Articles | Volume 6, issue 3
https://doi.org/10.5194/wcd-6-807-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-6-807-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Linking weather regimes to the variability of warm-season tornado activity over the United States
Matthew Graber
Department of Climate, Meteorology & Atmospheric Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61820, United States
Department of Climate, Meteorology & Atmospheric Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61820, United States
Robert J. Trapp
Department of Climate, Meteorology & Atmospheric Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61820, United States
Related authors
Matthew Graber, Zhuo Wang, and Robert J. Trapp
EGUsphere, https://doi.org/10.5194/egusphere-2026-536, https://doi.org/10.5194/egusphere-2026-536, 2026
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study aims to seasonally predict springtime tornado activity using a weather-regime-based hybrid model and to identify the physical sources of predictability to explain the results. Tornado outbreaks, days with several tornadoes, exhibit model skill and should be a primary focus of future work given their societal impacts. Low-frequency climate modes are important sources of predictability for weather regimes, providing forecasts of opportunity for springtime tornado outbreaks.
Matthew Graber, Zhuo Wang, and Robert J. Trapp
EGUsphere, https://doi.org/10.5194/egusphere-2026-536, https://doi.org/10.5194/egusphere-2026-536, 2026
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study aims to seasonally predict springtime tornado activity using a weather-regime-based hybrid model and to identify the physical sources of predictability to explain the results. Tornado outbreaks, days with several tornadoes, exhibit model skill and should be a primary focus of future work given their societal impacts. Low-frequency climate modes are important sources of predictability for weather regimes, providing forecasts of opportunity for springtime tornado outbreaks.
Yulan Hong, Stephen W. Nesbitt, Robert J. Trapp, and Larry Di Girolamo
Atmos. Meas. Tech., 16, 1391–1406, https://doi.org/10.5194/amt-16-1391-2023, https://doi.org/10.5194/amt-16-1391-2023, 2023
Short summary
Short summary
Deep convective updrafts form overshooting tops (OTs) when they extend into the upper troposphere and lower stratosphere. An OT often indicates hazardous weather conditions. The global distribution of OTs is useful for understanding global severe weather conditions. The Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua and Terra satellites provides 2 decades of records on the Earth–atmosphere system with stable orbits, which are used in this study to derive 20-year OT climatology.
Cited articles
Allen, J. T., Tippett, M. K., and Sobel, A. H.: Influence of the El Nino/Southern Oscillation on tornado and hail frequency in the United States, Nat. Geosci., 8, 278–283, https://doi.org/10.1038/ngeo2385, 2015.
Ashley, W. S. and Strader, S. M.: Recipe for Disaster: How the Dynamic Ingredients of Risk and Exposure Are Changing the Tornado Disaster Landscape, B. Am. Meteorol. Soc., 97, 767–786, https://doi.org/10.1175/BAMS-D-15-00150.1, 2016.
Brooks, H. E., Lee, J. W., and Craven, J. P.: The Spatial Distribution of Severe Thunderstorm and Tornado Environments from Global Reanalysis Data, Atmos. Res., 67–68, 73–94, https://doi.org/10.1016/S0169-8095(03)00045-0, 2003.
Brooks, H. E., Carbin, G. W., and Marsh, P. T.: Increased Variability of Tornado Occurrence in the United States, Science, 346, 349–352, https://doi.org/10.1126/science.1257460, 2014.
Charney, J. G. and DeVore, J. G.: Multiple Flow Equilibria in the Atmosphere and Blocking, J. Atmos. Sci., 36, 1205–1216, https://doi.org/10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2, 1979.
Cook, A. R. and Schaefer, J. T.: The Relation of El Nino-Southern Oscillation (ENSO) to Winter Tornado Outbreaks, Mon. Weather Rev., 136, 3121–3137, https://doi.org/10.1175/2007MWR2171.1, 2008.
Corti, S., Molteni, F., and Palmer, T. N.: Signature of Recent Climate Change in Frequencies of Natural Atmospheric Circulation Regimes, Nature, 398, 799–802, https://doi.org/10.1038/19745, 1999.
Cwik, P., McPherson, R. A., Richman, M. B., and Mercer, A. E.: Climatology of 500-hPa Geopotential Height Anomalies Associated with May Tornado Outbreaks in the United States, Int. J. Climatol., 43, 893–913, https://doi.org/10.1002/joc.7841, 2022.
Davies, D. L. and Bouldin, D. W.: A Cluster Separation Measure, IEEE Trans. Pattern Anal. Mach. Intelligience, PAMI-1, 224–227, https://doi.org/10.1109/TPAMI.1979.4766909, 1979.
