Articles | Volume 4, issue 2
https://doi.org/10.5194/wcd-4-531-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-4-531-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Large uncertainty in observed estimates of tropical width from the meridional stream function
Daniel Baldassare
CORRESPONDING AUTHOR
Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT 84112, USA
Thomas Reichler
Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT 84112, USA
Piret Plink-Björklund
Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, USA
Jacob Slawson
Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, USA
Related authors
No articles found.
Luke Joseph Gezovich, Piret Plink-Björklund, and Jack Henry
EGUsphere, https://doi.org/10.5194/egusphere-2025-2497, https://doi.org/10.5194/egusphere-2025-2497, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Fluvial fans are a newly recognized type of river system that look like river deltas, especially when they reach lakes or oceans. This study explores how to tell them apart by measuring the size and layout of channels in these fan-shaped landforms. Understanding these differences helps to predict how these landforms respond to climate change and urbanization, and identify them on Mars and other planetary bodies.
Molly E. Menzel, Darryn W. Waugh, Zheng Wu, and Thomas Reichler
Weather Clim. Dynam., 5, 251–261, https://doi.org/10.5194/wcd-5-251-2024, https://doi.org/10.5194/wcd-5-251-2024, 2024
Short summary
Short summary
Recent work exploring the tropical atmospheric circulation response to climate change has revealed a disconnect in the latitudinal location of two features, the subtropical jet and the Hadley cell edge. Here, we investigate if the surprising result from coupled climate model and meteorological reanalysis output is consistent across model complexity.
Marion A. McKenzie, Lauren E. Miller, Jacob S. Slawson, Emma J. MacKie, and Shujie Wang
The Cryosphere, 17, 2477–2486, https://doi.org/10.5194/tc-17-2477-2023, https://doi.org/10.5194/tc-17-2477-2023, 2023
Short summary
Short summary
Topographic highs (“bumps”) across glaciated landscapes have the potential to affect glacial ice. Bumps in the deglaciated Puget Lowland are assessed for streamlined glacial features to provide insight on ice–bed interactions. We identify a general threshold in which bumps significantly disrupt ice flow and sedimentary processes in this location. However, not all bumps have the same degree of impact. The system assessed here has relevance to parts of the Greenland Ice Sheet and Thwaites Glacier.
Thomas Reichler and Martin Jucker
Weather Clim. Dynam., 3, 659–677, https://doi.org/10.5194/wcd-3-659-2022, https://doi.org/10.5194/wcd-3-659-2022, 2022
Short summary
Short summary
Variations in the stratospheric polar vortex, so-called vortex events, can improve predictions of surface weather and climate. There are various ways to detect such events, and here we use the amount of wave energy that propagates into the stratosphere. The new definition is tested against so-called stratospheric sudden warmings (SSWs). We find that the wave definition has advantages over SSWs, for example in terms of a stronger surface response that follows the events.
Hao-Jhe Hong and Thomas Reichler
Geosci. Model Dev., 14, 6647–6660, https://doi.org/10.5194/gmd-14-6647-2021, https://doi.org/10.5194/gmd-14-6647-2021, 2021
Short summary
Short summary
The Arctic wintertime circulation of the stratosphere has pronounced impacts on the troposphere and surface climate. Changes in the stratospheric circulation can lead to either increases or decreases in Arctic ozone. Understanding the interactions between ozone and the circulation will have the benefit of model prediction for the climate. This study introduces an economical and fast simplified model that represents the realistic distribution of ozone and its interaction with the circulation.
