Articles | Volume 6, issue 4
https://doi.org/10.5194/wcd-6-1399-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-6-1399-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Physical drivers and trends of the recent delayed withdrawal of the Southwest Monsoon over Mainland Indochina
State Key Laboratory of Climate System Prediction and Risk Management (CPRM), Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, University of Information Science and Technology, Nanjing, 210044, People’s Republic of China
Aviation Weather Services, Yangon, Myanmar
State Key Laboratory of Climate System Prediction and Risk Management (CPRM), Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, University of Information Science and Technology, Nanjing, 210044, People’s Republic of China
Kazora Jonah
State Key Laboratory of Climate System Prediction and Risk Management (CPRM), Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, University of Information Science and Technology, Nanjing, 210044, People’s Republic of China
Rwanda Meteorology Agency, Kigali, Rwanda
Du Xinguan
State Key Laboratory of Climate System Prediction and Risk Management (CPRM), Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, University of Information Science and Technology, Nanjing, 210044, People’s Republic of China
Related authors
Kyaw Than Oo, Aminu Dalhatu Datti, Kazora Jonah, and Brian Odhiambo Ayugi
EGUsphere, https://doi.org/10.5194/egusphere-2025-521, https://doi.org/10.5194/egusphere-2025-521, 2025
Short summary
Short summary
This study reveals a previously unexplored connection between the Mainland Indochina Southwest Monsoon (MSWM) and Arctic Sea Ice (ASI) variability in September. Using 40 years of data, it demonstrates how monsoonal heating influences large-scale atmospheric patterns like the NAO and NPO, ultimately affecting ASI distribution. These findings highlight tropical-extratropical climate linkages, offering new insights for climate modeling and Arctic climate change predictions.
Yiming Wang, Yi Zhang, Yilun Han, Wei Xue, Yihui Zhou, Xiaohan Li, and Haishan Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2790, https://doi.org/10.5194/egusphere-2025-2790, 2025
Short summary
Short summary
This work explores the use of global storm-resolving model (GSRM) simulation data to enhance global climate modeling (GCM) through a machine learning–based model physics suite. Stable multiyear climate simulations with improved precipitation characteristics are achieved by using 80-day GSRM data.
Kyaw Than Oo, Aminu Dalhatu Datti, Kazora Jonah, and Brian Odhiambo Ayugi
EGUsphere, https://doi.org/10.5194/egusphere-2025-521, https://doi.org/10.5194/egusphere-2025-521, 2025
Short summary
Short summary
This study reveals a previously unexplored connection between the Mainland Indochina Southwest Monsoon (MSWM) and Arctic Sea Ice (ASI) variability in September. Using 40 years of data, it demonstrates how monsoonal heating influences large-scale atmospheric patterns like the NAO and NPO, ultimately affecting ASI distribution. These findings highlight tropical-extratropical climate linkages, offering new insights for climate modeling and Arctic climate change predictions.
Zhiqi Xu, Jianping Guo, Guwei Zhang, Yuchen Ye, Haikun Zhao, and Haishan Chen
Earth Syst. Sci. Data, 16, 5753–5766, https://doi.org/10.5194/essd-16-5753-2024, https://doi.org/10.5194/essd-16-5753-2024, 2024
Short summary
Short summary
Tropical cyclones (TCs) are powerful weather systems that can cause extreme disasters. Here we generate a global long-term TC size and intensity reconstruction dataset, covering a time period from 1959 to 2022, with a 3 h temporal resolution, using machine learning models. These can be valuable for filling observational data gaps and advancing our understanding of TC climatology, thereby facilitating risk assessments and defenses against TC-related disasters.