Del Genio, A. D., Yao, M.-S., and Jonas, J.: Will Moist Convection be Stronger in a Warmer Climate?, Geophys. Res. Lett., 34, L16703, https://doi.org/10.1029/2007GL030525, 2007.
Diffenbaugh, N. S., Scherer, M., and Trapp, R. J.: Robust Increases in Severe Thunderstorm Environments in Response to Greenhouse Forcing, P. Natl. Acad. Sci. USA, 110, 16361–16366, https://doi.org/10.1073/pnas.1307758110, 2013.
Elliott, M.: 2021 Preliminary Killer Tornadoes, NWS Storm Prediction Center [data set], https://www.spc.noaa.gov/climo/torn/STATIJ21.txt (last access: 28 April 2024), 2023a.
Elliott, M.: 2022 Preliminary Killer Tornadoes, NWS Storm Prediction Center [data set], https://www.spc.noaa.gov/climo/torn/STATIJ22.txt (last access: 28 April 2024), 2023b.
Elliott, M.: 2023 Preliminary Killer Tornadoes, NWS Storm Prediction Center [data set], https://www.spc.noaa.gov/climo/torn/STATIJ23.txt (last access: 28 April 2024), 2023c.
Elliott, M.: U.S. Killer Tornado Statistics, NWS Storm Prediction Center, https://www.spc.noaa.gov/climo/torn/fatalmap.php (last access: 28 April 2024), 2024.
Gensini, V. A. and Brooks, H. E.: Spatial Trends in United States Tornado Frequency, Nature, 1, 38, https://doi.org/10.1038/s41612-018-0048-2, 2018.
Graber, M.: Matt0604/Kmeans: Weather Regimes Graber et al. 2025 (Version 1), Zenodo [code], https://doi.org/10.5281/zenodo.16043868, 2025.
Graber, M., Trapp, R. J., and Wang, Z.: The Regionality and Seasonality of Tornado Trends in the United States, Npj Clim. Atmos. Sci., 7, 144, https://doi.org/10.1038/s41612-024-00698-y, 2024.
Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I., and Wernli, H.: Balancing Europe's Wind-power Output through spatial development informed by weather regimes, Nat. Clim. Change, 7, 557–562, https://doi.org/10.1038/nclimate3338, 2017.
Grams, C. M., Ferranti, L., and Magnusson, L.: How to make use of weather regimes in Extended-range Predictions for Europe, ECMWF Newsl., 165, 14–19, https://www.ecmwf.int/en/newsletter/165/meteorology/how-make-use-weather-regimes-extended-range-predictions-europe (last access: 16 July 2025), 2020.
Hannachi, A., Straus, D. M., Franzke, C. L. E., Corti, S., and Woollings, T.: Low-Frequency Nonlinearity and Regime Behavior in the Northern Hemisphere Extratropical Atmosphere, Rev. Geophys., 55, 199–234, https://doi.org/10.1002/2015RG000509, 2017.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023a.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023b.
Kodinariya, T. M. and Makwana, P. R.: Review on Determining Number of Clusters in K-Means Clustering, Int. J. Adv. Res. Comput. Sci. Manag. Stud., 1, 90–95, 2013.
Lee, S. H., Tippett, M. K., and Polvani, L. M.: A New Year-Round Weather Regime Classification for North America, J. Climate, 36, 7091–7108, https://doi.org/10.1175/JCLI-D-23-0214.1, 2023.
Marsh, P.: 2020 Preliminary Killer Tornadoes, NWS Storm Prediction Center [data set], https://www.spc.noaa.gov/climo/torn/STATIJ20.txt (last access: 28 April 2024), 2021.
Marsh, P. and Guyer, J.: 2018 Preliminary Killer Tornadoes, NWS Storm Prediction Center [data set], https://www.spc.noaa.gov/climo/torn/STATIJ18.txt (last access: 28 April 2024), 2019.
Marsh, P. and Guyer, J.: 2019 Preliminary Killer Tornadoes, NWS Storm Prediction Center [data set], https://www.spc.noaa.gov/climo/torn/STATIJ19.txt (last access: 28 April 2024), 2020.
Mercer, A. E. and Bates, A.: Meteorological Differences Characterizing Tornado Outbreak Forecasts of Varying Quality, Atmosphere, 1, 16, https://doi.org/10.3390/atmos10010016, 2019.
Mercer, A. E., Shafer, C. M., Doswell III, C. A., Leslie, L. M., and Richman, M. B.: Synoptic Composites of Tornadic and Nontornadic Outbreaks, Mon. Weather Rev., 140, 2590–2608, https://doi.org/10.1175/MWR-D-12-00029.1, 2012.