Alkuin Maximilian Koenig, Olivier Magand, Paolo Laj, Marcos Andrade, Isabel Moreno, Fernando Velarde, Grover Salvatierra, René Gutierrez, Luis Blacutt, Diego Aliaga, Thomas Reichler, Karine Sellegri, Olivier Laurent, Michel Ramonet, and Aurélien Dommergue
Atmos. Chem. Phys., 21, 3447–3472, https://doi.org/10.5194/acp-21-3447-2021, https://doi.org/10.5194/acp-21-3447-2021, 2021
Short summary
Short summary
The environmental cycling of atmospheric mercury, a harmful global contaminant, is still not sufficiently constrained, partly due to missing data in remote regions. Here, we address this issue by presenting 20 months of atmospheric mercury measurements, sampled in the Bolivian Andes. We observe a significant seasonal pattern, whose key features we explore. Moreover, we deduce ratios to constrain South American biomass burning mercury emissions and the mercury uptake by the Amazon rainforest.
Hao-Jhe Hong and Thomas Reichler
Atmos. Chem. Phys., 21, 1159–1171, https://doi.org/10.5194/acp-21-1159-2021, https://doi.org/10.5194/acp-21-1159-2021, 2021
Short summary
Short summary
Stratospheric ozone is a crucial chemical substance that protects life on Earth from harmful ultraviolet radiation. This article demonstrates how a strong or a weak Arctic polar vortex has an impact on wintertime circulation activity and the concentration of ozone in the stratosphere. Our results suggest that changes in the strength of the polar vortex lead to not only significant and persistent ozone changes locally in the Arctic but also to evident ozone changes in the tropics.
Cited articles
Adam, O., Grise, K. M., Staten, P., Simpson, I. R., Davis, S. M., Davis, N. A., Waugh, D. W., Birner, T., and Ming, A.:
The TropD software package (v1): standardized methods for calculating tropical-width diagnostics, Geosci. Model Dev., 11, 4339–4357, https://doi.org/10.5194/gmd-11-4339-2018, 2018.
Allen, R. J., Norris, J. R., and Kovilakam, M.:
Influence of anthropogenic aerosols and the Pacific decadal oscillation on tropical belt width, Nat. Geosci., 7, 270–274, https://doi.org/10.1038/ngeo2091, 2014.
Baldassare, D. and Reichler, T.: Piret Plink-Björklund and Jacob Slawson: Processing code and data for ERA5 analysis, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7430530, 2022.
CDS: Welcome to the Climate Data Store, https://cds.climate.copernicus.eu (last access: 20 June 2023), 2023.
Chen, J., Carlson, B. E., and Del Genio, A. D.:
Evidence for strengthening of the tropical general circulation in the 1990s, Science, 295, 838–841, https://doi.org/10.1126/science.1065835, 2002.
Choi, J., Son, S.-W., Lu, J., and Min, S.-K.:
Further observational evidence of Hadley cell widening in the Southern Hemisphere, Geophys. Res. Lett., 41, 2590–2597, https://doi.org/10.1002/2014gl059426, 2014.
Davis, N. and Birner, T.:
On the discrepancies in tropical belt expansion between reanalyses and climate models and among tropical belt width metrics, J. Climate, 30, 1211–1231, https://doi.org/10.1175/jcli-d-16-0371.1, 2017.
Davis, N. A. and Davis, S. M.: Reconciling hadley cell expansion trend estimates in Reanalyses, Geophys. Res. Lett., 45, 11439–11446, https://doi.org/10.1029/2018gl079593, 2018.
Davis, S. M. and Rosenlof, K. H.:
A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations, J. Climate, 25, 1061–1078, https://doi.org/10.1175/jcli-d-11-00127.1, 2012.
Fu, Q., Johanson, C. M., Wallace, J. M., and Reichler, T.:
Enhanced mid-latitude tropospheric warming in satellite measurements, Science, 312, 1179–1179, https://doi.org/10.1126/science.1125566, 2006.
Grise, K. M., Davis, S. M., Staten, P. W., and Adam, O.:
Regional and seasonal characteristics of the recent expansion of the Tropics, J. Climate, 31, 6839–6856, https://doi.org/10.1175/jcli-d-18-0060.1, 2018.
