Articles | Volume 6, issue 4
https://doi.org/10.5194/wcd-6-1797-2025
https://doi.org/10.5194/wcd-6-1797-2025
Research article
 | 
10 Dec 2025
Research article |  | 10 Dec 2025

The impact of synoptic meteorology on observed surface heat fluxes over the Southern Ocean

A. V. Sreenath, Tahereh Alinejadtabrizi, Steven Siems, Peter T. May, Haifeng Zhang, and Eric Schulz

Related authors

Intensifying precipitation over the Southern Ocean challenges reanalysis-based climate estimates – Insights from Macquarie Island's 45-year record
Zhaoyang Kong, Andrew T. Prata, Peter T. May, Ariaan Purich, Yi Huang, and Steven T. Siems
Weather Clim. Dynam., 6, 1643–1660, https://doi.org/10.5194/wcd-6-1643-2025,https://doi.org/10.5194/wcd-6-1643-2025, 2025
Short summary
Trade wind regimes during the Great Barrier Reef coral bleaching season
Lara S. Richards, Steven T. Siems, Yi Huang, Daniel P. Harrison, and Wenhui Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-3639,https://doi.org/10.5194/egusphere-2025-3639, 2025
Short summary
Contributions of the synoptic meteorology to the seasonal cloud condensation nuclei cycle over the Southern Ocean
Tahereh Alinejadtabrizi, Yi Huang, Francisco Lang, Steven Siems, Michael Manton, Luis Ackermann, Melita Keywood, Ruhi Humphries, Paul Krummel, Alastair Williams, and Greg Ayers
Atmos. Chem. Phys., 25, 2631–2648, https://doi.org/10.5194/acp-25-2631-2025,https://doi.org/10.5194/acp-25-2631-2025, 2025
Short summary
Validation and comparison of cloud properties retrieved from passive satellites over the Southern Ocean
Arathy A. Kurup, Caroline Poulsen, Steven T. Siems, and Daniel J. V. Robbins
EGUsphere, https://doi.org/10.5194/egusphere-2025-209,https://doi.org/10.5194/egusphere-2025-209, 2025
Short summary
Future changes in seasonal drought in Australia
Anna M. Ukkola, Steven Thomas, Elisabeth Vogel, Ulrike Bende-Michl, Steven Siems, Vjekoslav Matic, and Wendy Sharples
EGUsphere, https://doi.org/10.31223/X56110,https://doi.org/10.31223/X56110, 2024
Short summary

Cited articles

Alinejadtabrizi, T., Lang, F., Huang, Y., Ackermann, L., Keywood, M., Ayers, G., Krummel, P., Humphries, R., Williams, A. G., Siems, S. T., and Manton, M.: Wet deposition in shallow convection over the Southern Ocean, npj Climate and Atmospheric Science, 7, 76, https://doi.org/10.1038/s41612-024-00625-1, 2024. a
Bariteau, L., Blomquist, B., Fairall, C., Thompson, E., Edson, J., and Pincus, R.: Python implementation of the COARE 3.5 Bulk Air-Sea Flux algorithm (v1.1), Zenodo [code], https://doi.org/10.5281/zenodo.5110991, 2021. a
Behrangi, A. and Song, Y.: A new estimate for oceanic precipitation amount and distribution using complementary precipitation observations from space and comparison with GPCP, Environmental Research Letters, 15, 124042, https://doi.org/10.1088/1748-9326/abc6d1, 2020. a
Belmonte Rivas, M. and Stoffelen, A.: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT, Ocean Science, 15, 831–852, 2019. a
Berner, A. H., Bretherton, C. S., and Wood, R.: Large-eddy simulation of mesoscale dynamics and entrainment around a pocket of open cells observed in VOCALS-REx RF06, Atmos. Chem. Phys., 11, 10525–10540, https://doi.org/10.5194/acp-11-10525-2011, 2011. a
Download
Short summary
Using 14 years of observations from mooring, we reported that cold air advection creates intense surface flux exchange over the southern ocean, linked with strong boundary layer instability. Results also indicate that cold air advection creates frequent open mesoscale cellular convective clouds. The flux exchange for open and closed mesoscale cellular convective clouds is comparable, suggesting a limited role of the surface flux in the transition of these boundary layer clouds.
Share