J., Crooks, S. A., Juckes, M. N., and Baldwin, M. P.:
The quasi-biennial oscillation: Analysis using ERA-40 data, J. Geophys. Res.-Atmos., 110, D08105,
https://doi.org/10.1029/2004JD004941, 2005. a, b, c
Pawson, S., Kodera, K., Hamilton, K., Shepherd, T. G., Beagley, S. R., Boville,
B. A., Farrara, J. D., Fairlie, T. D. A., Kitoh, A., Lahoz, W. A., Langematz,
U., Manzini, E., Rind, D. H., Scaife, A. A., Shibata, K., Simon, P.,
Swinbank, R., Takacs, L., Wilson, R. J., Al-Saadi, J. A., Amodei, M., Chiba,
M., Coy, L., de Grandpré, J., Eckman, R. S., Fiorino, M., Grose, W. L.,
Koide, H., Koshyk, J. N., Li, D., Lerner, J., Mahlman, J. D., McFarlane,
N. A., Mechoso, C. R., Molod, A., O'Neill, A., Pierce, R. B., Randel, W. J.,
Rood, R. B., and Wu, F.: The GCM–Reality Intercomparison Project for SPARC
(GRIPS): Scientific issues and initial results, B. Am. Meteorol. Soc., 81, 781–796,
https://doi.org/10.1175/1520-0477(2000)081<0781:TGIPFS>2.3.CO;2, 2000. a
Peña Ortiz, C., Ribera, P., García-Herrera, R., Giorgetta, M. A., and
García, R. R.: Forcing mechanism of the seasonally asymmetric
quasi-biennial oscillation secondary circulation in ERA-40 and MAECHAM5,
J. Geophys. Res.-Atmos., 113, D16103,
https://doi.org/10.1029/2007JD009288, 2008. a
Perlwitz, J. and Graf, H.-F.: The statistical connection between tropospheric
and stratospheric circulation of the Northern Hemisphere in winter, J. Climate, 8, 2281–2295,
https://doi.org/10.1175/1520-0442(1995)008<2281:TSCBTA>2.0.CO;2, 1995. a
Perlwitz, J. and Harnik, N.: Downward coupling between the stratosphere and
troposphere: The relative roles of wave and zonal mean processes, J. Climate, 17, 4902–4909, https://doi.org/10.1175/JCLI-3247.1, 2004. a
Plougonven, R., de la Cámara, A., Hertzog, A., and Lott, F.: How does
knowledge of atmospheric gravity waves guide their parameterizations?,
Q. J. Roy. Meteor. Soc., 146, 1529–1543,
https://doi.org/10.1002/qj.3732, 2020. a
Plumb, R. A.: Instability of the distorted polar night vortex: A theory of
stratospheric warmings, J. Atmos. Sci., 38, 2514–2531,
https://doi.org/10.1175/1520-0469(1981)038<2514:IOTDPN>2.0.CO;2, 1981. a
Plumb, R. A. and Bell, R. C.: A model of the quasi-biennial oscillation on an
equatorial beta-plane, Q. J. Roy. Meteor. Soc.,
108, 335–352, https://doi.org/10.1002/qj.49710845604, 1982. a, b
Pohlmann, H., Müller, W. A., Kulkarni, K., Kameswarrao, M., Matei, D.,
Vamborg, F. S. E., Kadow, C., Illing, S., and Marotzke, J.: Improved forecast
skill in the tropics in the new MiKlip decadal climate predictions,
Geophys. Res. Lett., 40, 5798–5802,
https://doi.org/10.1002/2013GL058051, 2013. a
Pohlmann, H., Müller, W. A., Bittner, M., Hettrich, S., Modali, K.,
Pankatz, K., and Marotzke, J.: Realistic quasi-biennial oscillation
variability in historical and decadal hindcast simulations using CMIP6
forcing, Geophys. Res. Lett., 46, 14118–14125,
https://doi.org/10.1029/2019GL084878, 2019. a, b
Polavarapu, S., Shepherd, T. G., Rochon, Y., and Ren, S.: Some challenges of
middle atmosphere data assimilation, Q. J. Roy. Meteor. Soc., 131, 3513–3527,
https://doi.org/10.1256/qj.05.87, 2005. a
Portal, A., Ruggieri, P., Palmeiro, F. M., García-Serrano, J., Domeisen, D.