Grise, K. M., Davis, S. M., Simpson, I. R., Waugh, D. W., Fu, Q., Allen, R. J., Rosenlof, K. H., Ummenhofer, C. C., Karnauskas, K. B., Maycock, A. C., Quan, X.-W., Birner, T., and Staten, P. W.:
Recent tropical expansion: Natural variability or forced response?, J. Climate, 32, 1551–1571, https://doi.org/10.1175/jcli-d-18-0444.1, 2019.
Harding, B., Tremblay, C., and Cousineau, D.:
Standard errors: A review and evaluation of standard error estimators using Monte Carlo simulations, Quantitative Methods for Psychology, 10, 107–123, https://doi.org/10.20982/tqmp.10.2.p107, 2014.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.:
The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hoskins, B. J., Yang, G. Y., and Fonseca, R. M.:
The detailed dynamics of the June–August Hadley cell, Q. J. Roy. Meteor. Soc., 146, 557–575, https://doi.org/10.1002/qj.3702, 2020.
Hu, Y. and Fu, Q.:
Observed poleward expansion of the Hadley circulation since 1979, Atmos. Chem. Phys., 7, 5229–5236, https://doi.org/10.5194/acp-7-5229-2007, 2007.
Hu, Y., Zhou, C., and Liu, J.: Observational evidence for poleward expansion of the Hadley circulation, Adv. Atmos. Sci., 28, 33–44, https://doi.org/10.1007/s00376-010-0032-1, 2011.
Hudson, R. D., Andrade, M. F., Follette, M. B., and Frolov, A. D.:
The total ozone field separated into meteorological regimes – Part II: Northern Hemisphere mid-latitude total ozone trends, Atmos. Chem. Phys., 6, 5183–5191, https://doi.org/10.5194/acp-6-5183-2006, 2006.
Isaksen, L., Bonavita, M., Buizza, R., Fisher, M., Haseler, J., Leutbecher, M., and Raynaud, L.:
Ensemble of data assimilations at ECMWF, Technical Memorandum No. 636, ECMWF, 1–48, https://www.ecmwf.int/node/10125 (last access: 3 March 2023), 2010.
Karnauskas, K. B. and Ummenhofer, C. C.:
On the dynamics of the Hadley circulation and subtropical drying, Clim. Dynam., 42, 2259–2269, https://doi.org/10.1007/s00382-014-2129-1, 2014.
Lu, J., Vecchi, G. A., and Reichler, T.: Expansion of the Hadley cell under Global Warming, Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006gl028443, 2007.
Previdi, M. and Liepert, B. G.: Annular modes and Hadley cell expansion under Global Warming, Geophys. Res. Lett., 34, L22701, https://doi.org/10.1029/2007gl031243, 2007.
Schmidt, D. F. and Grise, K. M.: The response of local precipitation and sea level pressure to Hadley cell expansion, Geophys. Res. Lett., 44, 10573–10582, https://doi.org/10.1002/2017gl075380, 2017.
Schulzweida, U.: CDO User Guide, https://doi.org/10.5281/zenodo.7112925, 4 October 2022, 2022.
Scott, D. W.: Multivariate density estimation: Theory, practice, and visualization, J. Wiley, ISBN 9780471547709, 1992.
Seidel, D. J. and Randel, W. J.: Recent widening of the Tropical Belt: Evidence from tropopause observations, J. Geophys. Res., 112, D20113, https://doi.org/10.1029/2007jd008861, 2007.
Seidel, D. J., Fu, Q., Randel, W. J., and Reichler, T. J.: Widening of the Tropical Belt in a changing climate, Nat. Geosci., 1, 21–24, https://doi.org/10.1038/ngeo.2007.38, 2008.
Seviour, W. J., Davis, S. M., Grise, K. M., and Waugh, D. W.:
Large uncertainty in the relative rates of dynamical and hydrological tropical expansion, Geophys. Res. Lett., 45, 1106–1113, https://doi.org/10.1002/2017gl076335, 2018.