Lijuan Chen, Ren Wang, Ying Fei, Peng Fang, Yong Zha, and Haishan Chen
Atmos. Meas. Tech., 17, 4411–4424, https://doi.org/10.5194/amt-17-4411-2024, https://doi.org/10.5194/amt-17-4411-2024, 2024
Short summary
Short summary
This study explores the problems of surface reflectance estimation from previous MISR satellite remote sensing images and develops an error correction model to obtain a higher-precision aerosol optical depth (AOD) product. High-accuracy AOD is important not only for the daily monitoring of air pollution but also for the study of energy exchange between land and atmosphere. This will help further improve the retrieval accuracy of multi-angle AOD on large spatial scales and for long time series.
Shanlei Sun, Zaoying Bi, Jingfeng Xiao, Yi Liu, Ge Sun, Weimin Ju, Chunwei Liu, Mengyuan Mu, Jinjian Li, Yang Zhou, Xiaoyuan Li, Yibo Liu, and Haishan Chen
Earth Syst. Sci. Data, 15, 4849–4876, https://doi.org/10.5194/essd-15-4849-2023, https://doi.org/10.5194/essd-15-4849-2023, 2023
Short summary
Short summary
Based on various existing datasets, we comprehensively considered spatiotemporal differences in land surfaces and CO2 effects on plant stomatal resistance to parameterize the Shuttleworth–Wallace model, and we generated a global 5 km ensemble mean monthly potential evapotranspiration (PET) dataset (including potential transpiration PT and soil evaporation PE) during 1982–2015. The new dataset may be used by academic communities and various agencies to conduct various studies.
Cited articles
Ajayamohan, R. S., Rao, S. A., Luo, J. J., and Yamagata, T.: Influence of Indian Ocean Dipole on boreal summer intraseasonal oscillations in a coupled general circulation model, J. Geophys. Res.-Atmos., 114, https://doi.org/10.1029/2008JD011096, 2009.
Akter, N. and Tsuboki, K.: Role of synoptic-scale forcing in cyclogenesis over the Bay of Bengal, Clim. Dynam., 43, 2651–2662, https://doi.org/10.1007/S00382-014-2077-9, 2014.
Aung, L. L., Zin, E. E., Theingi, P., Elvera, N., Aung, P. P., Han, T. T., Oo, Y., and Skaland, R. G.: Myanmar Climate Report, Norwgian Meterological Inst., 105, ISSN 2387-4201, 2017.
Bombardi, R. J., Kinter, J. L., and Frauenfeld, O. W.: A global gridded dataset of the characteristics of the rainy and dry seasons, B. Am. Meteorol. Soc., 100, 1315–1328, https://doi.org/10.1175/BAMS-D-18-0177.1, 2019.
Bordoni, S. and Schneider, T.: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation, Nat. Geosci., 1, 515–519, https://doi.org/10.1038/NGEO248, 2008.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Cao, J., Hu, J., and Tao, Y.: An index for the interface between the Indian summer monsoon and the East Asian summer monsoon, J. Geophys. Res.-Atmos., 117, 1–9, https://doi.org/10.1029/2012JD017841, 2012.
Chen, L., Chen, W., Hu, P., Chen, S., and An, X.: Climatological characteristics of the East Asian summer monsoon retreat based on observational analysis, Clim. Dynam., 60, 3023–3037, https://doi.org/10.1007/s00382-022-06489-6, 2023.
Chen, M., Shi, W., Xie, P., Silva, V. B. S., Kousky, V. E., Higgins, R. W., and Janowiak, J. E.: Assessing objective techniques for gauge-based analyses of global daily precipitation, J. Geophys. Res.-Atmos., 113, https://doi.org/10.1029/2007JD009132, 2008.
Chen, S., Chen, W., Zhou, W., Wu, R., Ding, S., Chen, L., He, Z., and Yang, R.: Interdecadal Variation in the Impact of Arctic Sea Ice on El Niño–Southern Oscillation: The Role of Atmospheric Mean Flow, J. Climate, 37, 5483–5506, https://doi.org/10.1175/JCLI-D-23-0733.1, 2024.