I. V., and Gualdi, S.: Seasonal prediction of the Boreal winter
stratosphere, Clim. Dynam., 58, 2109–2130,
https://doi.org/10.1007/s00382-021-05787-9, 2022. a, b
Quiroz, R. S.: The association of stratospheric warmings with tropospheric
blocking, J. Geophys. Res.-Atmos., 91, 5277–5285,
https://doi.org/10.1029/JD091iD04p05277, 1986. a
Rajendran, K., Moroz, I. M., Osprey, S. M., and Read, P. L.: Descent rate
models of the synchronization of the quasi-biennial oscillation by the annual
cycle in tropical upwelling, J. Atmos. Sci., 75,
2281–2297, https://doi.org/10.1175/JAS-D-17-0267.1, 2018. a
Randel, W. J., Wu, F., Swinbank, R., Nash, J., and O’Neill, A.: Global QBO
circulation derived from UKMO stratospheric analyses, J. Atmos. Sci., 56, 457–474,
https://doi.org/10.1175/1520-0469(1999)056<0457:GQCDFU>2.0.CO;2, 1999. a
Rao, J., Ren, R., Chen, H., Yu, Y., and Zhou, Y.: The stratospheric sudden
warming event in February 2018 and its prediction by a climate system
model, J. Geophys. Res.-Atmos., 123, 13332–13345,
https://doi.org/10.1029/2018JD028908, 2018. a
Rao, J., Ren, R., Chen, H., Liu, X., Yu, Y., Hu, J., and Zhou, Y.:
Predictability of stratospheric sudden warmings in the Beijing Climate
Center forecast system with statistical error corrections, J. Geophys. Res.-Atmos., 124, 8385–8400,
https://doi.org/10.1029/2019JD030900, 2019. a
Reed, R. J., Campbell, W. J., Rasmussen, L. A., and Rogers, D. G.: Evidence of
a downward-propagating, annual wind reversal in the equatorial stratosphere,
J. Geophys. Res., 66, 813–818,
https://doi.org/10.1029/JZ066i003p00813, 1961. a, b
Reed, R. J., Wolfe, J. L., and Nishimoto, H.: A spectral analysis of the
energetics of the stratospheric sudden warming of early 1957, J. Atmos. Sci., 20, 256–275,
https://doi.org/10.1175/1520-0469(1963)020<0256:ASAOTE>2.0.CO;2, 1963. a
Richter, J. H., Sassi, F., and Garcia, R. R.: Toward a physically based gravity
wave source parameterization in a general circulation model, J. Atmos. Sci., 67, 136–156, https://doi.org/10.1175/2009JAS3112.1, 2010. a
Richter, J. H., Anstey, J. A., Butchart, N., Kawatani, Y., Meehl, G. A.,
Osprey, S., and Simpson, I. R.: Progress in simulating the quasi-biennial
oscillation in CMIP models, J. Geophys. Res.-Atmos.,
125, e2019JD032362, https://doi.org/10.1029/2019JD032362, 2020. a, b, c
Richter, J. H., Butchart, N., Kawatani, Y., Bushell, A. C., Holt, L., Serva,
F., Anstey, J., Simpson, I. R., Osprey, S., Hamilton, K., Braesicke, P.,
Cagnazzo, C., Chen, C.-C., Garcia, R. R., Gray, L. J., Kerzenmacher, T.,
Lott, F., McLandress, C., Naoe, H., Scinocca, J., Stockdale, T. N., Versick,
S., Watanabe, S., Yoshida, K., and Yukimoto, S.: Response of the
quasi-biennial oscillation to a warming climate in global climate models,
Q. J. Roy. Meteor. Soc., 148, 1490–1518,
https://doi.org/10.1002/qj.3749, 2022. a, b, c, d
Rind, D., Suozzo, R., and Balachandran, N. K.: The GISS Global Climate-Middle Atmosphere Model. Part II. Model Variability Due to Interactions between Planetary Waves, the Mean Circulation and Gravity Wave Drag, J. Atmos. Sci., 45, 371–386,
https://doi.org/10.1175/1520-0469(1988)045<0371:TGGCMA>2.0.CO;2, 1988. a
Roff, G., Thompson, D. W. J., and Hendon, H.: Does increasing model
stratospheric resolution improve extended-range forecast skill?, Geophys. Res. Lett., 38, L05809, https://doi.org/10.1029/2010GL046515, 2011. a, b, c
Runde, T., Dameris, M., Garny, H., and Kinnison, D. E.: Classification of
