Articles | Volume 6, issue 4
https://doi.org/10.5194/wcd-6-1565-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-6-1565-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Entrainment and the tropical tropospheric thermal structure in global climate models
School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
Martin S. Singh
School of Earth, Atmosphere & Environment, Monash University, Victoria, Australia
Centre of Excellence for Weather in the 21st Century, Monash University, Victoria, Australia
Cited articles
Ahmed, F. and Neelin, J. D.: Reverse Engineering the Tropical Precipitation–Buoyancy Relationship, Journal of the Atmospheric Sciences, 75, 1587–1608, https://doi.org/10.1175/JAS-D-17-0333.1, 2018. a, b, c
Ando, T., Higuchi, T., Hotta, H., Iwakiri, T., Jinno, T., Kino, K., Takano, Y., Toda, M., and Yamazaki, K.: Description of MIROC6 AGCM, CCSR Report No. 65, Division of Climate System Research, Atmosphere and Ocean Research Institute, The University of Tokyo, https://doi.org/10.15083/0002000180, 2021. a
Arakawa, A. and Schubert, W. H.: Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I, Journal of the Atmospheric Sciences, 31, 674–701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2, 1974. a, b
Bao, J. and Stevens, B.: The Elements of the Thermodynamic Structure of the Tropical Atmosphere, Journal of the Meteorological Society of Japan. Ser. II, 99, 1483–1499, https://doi.org/10.2151/jmsj.2021-072, 2021. a, b
Bao, J., Stevens, B., Kluft, L., and Jiménez‐de‐la‐Cuesta, D.: Changes in the Tropical Lapse Rate due to Entrainment and Their Impact on Climate Sensitivity, Geophysical Research Letters, 48, e2021GL094969, https://doi.org/10.1029/2021gl094969, 2021. a
Bao, J., Dixit, V., and Sherwood, S. C.: Zonal Temperature Gradients in the Tropical Free Troposphere, Journal of Climate, 35, 7937–7948, https://doi.org/10.1175/JCLI-D-22-0145.1, 2022. a, b, c
Betts, A. K.: Saturation Point Analysis of Moist Convective Overturning, Journal of the Atmospheric Sciences, 39, 1484–1505, https://doi.org/10.1175/1520-0469(1982)039<1484:SPAOMC>2.0.CO;2, 1982. a
Betts, A. K.: A new convective adjustment scheme. Part I: Observational and theoretical basis, Quarterly Journal of the Royal Meteorological Society, 112, 677–691, https://doi.org/10.1002/qj.49711247307, 1986. a, b
Bretherton, C. S., McCaa, J. R., and Grenier, H.: A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results, Monthly Weather Review, 132, 864–882, https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2, 2004. a
Ceppi, P. and Gregory, J. M.: Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget, Proceedings of the National Academy of Sciences, 114, 13126–13131, https://doi.org/10.1073/pnas.1714308114, 2017. a
Chen, J., Dai, A., Zhang, Y., and Rasmussen, K. L.: Changes in Convective Available Potential Energy and Convective Inhibition under Global Warming, Journal of Climate, 33, 2025–2050, https://doi.org/10.1175/JCLI-D-19-0461.1, 2020. a
Chikira, M. and Sugiyama, M.: A Cumulus Parameterization with State-Dependent Entrainment Rate. Part I: Description and Sensitivity to Temperature and Humidity Profiles, Journal of the Atmospheric Sciences, 67, 2171–2193, https://doi.org/10.1175/2010JAS3316.1, 2010. a
Coffel, E. D., Horton, R. M., and De Sherbinin, A.: Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century, Environmental Research Letters, 13, 014001, https://doi.org/10.1088/1748-9326/aaa00e, 2018. a
Diffenbaugh, N. S., Scherer, M., and Trapp, R. J.: Robust increases in severe thunderstorm environments in response to greenhouse forcing, Proceedings of the National Academy of Sciences, 110, 16361–16366, https://doi.org/10.1073/pnas.1307758110, 2013. a
ECMWF: IFS Documentation CY41R2 – Part IV: Physical Processes, 4, ECMWF, https://doi.org/10.21957/tr5rv27xu, 2016. a