Cheng, X., Chen, S., Chen, W., Wu, R., Ding, S., Zhou, W., Wang, L., Yang, Y., Piao, J., and Hu, P.: Interdecadal Variation in the Impact of Arctic Sea Ice on El Niño–Southern Oscillation: The Role of Atmospheric Mean Flow, J. Climate, 38, 3109–3129, https://doi.org/10.1175/JCLI-D-24-0419.1, 2025.
Chen, R. and Tomassini, L.: The Role of Moisture in Summertime Low-Level Jet Formation and Associated Rainfall over the East Asian Monsoon Region, Journal of the Atmospheric Sciences, 72, 3871–3890, https://doi.org/10.1175/JAS-D-15-0064.1, 2015.
Chou, C., Neelin, J. D., Chen, C. A., and Tu, J. Y.: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming, J. Climate, 22, 1982–2005, https://doi.org/10.1175/2008JCLI2471.1, 2009.
Colbert, A. J., Soden, B. J., and Kirtman, B. P.: The impact of natural and anthropogenic climate change on western North Pacific tropical cyclone tracks, J. Climate, 28, 1806–1823, https://doi.org/10.1175/JCLI-D-14-00100.1, 2015.
Dimri, A. P., Niyogi, D., Barros, A. P., Ridley, J., Mohanty, U. C., Yasunari, T., and Sikka, D. R.: Reviews of Geophysics Western Disturbances: A review, Rev. Geophys., 53, 225–246, https://doi.org/10.1002/2014RG000460, 2015.
Ding, Q., Wang, B., Wallace, J. M., and Branstator, G.: Tropical-extratropical teleconnections in boreal summer: Observed interannual variability, J. Climate, 24, 1878–1896, https://doi.org/10.1175/2011JCLI3621.1, 2011a.
Ding, Q., Wang, B., Wallace, J. M., and Branstator, G.: Tropical-extratropical teleconnections in boreal summer: Observed interannual variability, J. Climate, 24, 1878–1896, https://doi.org/10.1175/2011JCLI3621.1, 2011b.
Evan, A. T. and Camargo, S. J.: A climatology of Arabian Sea cyclonic storms, J. Climate, 24, 140–158, https://doi.org/10.1175/2010jcli3611.1, 2011.
Fasullo, J. and Webster, P. J.: A hydrological definition of Indian Monsoon onset and withdrawal, J. Climate, 16, 3200–3211, https://doi.org/10.1175/1520-0442(2003)016<3200a:AHDOIM>2.0.CO;2, 2003.
Fosu, B. O. and Wang, S. Y. S.: Bay of Bengal: coupling of pre-monsoon tropical cyclones with the monsoon onset in Myanmar, Clim. Dynam., 45, 697–709, https://doi.org/10.1007/s00382-014-2289-z, 2015.
Ghosh, S., Luniya, V., and Gupta, A.: Trend analysis of Indian summer monsoon rainfall at different spatial scales, Atmos. Sci. Lett., 10, 285–290, https://doi.org/10.1002/asl.235, 2009.
Gill, A. E.: Some simple solutions for heat-induced tropical circulation, Q. J. Roy. Meteor. Soc., 106, 447–462, https://doi.org/10.1002/QJ.49710644905, 1980.
Goswami, B. N. and Xavier, P. K.: ENSO control on the south Asian monsoon through the length of the rainy season, Geophys. Res. Lett., 32, L18717, https://doi.org/10.1029/2005gl023216, 2005.
Goswami, B. N., Krishnamurthy, V., and Annmalai, H.: A broad-scale circulation index for the interannual variability of the Indian summer monsoon, Q. J. Roy. Meteor. Soc., 125, 611–633, https://doi.org/10.1002/qj.49712555412, 1999.
Gao, Q. Y. and Wang, J. Q.: A comparative study on summer monsoon in China and India, J. Trop. Meteor., 4, 53–60, 1988 (in Chinese).
Hannachi, A.: A primer for EOF analysis of climate data, University of Reading Reading RG6 6BB, U.K., 1–33, 2004.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/QJ.3803, 2020.