stratospheric extreme events according to their downward propagation to the
troposphere, Geophys. Res. Lett., 43, 6665–6672,
https://doi.org/10.1002/2016GL069569, 2016. a
Rupp, P. and Birner, T.: Tropospheric eddy feedback to different stratospheric conditions in idealised baroclinic life cycles, Weather Clim. Dynam., 2, 111–128, https://doi.org/10.5194/wcd-2-111-2021, 2021. a
Ryan, R. G., Marais, E. A., Balhatchet, C. J., and Eastham, S. D.: Impact of
rocket launch and space debris air pollutant emissions on stratospheric ozone
and global climate, Earth's Future, 10, e2021EF002612,
https://doi.org/10.1029/2021EF002612, 2022. a
Scaife, A. A., Butchart, N., Warner, C. D., Stainforth, D., Norton, W., and
Austin, J.: Realistic quasi-biennial oscillations in a simulation of the
global climate, Geophys. Res. Lett., 27, 3481–3484,
https://doi.org/10.1029/2000GL011625, 2000. a
Scaife, A. A., Butchart, N., Warner, C. D., and Swinbank, R.: Impact of a
spectral gravity wave parametrization on the stratosphere in the Met
Office Unified Model, J. Atmos. Sci., 59,
1473–1489, https://doi.org/10.1175/1520-0469(2002)059<1473:IOASGW>2.0.CO;2, 2002. a, b
Scaife, A. A., Athanassiadou, M., Andrews, M., Arribas, A., Baldwin, M.,
Dunstone, N., Knight, J., MacLachlan, C., Manzini, E., Müller, W. A.,
Pohlmann, H., Smith, D., Stockdale, T., and Williams, A.: Predictability of
the quasi-biennial oscillation and its northern winter teleconnection on
seasonal to decadal timescales, Geophys. Res. Lett., 41, 1752–1758,
https://doi.org/10.1002/2013GL059160, 2014. a
Scaife, A. A., Baldwin, M. P., Butler, A. H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Hardiman, S. C., Haynes, P., Karpechko, A. Y., Lim, E.-P., Noguchi, S., Perlwitz, J., Polvani, L., Richter, J. H., Scinocca, J., Sigmond, M., Shepherd, T. G., Son, S.-W., and Thompson, D. W. J.: Long-range prediction and the stratosphere, Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, 2022. a, b
Schenzinger, V., Osprey, S., Gray, L., and Butchart, N.: Defining metrics of the Quasi-Biennial Oscillation in global climate models, Geosci. Model Dev., 10, 2157–2168, https://doi.org/10.5194/gmd-10-2157-2017, 2017. a
Scherhag, R.: Stratospheric temperature changes and the associated changes in
pressure distribution, J. Atmos. Sci., 17, 575–583,
https://doi.org/10.1175/1520-0469(1960)017<0575:STCATA>2.0.CO;2, 1960. a
Schirber, S.: Influence of ENSO on the QBO: Results from an ensemble of
idealized simulations, J. Geophys. Res.-Atmos., 120,
1109–1122, https://doi.org/10.1002/2014JD022460, 2015. a
Scott, R. K.: A new class of vacillations of the stratospheric polar vortex,
Q. J. Roy. Meteor. Soc., 142, 1948–1957,
https://doi.org/10.1002/qj.2788, 2016. a
Scott, R. K. and Haynes, P. H.: Internal interannual variability of the
extratropical stratospheric circulation: The low-latitude flywheel, Q. J. Roy. Meteor. Soc., 124, 2149–2173,
https://doi.org/10.1002/qj.49712455016, 1998. a
Serva, F., Cagnazzo, C., Christiansen, B., and Yang, S.: The influence of ENSO
events on the stratospheric QBO in a multi-model ensemble, Clim. Dynam.,
54, 2561–2575, https://doi.org/10.1007/s00382-020-05131-7, 2020. a
Seviour, W. J. M., Hardiman, S. C., Gray, L. J., Butchart, N., MacLachlan, C.,
and Scaife, A. A.: Skillful seasonal prediction of the Southern Annular Mode
and Antarctic ozone, J. Climate, 27, 7462–7474,
https://doi.org/10.1175/JCLI-D-14-00264.1, 2014. a, b, c