Silverman, B. W.: Density Estimation for statistics and data analysis, Routledge, ISBN 9781315140919, 2018.
Simmons, A. J., Willett, K. M., Jones, P. D., Thorne, P. W., and Dee, D. P.:
Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from Reanalyses and monthly gridded observational data sets, J. Geophys. Res., 115, D01110, https://doi.org/10.1029/2009jd012442, 2010.
Solomon, A., Polvani, L. M., Waugh, D. W., and Davis, S. M.: Contrasting upper and lower atmospheric metrics of tropical expansion in the Southern Hemisphere, Geophys. Res. Lett., 43, 10496–10503, https://doi.org/10.1002/2016gl070917, 2016.
Staten, P. W., Rutz, J. J., Reichler, T., and Lu, J.:
Breaking down the tropospheric circulation response by forcing, Clim. Dynam., 39, 2361–2375, https://doi.org/10.1007/s00382-011-1267-y, 2011.
Staten, P. W., Lu, J., Grise, K. M., Davis, S. M., and Birner, T.:
Re-examining tropical expansion, Nat. Clim. Change, 8, 768–775, https://doi.org/10.1038/s41558-018-0246-2, 2018.
Staten, P. W., Grise, K. M., Davis, S. M., Karnauskas, K., and Davis, N.:
Regional widening of tropical overturning: Forced change, natural variability, and recent trends, J. Geophys. Res.-Atmos., 124, 6104–6119, https://doi.org/10.1029/2018jd030100, 2019.
Staten, P. W., Grise, K. M., Davis, S. M., Karnauskas, K. B., Waugh, D. W., Maycock, A. C., Fu, Q., Cook, K., Adam, O., Simpson, I. R., Allen, R. J., Rosenlof, K., Chen, G., Ummenhofer, C. C., Quan, X.-W., Kossin, J. P., Davis, N. A., and Son, S.-W.: Tropical widening: From global variations to regional impacts, B. Am. Meteorol. Soc., 101, E897–E904, https://doi.org/10.1175/bams-d-19-0047.1, 2020.
Tebaldi, C. and Knutti, R.:
The use of the multi-model ensemble in Probabilistic Climate Projections, Philos. T. R. Soc. A, 365, 2053–2075, https://doi.org/10.1098/rsta.2007.2076, 2007.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental algorithms for scientific computing in python, Nat. Meth., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
Waugh, D. W., Grise, K. M., Seviour, W. J., Davis, S. M., Davis, N., Adam, O., Son, S.-W., Simpson, I. R., Staten, P. W., Maycock, A. C., Ummenhofer, C. C., Birner, T., and Ming, A.:
Revisiting the relationship among metrics of tropical expansion, J. Climate, 31, 7565–7581, https://doi.org/10.1175/jcli-d-18-0108.1, 2018.
Xian, T., Xia, J., Wei, W., Zhang, Z., Wang, R., Wang, L.-P., and Ma, Y.-F.:
Is Hadley cell expanding?, Atmosphere, 12, 1699, https://doi.org/10.3390/atmos12121699, 2021.
Zhou, Y. P., Xu, K.-M., Sud, Y. C., and Betts, A. K.:
Recent trends of the tropical hydrological cycle inferred from global precipitation climatology project and International Satellite Cloud Climatology Project Data, J. Geophys. Res., 116, https://doi.org/10.1029/2010jd015197, 2011.
Short summary
Using ensemble members from the ERA5 reanalysis, the most widely used method for estimating tropical-width trends, the meridional stream function, was found to have large error, particularly in the Northern Hemisphere and in the summer, because of weak gradients at the tropical edge and poor data quality. Another method, using the latitude where the surface wind switches from westerly to easterly, was found to have lower error due to better-observed data.
Using ensemble members from the ERA5 reanalysis, the most widely used method for estimating...