Htway, O. and Matsumoto, J.: Climatological onset dates of summer monsoon over Myanmar, Int. J. Climatol., 31, 382–393, https://doi.org/10.1002/JOC.2076, 2011.
Hu, P., Chen, W., Chen, S., and Huang, R.: Interannual variability and triggers of the South China Sea summer monsoon withdrawal, Clim. Dynam., 53, 4355–4372, https://doi.org/10.1007/s00382-019-04790-5, 2019.
Hu, P., Chen, W., Chen, S., Liu, Y., and Huang, R.: Extremely Early Summer Monsoon Onset in the South China Sea in 2019 Following an El Niño Event, Mon. Weather Rev., 148, 1877–1890, https://doi.org/10.1175/MWR-D-19-0317.1, 2020.
Hu, P., Chen, W., Wang, L., Chen, S., Liu, Y., and Chen, L.: Revisiting the ENSO–monsoonal rainfall relationship: new insights based on an objective determination of the Asian summer monsoon duration, Environ. Res. Lett., 17, https://doi.org/10.1088/1748-9326/ac97ad, 2022.
Hu, P., Chen, S., Chen, W., and Tan, B.: Asian–Pacific Summer Monsoon Variability and Atmospheric Teleconnection Patterns: Review and Outlook, J. Meteorol. Res., 39, 651–672, https://doi.org/10.1007/s13351-025-4222-2, 2025.
Huang, S., Wang, B., and Wen, Z.: Dramatic weakening of the tropical easterly jet projected by CMIP6 models, J. Climate, 33, 8439–8455, https://doi.org/10.1175/JCLI-D-19-1002.1, 2020.
Jia, X., Yang, S., Li, X., Liu, Y., Wang, H., Liu, X., and Weaver, S.: Prediction of global patterns of dominant quasi-biweekly oscillation by the NCEP Climate Forecast System version 2, Clim. Dynam., 41, 1635–1650, https://doi.org/10.1007/S00382-013-1877-7, 2013.
Jiao, D., Xu, N., Yang, F., and Xu, K.: Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China, Sci. Rep., 11, 1–13, https://doi.org/10.1038/s41598-021-97432-y, 2021.
Lau, K., Kim, K., and Yang, S.: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon, J. Climate, 13, 2461–2482, https://doi.org/10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2, 2000.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J., Fiorino, M., and Potter, G. L.: NCEP-DOE AMIP-II reanalysis (R-2), B. Am. Meteorol. Soc., 83, https://doi.org/10.1175/BAMS-83-11-1631, 2002.
Kotal, S. D., Bhattacharya, S. K., Roy Bhowmik, S. K., and Kundu, P. K.: Growth of cyclone Viyaru and Phailin – A comparative study, J. Earth Syst. Sci., 123, 1619–1635, https://doi.org/10.1007/s12040-014-0493-1, 2014.
Krishnamurthy, V. and Kirtman, B. P.: Relation between Indian monsoon variability and SST, J. Climate, 22, 4437–4458, https://doi.org/10.1175/2009JCLI2520.1, 2009.
Krishnan, R., Sabin, T. P., Vellore, R., Mujumdar, M., Sanjay, J., Goswami, B. N., Hourdin, F., Dufresne, J.-L., and Terray, P.: Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world, Clim. Dyn., 47, 1007–1027, https://doi.org/10.1007/s00382-015-2886-5, 2016.
Krugman, P. R., Obstfeld, M., and Melitz, M. J.: International economics: theory & policy, Pearson, https://worldcat.org/title/1014329502 (last access: 2 August 2024), 2018.
Li, C. Y. and Zhang, L. P.: Summer monsoon activities in the South China Sea and its impacts, Chin. J. Atmos. Sci., 23, 257–266, https://doi.org/10.3878/j.issn.1006-9895.1999.03.01, 1999.
Li, H., Dai, A., Zhou, T., and Lu, J.: Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950-2000, Clim. Dynam., 34, 501–514, https://doi.org/10.1007/S00382-008-0482-7, 2010.