Seviour, W. J. M., Gray, L. J., and Mitchell, D. M.: Stratospheric polar vortex
splits and displacements in the high-top CMIP5 climate models, J. Geophys. Res.-Atmos., 121, 1400–1413,
https://doi.org/10.1002/2015JD024178, 2016. a
Sheshadri, A., Plumb, R. A., Lindgren, E. A., and Domeisen, D. I. V.: The
vertical structure of annular modes, J. Atmos. Sci., 75,
3507–3519, https://doi.org/10.1175/JAS-D-17-0399.1, 2018. a
Shine, K. P.: The middle atmosphere in the absence of dynamical heat fluxes,
Q. J. Roy. Meteor. Soc., 113, 603–633,
https://doi.org/10.1002/qj.49711347610, 1987. a, b, c, d
Shiotani, M., Shimoda, N., and Hirota, I.: Interannual variability of the
stratospheric circulation in the Southern Hemisphere, Q. J. Roy. Meteor. Soc., 119, 531–546,
https://doi.org/10.1002/qj.49711951110, 1993. a
Shuckburgh, E., Norton, W., Iwi, A., and Haynes, P.: Influence of the
quasi-biennial oscillation on isentropic transport and mixing in the tropics
and subtropics, J. Geophys. Res.-Atmos., 106,
14327–14337, https://doi.org/10.1029/2000JD900664, 2001. a
Sigmond, M., Scinocca, J. F., Kharin, V. V., and Shepherd, T. G.: Enhanced
seasonal forecast skill following stratospheric sudden warmings, Nat. Geosci., 6, 98–102, https://doi.org/10.1038/ngeo1698, 2013. a
Simmons, A. J. and Strüfing, R.: Numerical forecasts of stratospheric
warming events using a model with a hybrid vertical coordinate, Q. J. Roy. Meteor. Soc., 109, 81–111,
https://doi.org/10.1002/qj.49710945905, 1983. a
Simpson, I. R., Hitchcock, P., Seager, R., Wu, Y., and Callaghan, P.: The
downward influence of uncertainty in the Northern Hemisphere stratospheric
polar vortex response to climate change, J. Climate, 31, 6371–6391,
https://doi.org/10.1175/JCLI-D-18-0041.1, 2018. a
Smith, W., Bhattarai, U., Bingaman, D. C., Mace, J. L., and Rice, C. V.: Review
of possible very high-altitude platforms for stratospheric aerosol injection,
Environmental Research Communications, 4, 031002,
https://doi.org/10.1088/2515-7620/ac4f5d, 2022. a
Smy, L. A. and Scott, R. K.: The influence of stratospheric potential vorticity
on baroclinic instability, Q. J. Roy. Meteor. Soc., 135, 1673–1683, https://doi.org/10.1002/qj.484, 2009. a
Son, S.-W., Lim, Y., Yoo, C., Hendon, H. H., and Kim, J.: Stratospheric control
of the Madden–Julian oscillation, J. Climate, 30, 1909–1922,
https://doi.org/10.1175/JCLI-D-16-0620.1, 2017. a
Song, K., Son, S.-W., and Charlton-Perez, A.: Deterministic prediction of
stratospheric sudden warming events in the Global/Regional Integrated Model
system (GRIMs), Clim. Dynam., 55, 1209––1223,
https://doi.org/10.1007/s00382-020-05320-4, 2020. a, b
Song, Y. and Robinson, W. A.: Dynamical mechanisms for stratospheric influences
on the troposphere, J. Atmos. Sci., 61, 1711–1725,
https://doi.org/10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2, 2004. a, b
Stockdale, T. N., Kim, Y.-H., Anstey, J. A., Palmeiro, F. M., Butchart, N.,
Scaife, A. A., Andrews, M., Bushell, A. C., Dobrynin, M., Garcia-Serrano, J.,
Hamilton, K., Kawatani, Y., Lott, F., McLandress, C., Naoe, H., Osprey, S.,
Pohlmann, H., Scinocca, J., Watanabe, S., Yoshida, K., and Yukimoto, S.:
Prediction of the quasi-biennial oscillation with a multi-model ensemble of
QBO-resolving models, Q. J. Roy. Meteor. Soc., 148, 1519–1540, https://doi.org/10.1002/qj.3919, 2022. a, b, c, d, e
Stocker, M., Ladstädter, F., and Steiner, A. K.: Observing the climate
impact of large wildfires on stratospheric temperature, Nat. Sci.