Emanuel, K.: Quasi-equilibrium dynamics of the tropical atmosphere, in: The Global Circulation of the Atmosphere, edited by: Schneider, T. and Sobel, A. H., Chap. 7, Princeton University Press, 186–218, ISBN 978-0691121819 2007. a
Emanuel, K. A.: A Scheme for Representing Cumulus Convection in Large-Scale Models, Journal of the Atmospheric Sciences, 48, 2313–2329, https://doi.org/10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2, 1991. a, b
Emmenegger, T., Ahmed, F., Kuo, Y.-H., Xie, S., Zhang, C., Tao, C., and Neelin, J. D.: The Physics behind Precipitation Onset Bias in CMIP6 Models: The Pseudo-Entrainment Diagnostic and Trade-Offs between Lapse Rate and Humidity, Journal of Climate, 37, 2013–2033, https://doi.org/10.1175/JCLI-D-23-0227.1, 2024. a, b, c, d, e
ESGF: CMIP6 [dataset], https://esgf.nci.org.au/search (last access: 24 November 2025), 2025. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Fritsch, J. M. and Chappell, C. F.: Numerical Prediction of Convectively Driven Mesoscale Pressure Systems. Part I: Convective Parameterization, Journal of the Atmospheric Sciences, 37, 1722–1733, https://doi.org/10.1175/1520-0469(1980)037<1722:npocdm>2.0.co;2, 1980. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., Da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), Journal of Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Global Modeling and Assimilation Office (GMAO): MERRA-2: Modern-Era Retrospective Analysis for Research and Applications, Version 2, NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) [dataset], https://doi.org/10.5067/QBZ6MG944HW0 (last access: 24 November 2025), 2015. a
Gregory, D. and Rowntree, P. R.: A Mass Flux Convection Scheme with Representation of Cloud Ensemble Characteristics and Stability-Dependent Closure, Monthly Weather Review, 118, 1483–1506, https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2, 1990. a
Guérémy, J. F.: A continuous buoyancy based convection scheme: one- and three-dimensional validation, Tellus A: Dynamic Meteorology and Oceanography, 63, 687–706, https://doi.org/10.1111/j.1600-0870.2011.00521.x, 2011. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: Complete ERA5 from 1940: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service (C3S) Data Store (CDS) [dataset], https://doi.org/10.24381/cds.143582cf, last access: 24 November 2017. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., De Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Kirshbaum, D. J. and Lamer, K.: Climatological sensitivities of shallow-cumulus bulk entrainment in continental and oceanic locations, Journal of the Atmospheric Sciences, 78, 2429–2443, https://doi.org/10.1175/JAS-D-20-0377.1, 2021. a
Lucas, C., Zipser, E. J., and Lemone, M. A.: Vertical Velocity in Oceanic Convection off Tropical Australia, Journal of the Atmospheric Sciences, 51, 3183–3193, https://doi.org/10.1175/1520-0469(1994)051<3183:VVIOCO>2.0.CO;2, 1994. a
Matthews, T., Ramsay, E. E., Saeed, F., Sherwood, S., Jay, O., Raymond, C., Abram, N., Lee, J. K. W., Barley, S., Perkins-Kirkpatrick, S., Khan, M. S., Meissner, K. J., Roberts, C., Mavalankar, D., Smith, K. G. C., Ullah, A., Sadad, A., Turner, V., and Forrest, A.: Humid heat exceeds human tolerance limits and causes mass mortality, Nature Climate Change, 15, 4–6, https://doi.org/10.1038/s41558-024-02215-8, 2025. a
Miyawaki, O., Tan, Z., Shaw, T. A., and Jansen, M. F.: Quantifying Key Mechanisms That Contribute to the Deviation of the Tropical Warming Profile From a Moist Adiabat, Geophysical Research Letters, 47, e2020GL089136, https://doi.org/10.1029/2020GL089136, 2020. a
Möbis, B. and Stevens, B.: Factors controlling the position of the Intertropical Convergence Zone on an aquaplanet, Journal of Advances in Modeling Earth Systems, 4, M00A04, https://doi.org/10.1029/2012ms000199, 2012. a
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015. a
Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch, P. J., and Zhang, M.: The Mean Climate of the Community Atmosphere Model (CAM4) in Forced SST and Fully Coupled Experiments, Journal of Climate, 26, 5150–5168, https://doi.org/10.1175/jcli-d-12-00236.1, 2013. a, b
Nordeng, T.-E.: Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics, European Centre for Medium Range Weather Forecasts, Reading, UK, https://doi.org/10.21957/e34xwhysw, 1994. a
Palmer, L.: PalmerSingh2025, Version v1.0, Zenodo [code], https://doi.org/10.5281/zenodo.17512196, 2025. a
Raymond, C., Matthews, T., Horton, R. M., Fischer, E. M., Fueglistaler, S., Ivanovich, C., Suarez‐Gutierrez, L., and Zhang, Y.: On the Controlling Factors for Globally Extreme Humid Heat, Geophysical Research Letters, 48, e2021GL096082, https://doi.org/10.1029/2021GL096082, 2021. a
Riehl, H. and Malkus, J. S.: On the Heat Balance in the Equatorial Trough Zone, Geophysica, 6, 503–538, 1958. a
Rio, C., Hourdin, F., Grandpeix, J.-Y., and Lafore, J.-P.: Shifting the diurnal cycle of parameterized deep convection over land, Geophysical Research Letters, 36, https://doi.org/10.1029/2008gl036779, 2009. a
Rochetin, N., Grandpeix, J.-Y., Rio, C., and Couvreux, F.: Deep Convection Triggering by Boundary Layer Thermals. Part II: Stochastic Triggering Parameterization for the LMDZ GCM, Journal of the Atmospheric Sciences, 71, 515–538, https://doi.org/10.1175/jas-d-12-0337.1, 2014. a
Roehrig, R., Beau, I., Saint‐Martin, D., Alias, A., Decharme, B., Guérémy, J.-F., Voldoire, A., Abdel-Lathif, A. Y., Bazile, E., Belamari, S., Blein, S., Bouniol, D., Bouteloup, Y., Cattiaux, J., Chauvin, F., Chevallier, M., Colin, J., Douville, H., Marquet, P., Michou, M., Nabat, P., Oudar, T., Peyrillé, P., Piriou, J.-M., Salas y Mélia, D., Séférian, R., and Sénési, S.: The CNRM Global Atmosphere Model ARPEGE‐Climat 6.3: Description and Evaluation, Journal of Advances in Modeling Earth Systems, 12, e2020MS002075, https://doi.org/10.1029/2020MS002075, 2020. a, b
Rogers, C. D. W., Ting, M., Li, C., Kornhuber, K., Coffel, E. D., Horton, R. M., Raymond, C., and Singh, D.: Recent Increases in Exposure to Extreme Humid‐Heat Events Disproportionately Affect Populated Regions, Geophysical Research Letters, 48, e2021GL094183, https://doi.org/10.1029/2021GL094183, 2021. a
Romps, D. M.: Clausius–Clapeyron Scaling of CAPE from Analytical Solutions to RCE, Journal of the Atmospheric Sciences, 73, 3719–3737, https://doi.org/10.1175/jas-d-15-0327.1, 2016. a, b
Romps, D. M.: Ascending Columns, WTG, and Convective Aggregation, Journal of the Atmospheric Sciences, 78, 497–508, https://doi.org/10.1175/JAS-D-20-0041.1, 2021. a
Scinocca, J. F. and McFarlane, N. A.: The Variability of Modeled Tropical Precipitation, Journal of the Atmospheric Sciences, 61, 1993–2015, https://doi.org/10.1175/1520-0469(2004)061<1993:tvomtp>2.0.co;2, 2004. a
Seeley, J. T. and Romps, D. M.: Why does tropical convective available potential energy (CAPE) increase with warming?, Geophysical Research Letters, 42, https://doi.org/10.1002/2015GL066199, 2015. a, b
Singh, M. S. and Neogi, S.: On the Interaction between Moist Convection and Large-Scale Ascent in the Tropics, Journal of Climate, 35, 4417–4435, https://doi.org/10.1175/JCLI-D-21-0717.1, 2022. a
Singh, M. S., Warren, R. A., and Jakob, C.: A Steady‐State Model for the Relationship Between Humidity, Instability, and Precipitation in the Tropics, Journal of Advances in Modeling Earth Systems, 11, 3973–3994, https://doi.org/10.1029/2019MS001686, 2019. a
Takahashi, H., Luo, Z. J., Stephens, G., and Mulholland, J. P.: Revisiting the Land‐Ocean Contrasts in Deep Convective Cloud Intensity Using Global Satellite Observations, Geophysical Research Letters, 50, e2022GL102089, https://doi.org/10.1029/2022GL102089, 2023. a
Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models, Monthly Weather Review, 117, 1779–1800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989. a