Liu, Y., Cook, K. H., and Vizy, E. K.: Delayed retreat of the summer monsoon over the Indochina Peninsula linked to surface warming trends, Int. J. Climatol., 41, 1927–1938, https://doi.org/10.1002/JOC.6938, 2021.
Loikith, P. C., Pampuch, L. A., Slinskey, E., Detzer, J., Mechoso, C. R., and Barkhordarian, A.: A climatology of daily synoptic circulation patterns and associated surface meteorology over southern South America, Clim. Dynam., 53, 4019–4035, https://doi.org/10.1007/s00382-019-04768-3, 2019.
Ma, Y. Z.: Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling, Springer Cham, https://doi.org/10.1007/978-3-030-17860-4, 2019.
Mao, J. and Wu, G.: Interannual variability in the onset of the summer monsoon over the Eastern Bay of Bengal, Theor. Appl. Climatol., 89, 155–170, https://doi.org/10.1007/S00704-006-0265-1, 2007.
Mie Sein, Z. M., Ogwang, B., Ongoma, V., Ogou, F. K., and Batebana, K.: Inter-annual variability of Summer Monsoon Rainfall over Myanmar in relation to IOD and ENSO, ISSN 2313-8629, 2015.
Oo, K. T., Dong, Y., and Jonah, K.: The variability and predictability of summer southwest monsoon intensity measurement index across mainland indochina: from local synoptic to large scale perspectives, Environmental Research Communications, 7, 015038, https://doi.org/10.1088/2515-7620/ad8107, 2025.
Oo, K. T.: Interannual Variability of Winter Rainfall in Upper Myanmar, Journal of Sustainability and Environmental Management, 1, 344–358, https://doi.org/10.3126/josem.v1i3.48001, 2022.
Oo, K. T.: Climatology Definition of the Myanmar Southwest Monsoon (MSwM): Change Point Index (CPI), Adv. Meteorol., 2023, 2346975, https://doi.org/10.1155/2023/2346975, 2023.
Oo, K. T. and Jonah, K.: Interannual variation of summer southwest monsoon rainfall over the monsoon core regions of the eastern Bay of Bengal and its relationship with oceans, J. Atmos. Sol.-Terr. Phy., 265, 106341, https://doi.org/10.1016/J.JASTP.2024.106341, 2024.
Oo, K. T., Chen, H., Dong, Y., and Jonah, K.: Investigating the link between Mainland-Indochina monsoon onset dates and cyclones over the Bay of Bengal basin, Clim. Dynam., 62, 8475–8496, https://doi.org/10.1007/S00382-024-07342-8, 2024.
Oo, K. T., Dalhatu, A., Jonah, K., Dong, Y., and Madhushanka, D.: Examining of interannual variability in the Mainland-Indochina Southwest Monsoon onset applying new monsoon index, Theor. Appl. Climatol., 156, 336, https://doi.org/10.1007/s00704-025-05543-7, 2025.
Ramage, C. S.: Monsoon meteorology, Academic Press, New York, London, ISBN 1-283-52523-2, ISBN 9786613837684, ISBN 0-08-095450-2, 1971.
Ren, Q., Liu, F., Wang, B., Yang, S., Wang, H., and Dong, W.: Origins of the Intraseasonal Variability of East Asian Summer Precipitation, Geophys. Res. Lett., 49, e2021GL096574, https://doi.org/10.1029/2021GL096574, 2022.
Roxy, M. K., Ritika, K., Terray, P., and Masson, S.: The curious case of Indian Ocean warming, J. Climate, 27, 8501–8509, https://doi.org/10.1175/JCLI-D-14-00471.1, 2014.
Roxy, M. K., Dasgupta, P., McPhaden, M. J., Suematsu, T., Zhang, C., and Kim, D.: Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle, Nature, 575, 647–651, https://doi.org/10.1038/s41586-019-1764-4, 2019.