Rep., 11, 22994, https://doi.org/10.1038/s41598-021-02335-7, 2021. a
Sun, L., Robinson, W. A., and Chen, G.: The predictability of stratospheric
warming events: more from the troposphere or the stratosphere?, J. Atmos. Sci., 69, 768–783, https://doi.org/10.1175/JAS-D-11-0144.1, 2012. a
Taguchi, M.: Predictability of major stratospheric sudden warmings: analysis
results from JMA operational 1-month ensemble predictions from 2001/02 to
2012/13, J. Atmos. Sci., 73, 789–806,
https://doi.org/10.1175/JAS-D-15-0201.1, 2016. a
Taguchi, M.: Comparison of subseasonal-to-seasonal model forecasts for major
stratospheric sudden warmings, J. Geophys. Res.-Atmos.,
123, 10231–10247, https://doi.org/10.1029/2018JD028755,
2018a. a
Taguchi, M.: Seasonal winter forecasts of the northern stratosphere and
troposphere: Results from JMA seasonal hindcast experiments, J. Atmos. Sci., 75, 827–840, https://doi.org/10.1175/JAS-D-17-0276.1,
2018b. a
Taguchi, M. and Hartmann, D. L.: Increased occurrence of stratospheric sudden
warmings during El Niño as simulated by WACCM, J. Climate,
19, 324–332, https://doi.org/10.1175/JCLI3655.1, 2006. a
Takahashi, M.: Simulation of the stratospheric quasi-biennial oscillation using
a general circulation model, Geophys. Res. Lett., 23, 661–664,
https://doi.org/10.1029/95GL03413, 1996. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Teweles, S.: Anomalous warming of the stratosphere over North America in
early 1957, Mon. Weather Rev., 86, 377–396,
https://doi.org/10.1175/1520-0493(1958)086<0377:AWOTSO>2.0.CO;2, 1958. a
Teweles, S. and Finger, F. G.: An abrupt change in stratospheric circulation
beginning in mid-January 1958, Mon. Weather Rev., 86, 23–28,
https://doi.org/10.1175/1520-0493(1958)086<0023:AACISC>2.0.CO;2, 1958. a
Thompson, D. W. J. and Solomon, S.: Interpretation of recent Southern
Hemisphere climate change, Science, 296, 895–899,
https://doi.org/10.1126/science.1069270, 2002. a
Thompson, D. W. J. and Wallace, J. M.: The Arctic oscillation signature in the
wintertime geopotential height and temperature fields, Geophys. Res. Lett., 25, 1297–1300, https://doi.org/10.1029/98GL00950, 1998. a
Thompson, D. W. J. and Wallace, J. M.: Annular modes in the extratropical
circulation. Part I: month-to-month variability, J. Climate, 13,
1000–1016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2, 2000. a, b
Thompson, D. W. J., Baldwin, M. P., and Solomon, S.: Stratosphere-troposphere
coupling in the Southern Hemisphere, J. Atmos. Sci.,
62, 708–715, https://doi.org/10.1175/JAS-3321.1, 2005. a, b, c
Tian, W., Chipperfield, M. P., Gray, L. J., and Zawodny, J. M.: Quasi-biennial
oscillation and tracer distributions in a coupled chemistry-climate model,
J. Geophys. Res.-Atmos., 111, D20301,
https://doi.org/10.1029/2005JD006871, 2006. a
Tilmes, S., Richter, J. H., Mills, M. J., Kravitz, B., MacMartin, D. G.,
Garcia, R. R., Kinnison, D. E., Lamarque, J.-F., Tribbia, J., and Vitt, F.:
Effects of different dtratospheric SO2 injection altitudes on
stratospheric chemistry and dynamics, J. Geophys. Res.-Atmos., 123, 4654–4673, https://doi.org/10.1002/2017JD028146,
2018. a
Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Eckermann,