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019. a
Wang, Y.-C., Pan, H.-L., and Hsu, H.-H.: Impacts of the triggering function of cumulus parameterization on warm-season diurnal rainfall cycles at the Atmospheric Radiation Measurement Southern Great Plains site, Journal of Geophysical Research: Atmospheres, 120, 10681–10702, https://doi.org/10.1002/2015JD023337, 2015. a
Williams, A. I. L., Jeevanjee, N., and Bloch‐Johnson, J.: Circus Tents, Convective Thresholds, and the Non‐Linear Climate Response to Tropical SSTs, Geophysical Research Letters, 50, e2022GL101499, https://doi.org/10.1029/2022GL101499, 2023. a
Wing, A. A. and Singh, M. S.: Control of Stability and Relative Humidity in the Radiative‐Convective Equilibrium Model Intercomparison Project, Journal of Advances in Modeling Earth Systems, 16, e2023MS003914, https://doi.org/10.1029/2023MS003914, 2024. a, b, c
Wu, T.: A mass-flux cumulus parameterization scheme for large-scale models: description and test with observations, Climate Dynamics, 38, 725–744, https://doi.org/10.1007/s00382-011-0995-3, 2012. a
Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., Jie, W., Zhang, J., Liu, Y., Zhang, L., Zhang, F., Zhang, Y., Wu, F., Li, J., Chu, M., Wang, Z., Shi, X., Liu, X., Wei, M., Huang, A., Zhang, Y., and Liu, X.: The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6, Geosci. Model Dev., 12, 1573–1600, https://doi.org/10.5194/gmd-12-1573-2019, 2019. a
Xu, K.-M. and Emanuel, K. A.: Is the Tropical Atmosphere Conditionally Unstable?, Monthly Weather Review, 117, 1471–1479, https://doi.org/10.1175/1520-0493(1989)117<1471:ITTACU>2.0.CO;2, 1989. a, b
Yoshimura, H., Mizuta, R., and Murakami, H.: A Spectral Cumulus Parameterization Scheme Interpolating between Two Convective Updrafts with Semi-Lagrangian Calculation of Transport by Compensatory Subsidence, Monthly Weather Review, 143, 597–621, https://doi.org/10.1175/mwr-d-14-00068.1, 2015. a
Zhang, G. J. and Mu, M.: Effects of modifications to the Zhang‐McFarlane convection parameterization on the simulation of the tropical precipitation in the National Center for Atmospheric Research Community Climate Model, version 3, Journal of Geophysical Research: Atmospheres, 110, D09109, https://doi.org/10.1029/2004jd005617, 2005. a
Zhang, Y., Held, I., and Fueglistaler, S.: Projections of tropical heat stress constrained by atmospheric dynamics, Nature Geoscience, 14, 133–137, https://doi.org/10.1038/s41561-021-00695-3, 2021. a
Zhao, M., Golaz, J.-C., Held, I. M., Guo, H., Balaji, V., Benson, R., Chen, J.-H., Chen, X., Donner, L. J., Dunne, J. P., Dunne, K., Durachta, J., Fan, S.-M., Freidenreich, S. M., Garner, S. T., Ginoux, P., Harris, L. M., Horowitz, L. W., Krasting, J. P., Langenhorst, A. R., Liang, Z., Lin, P., Lin, S.-J., Malyshev, S. L., Mason, E., Milly, P. C. D., Ming, Y., Naik, V., Paulot, F., Paynter, D., Phillipps, P., Radhakrishnan, A., Ramaswamy, V., Robinson, T., Schwarzkopf, D., Seman, C. J., Shevliakova, E., Shen, Z., Shin, H., Silvers, L. G., Wilson, J. R., Winton, M., Wittenberg, A. T., Wyman, B., and Xiang, B.: The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 2. Model Description, Sensitivity Studies, and Tuning Strategies, Journal of Advances in Modeling Earth Systems, 10, 735–769, https://doi.org/10.1002/2017MS001209, 2018. a
Short summary
This study investigates the relationship between stability and humidity in the tropical troposphere in global climate models. We develop a method for quantifying the relationship and find varying relationships that are similar or even opposite to observations. We theorise that measures of intense thunderstorms and humid heatwaves are influenced by the stability-humidity relationship. Models that have a relationship like observations project greater increases in these measures under warming.
This study investigates the relationship between stability and humidity in the tropical...