Sabeerali, C. T., Rao, S. A., George, G., Nagarjuna Rao, D., Mahapatra, S., Kulkarni, A., and Murtugudde, R.: Modulation of monsoon intraseasonal oscillations in the recent warming period, J. Geophys. Res., 119, 5185–5203, https://doi.org/10.1002/2013JD021261, 2014.
Salinger, M. J., Shrestha, M. L., Ailikun, Dong, W., McGregor, J. L., and Wang, S.: Climate in Asia and the Pacific: Climate Variability and Change, Adv. Glob. Chang. Res., 56, 17–57, https://doi.org/10.1007/978-94-007-7338-7_2, 2014.
Sawyer, J. S.: The structure of the intertropical front over N.W. India during the S.W. Monsoon, Q. J. Roy. Meteor. Soc., 73, 346–369, https://doi.org/10.1002/QJ.49707331709, 1947.
Pfannkuch, M.: Comparing box plot distributions: A teacher's reasoning, Statistics Education Research Journal, 5, 27–45, https://doi.org/10.52041/serj.v5i2.498, 2006.
Seager, R., Naik, N., and Vecchi, G. A.: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming, J. Climate, 23, 4651–4668, https://doi.org/10.1175/2010JCLI3655.1, 2010.
Titchner, H. A. and Rayner, N. A.: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations, Journal of Geophysical Research Atmospheres, 119, 2864–2889, https://doi.org/10.1002/2013jd020316, 2014.
Sharmila, S., Pillai, P. A., Joseph, S., Roxy, M., Krishna, R. P. M., Chattopadhyay, R., Abhilash, S., Sahai, A. K., and Goswami, B. N.: Role of ocean-atmosphere interaction on northward propagation of Indian summer monsoon intra-seasonal oscillations (MISO), Clim. Dynam., 41, 1651–1669, https://doi.org/10.1007/S00382-013-1854-1, 2013.
Song, L., Hu, P., Chen, W., Yang, R., Ma, T., and Zheng, Y.: Increasing Trend of Summer Monsoonal Rainfall Tied to the Extension of the South China Sea Summer Monsoon Duration, Atmos. Sci. Lett., 26, e1308, https://doi.org/10.1002/asl.1308, 2025.
Sreekala, P. P., Bhaskara Rao, S. V., Arunachalam, M. S., and Harikiran, C.: A study on the decreasing trend in tropical easterly jet stream (TEJ) and its impact on Indian summer monsoon rainfall, Theor. Appl. Climatol., 118, 107–114, https://doi.org/10.1007/s00704-013-1049-z, 2014.
Than Oo, K., Datti, A. D., Jonah, K., and Ayugi, B. O.: The Complex Teleconnections and Feedback Mechanisms between Mainland Indochina's Southwest Monsoon and Arctic Ocean Climate Variability, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-521, 2025.
Vijaya Kumari, K., Karuna Sagar, S., Viswanadhapalli, Y., Dasari, H. P., and Bhaskara Rao, S. V.: Role of planetary boundary layer processes on the simulation of tropical cyclones over Bay of Bengal, Pure Appl. Geophys., 176, 951–977, https://doi.org/10.1007/s00024-018-2017-4, 2018.
Walker, J. M., Bordoni, S., and Schneider, T.: Interannual variability in the large-scale dynamics of the South Asian summer monsoon, J. Climate, 28, 3731–3750, https://doi.org/10.1175/JCLI-D-14-00612.1, 2015.
Wang, B. and Ho, L.: Rainy season of the Asian-Pacific summer monsson, J. Climate, 15, 386–398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2, 2002.
Wang, B., Wu, R., and Lau, K. M.: Interannual variability of the asian summer monsoon: Contrasts between the Indian and the Western North Pacific-East Asian monsoons, J. Climate, 14, 4073–4090, https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2, 2001.