S. D., Gerber, E., Harrison, R. G., Jackson, D. R., Kim, B.-M., Kuroda, Y.,
Lang, A., Mahmood, S., Mizuta, R., Roff, G., Sigmond, M., and Son, S.-W.: The
predictability of the extratropical stratosphere on monthly time-scales and
its impact on the skill of tropospheric forecasts, Q. J. Roy. Meteor. Soc., 141, 987–1003,
https://doi.org/10.1002/qj.2432, 2015. a, b
Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Cheung, J.
C. H., Eckermann, S. D., Gerber, E., Jackson, D. R., Kuroda, Y., Lang, A.,
McLay, J., Mizuta, R., Reynolds, C., Roff, G., Sigmond, M., Son, S.-W., and
Stockdale, T.: Examining the predictability of the stratospheric sudden
warming of January 2013 using multiple NWP systems, Mon. Weather Rev., 144, 1935–1960, https://doi.org/10.1175/MWR-D-15-0010.1, 2016. a
Tuck, A. F.: Perspective on aircraft in the stratosphere: 50 years from
COMESA through the ozone hole to climate, Q. J. Roy. Meteor. Soc., 147, 713–727, https://doi.org/10.1002/qj.3958,
2021. a
Tung, K. K. and Lindzen, R. S.: A theory of stationary long waves. Part II:
Resonant Rossby waves in the presence of realistic vertical shears, Mon. Weather Rev., 107, 735–750,
https://doi.org/10.1175/1520-0493(1979)107<0735:ATOSLW>2.0.CO;2, 1979. a
Uryu, M.: On the transport of energy and momentum in stationary waves in a
rotating stratified fluid, J. Meteorol. Soc. Jpn.,
51, 86–92, https://doi.org/10.2151/jmsj1965.51.2_86, 1973. a
Uryu, M.: Mean zonal flows induced by a vertically propagating Rossby wave
packet, J. Meteorol. Soc. Jpn., 52,
481–490, https://doi.org/10.2151/jmsj1965.52.6_481, 1974. a
Vincent, R. A. and Alexander, M. J.: Balloon-borne observations of short
vertical wavelength gravity waves and interaction with QBO winds, J. Geophys. Res.-Atmos., 125, e2020JD032779,
https://doi.org/10.1029/2020JD032779, 2020. a
Wang, F., Han, Y., Zhang, S., and Zhang, R.: Influence of stratospheric sudden
warming on the tropical intraseasonal convection, Environ. Res. Lett., 15, 084027, https://doi.org/10.1088/1748-9326/ab98b5, 2020a. a
Wang, L., Hardiman, S. C., Bett, P. E., Comer, R. E., Kent, C., and Scaife,
A. A.: What chance of a sudden stratospheric warming in the Southern
Hemisphere?, Environ. Res. Lett., 15, 104038,
https://doi.org/10.1088/1748-9326/aba8c1, 2020b. a
Wang, S., Tippett, M. K., Sobel, A. H., Martin, Z. K., and Vitart, F.: Impact
of the QBO on prediction and predictability of the MJO convection,
J. Geophys. Res.-Atmos., 124, 11766–11782,
https://doi.org/10.1029/2019JD030575, 2019. a
Watanabe, S., Hamilton, K., Osprey, S., Kawatani, Y., and Nishimoto, E.: First
successful hindcasts of the 2016 disruption of the stratospheric
quasi-biennial oscillation, Geophys. Res. Lett., 45, 1602–1610,
https://doi.org/10.1002/2017GL076406, 2018. a
Waugh, D. N. W.: Elliptical diagnostics of stratospheric polar vortices,
Q. J. Roy. Meteor. Soc., 123, 1725–1748,
https://doi.org/10.1002/qj.49712354213, 1997. a, b
Waugh, D. W., Sisson, J. M., and Karoly, D. J.: Predictive skill of an NWP
system in the southern lower stratosphere, Q. J. Roy. Meteor. Soc., 124, 2181–2200,
https://doi.org/10.1002/qj.49712455102, 1998.