Wang, B., LinHo, Zhang, Y., and Lu, M. M.: Definition of South China Sea monsoon onset and commencement of the East Asian summer monsoon, J. Climate, 17, 699–710, https://doi.org/10.1175/2932.1, 2004.
Wang, B., Wu, Z., Li, J., Liu, J., Chang, C. P., Ding, Y., and Wu, G.: How to measure the strenght of the East Asian summer monsoon, J. Climate, 21, 4449–4463, https://doi.org/10.1175/2008JCLI2183.1, 2008.
Wang, B., Huang, F., Wu, Z., Yang, J., Fu, X., and Kikuchi, K.: Multi-scale climate variability of the South China Sea monsoon: A review, Dynam. Atmos. Oceans, 47, 15–37, https://doi.org/10.1016/j.dynatmoce.2008.09.004, 2009.
Wang, X. and Zhou, W.: Interdecadal variation of the monsoon trough and its relationship with tropical cyclone genesis over the South China Sea and Philippine Sea around the mid-2000s, Clim. Dynam., 62, 3743–3762, https://doi.org/10.1007/s00382-023-07096-9, 2024.
Webster, P. J. and Yang, S.: Monsoon and Enso: Selectively Interactive Systems, Q. J. Roy. Meteor. Soc., 118, 877–926, https://doi.org/10.1002/qj.49711850705, 1992.
Wu, R.: Relationship between Indian and East Asian summer rainfall variations, Adv. Atmos. Sci., 34, 4–15, https://doi.org/10.1007/S00376-016-6216-6, 2017.
Wu, X. and Mao, J.: Spatial and interannual variations of spring rainfall over eastern China in association with PDO–ENSO events, Theor. Appl. Climatol., 134, 935–953, https://doi.org/10.1007/s00704-017-2323-2, 2018.
Xing, N., Li, J., and Wang, L.: Effect of the early and late onset of summer monsoon over the Bay of Bengal on Asian precipitation in May, Clim. Dynam., 47, 1961–1970, https://doi.org/10.1007/s00382-015-2944-z, 2016.
Xu, C., Wang, S. Y. S., Borhara, K., Buckley, B., Tan, N., Zhao, Y., An, W., Sano, M., Nakatsuka, T., and Guo, Z.: Asian-Australian summer monsoons linkage to ENSO strengthened by global warming, npj Clim. Atmos. Sci., 6, https://doi.org/10.1038/S41612-023-00341-2, 2023.
Zhang, H., Liang, P., Moise, A., and Hanson, L.: Diagnosing potential changes in Asian summer monsoon onset and duration in IPCC AR4 model simulations using moisture and wind indices, Clim. Dynam., 39, 2465–2486, https://doi.org/10.1007/s00382-012-1289-0, 2012.
Zhang, S., Qu, X., Huang, G., Hu, P., Zhou, S., and Wu, L.: Delayed Onset of Indian Summer Monsoon in Response to CO2 Removal, Earth's Future, 12, 1–17, https://doi.org/10.1029/2023EF004039, 2024.
Zhang, Y., Li, T., Wang, B., and Wu, G.: Onset of the Summer Monsoon over the Indochina Peninsula: Climatology and Interannual Variations, J. Climate, 15, 3206–3221, https://doi.org/10.1175/1520-0442(2002)015<3206:OOTSMO>2.0.CO;2, 2002.
Zin, W. W. and Rutten, M.: Long-term Changes in Annual Precipitation and Monsoon Seasonal Characteristics in Myanmar, Hydrol. Curr. Res., 08, https://doi.org/10.4172/2157-7587.1000271, 2017.
Short summary
The study examines the delayed withdrawal of the Mainland Indochina Southwest Monsoon by exploring spatial trends. The new Cumulative Change-Point Monsoon index effectively describes seasonal shifts. Results indicate stronger subtropical westerly jets and weaker tropical easterly jets in recent years, impacting wind patterns and delaying monsoon withdrawal.
The study examines the delayed withdrawal of the Mainland Indochina Southwest Monsoon by...