a
Woo, S.-H., Sung, M.-K., Son, S.-W., and Kug, J.-S.: Connection between weak
stratospheric vortex events and the Pacific decadal oscillation, Clim. Dynam., 45, 3481–3492,
https://doi.org/10.1007/s00382-015-2551-z, 2015. a
Yamazaki, K., Nakamura, T., Ukita, J., and Hoshi, K.: A tropospheric pathway of the stratospheric quasi-biennial oscillation (QBO) impact on the boreal winter polar vortex, Atmos. Chem. Phys., 20, 5111–5127, https://doi.org/10.5194/acp-20-5111-2020, 2020. a
Yoo, C. and Son, S.-W.: Modulation of the boreal wintertime Madden-Julian
oscillation by the stratospheric quasi-biennial oscillation, Geophys. Res. Lett., 43, 1392–1398, https://doi.org/10.1002/2016GL067762,
2016. a, b, c
Yoshida, K. and Mizuta, R.: Do sudden stratospheric warmings boost convective
activity in the Tropics?, Geophys. Res. Lett., 48, e2021GL093688,
https://doi.org/10.1029/2021GL093688, 2021. a, b
Yulaeva, E., Holton, J. R., and Wallace, J. M.: On the cause of the annual
cycle in tropical lower-stratospheric temperatures, J. Atmos. Sci., 51, 169–174,
https://doi.org/10.1175/1520-0469(1994)051<0169:OTCOTA>2.0.CO;2, 1994. a
Zhang, C.: Madden-Julian oscillation, Rev. Geophys., 43, RG2003,
https://doi.org/10.1029/2004RG000158, 2005. a
Zhang, J., Xie, F., Ma, Z., Zhang, C., Xu, M., Wang, T., and Zhang, R.:
Seasonal evolution of the quasi-biennial oscillation impact on the Northern
Hemisphere polar vortex in winter, J. Geophys. Res.-Atmos., 124, 12568–12586,
https://doi.org/10.1029/2019JD030966, 2019. a
Zhang, J., Zhang, C., Zhang, K., Xu, M., Duan, J., Chipperfield, M. P., Feng,
W., Zhao, S., and Xie, F.: The role of chemical processes in the
quasi-biennial oscillation (QBO) signal in stratospheric ozone, Atmos. Environ., 244, 117906,
https://doi.org/10.1016/j.atmosenv.2020.117906, 2021. a
Zhang, P., Wu, Y., Simpson, I. R., Smith, K. L., Zhang, X., De, B., and
Callaghan, P.: A stratospheric pathway linking a colder Siberia to
Barents-Kara Sea sea ice loss, Sci. Adv., 4, eaat6025,
https://doi.org/10.1126/sciadv.aat6025, 2018. a
Short summary
In recent years, it has emerged that there is an affinity between stratospheric variability and surface events. Waves from the troposphere interacting with the mean flow drive much of the variability in the polar vortex, sudden stratospheric warmings and tropical quasi-biennial oscillation. Here we review the historical evolution of established knowledge of the stratosphere's global structure and dynamical variability, along with recent advances and theories, and identify outstanding challenges.
In recent years, it has emerged that there is an affinity between stratospheric variability and...