Michelangeli, P.-A., Vautard, R., and Legras, B.: Weather Regimes: Recurrence and Quasi Stationarity, J. Atmos. Sci., 52, 1237–1256, https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2, 1995.
Miller, D., Wang, Z., Trapp, R. J., and Harnos, D. S.: Hybrid Prediction of Weekly Tornado Activity Out to Week 3: Utilizing Weather Regimes, Geophys. Res. Lett., 47, e2020GL087253, https://doi.org/10.1029/2020GL087253, 2020.
Miller, D., Gensini, V. A., and Barrett, B. S.: Madden-Julian Oscillation Influences United States Springtime Tornado and Hail Frequency, Npj Clim. Atmos. Sci., 5, 37, https://doi.org/10.1038/s41612-022-00263-5, 2022.
Moore, T. W.: Annual and Seasonal Tornado Trends in the Contiguous United States and its Regions, Int. J. Climatol., 38, 1582–1594, https://doi.org/10.1002/joc.5285, 2018.
Moore, T. W. and DeBoer, T. A.: A Review and Analysis of Possible Changes to the Climatology of Tornadoes in the United States, Prog. Phys. Geogr. Earth Environ., 43, 365–390, https://doi.org/10.1177/0309133319829398, 2019.
NCEI: U.S. Billion-Dollar Weather and Climate Disasters, NOAA National Centers for Environmental Information (NCEI), https://doi.org/10.25921/stkw-7w73, 2024.
Niloufar, N., Devineni, N., Were, V., and Khanbilvardi, R.: Explaining the Trends and Variability in the United States Tornado Records using Climate Teleconnections and Shifts in Observational Practices, Sci. Rep., 11, 1741, https://doi.org/10.1038/s41598-021-81143-5, 2021.
Rasmussen, E. N. and Blanchard, D. O.: A Baseline Climatology of Sounding-Serived Supercell and Tornado Forecast Parameters, Weather Forecast., 13, 1148–1164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2, 1998.
Robertson, A. W. and Ghil, M.: Large-Scale Weather Regimes and Local Climate over the Western United States, J. Climate, 12, 1796–1813, https://doi.org/10.1175/1520-0442(1999)012<1796:LSWRAL>2.0.CO;2, 1999.
Schaller, N., Sillmann, J., Anstey, J., Fischer, E. M., Grams, C. M., and Russo, S.: Influence of Blocking on Northern European and Western Russian Heatwaves in Large Climate Model Ensembles, Environ. Res. Lett., 13, 054015, https://doi.org/10.1088/1748-9326/aaba55, 2018.
Storm Prediction Center: Severe Weather Database Files (1950–2024), 1950-2024_actual_tornadoes.csv, NOAA/National Weather Service, National Centers for Environmental Prediction, Storm Prediction Center [data set], https://www.spc.noaa.gov/wcm/#data, last access: 1 May 2025.
Strader, S. M., Ashley, W. S., Pingel, T. J., and Krmenec, A. J.: Projected 21st Century Changes in Tornado Exposure, Risk, and Disaster Potential, Clim. Change, 141, 301–313, https://doi.org/10.1007/s10584-017-1905-4, 2017.
Strader, S. M., Gensini, V. A., Ashley, W. S., and Wagner, A. N.: Changes in Tornado risk and Societal Vulnerability Leading to Greater Tornado Impact Potential, Npj Nat. Hazards, 1, 20, https://doi.org/10.1038/s44304-024-00019-6, 2024.
Straus, D. M., Corti, S., and Molteni, F.: Circulation Regimes: Chaotic Variability versus SST-Force Predictability, J. Climate, 20, 2251–2272, https://doi.org/10.1175/JCLI4070.1, 2007.
Thompson, D. B. and Roundy, P. E.: The Relationship between the Madden-Julian Oscillation and US Violent Tornado Outbreaks in the Spring, Mon. Weather Rev., 141, 2087–2095, https://doi.org/10.1175/MWR-D-12-00173.1, 1998.
Thompson, R. L., Smith, B. T., Grams, J. S., Dean, A. R., and Broyles, C.: Convective Modes for Significant Severe Thunderstorms in the Contiguous United States. Part II: Supercell and QLCS Tornado Environments, Weather Forecast., 27, 1136–1154, https://doi.org/10.1175/WAF-D-11-00116.1, 2012.
Tippett, M. K., Sobel, A. H., Camargo, S. J., and Allen, J. T.: An Empirical Relation between U.S. Tornado Activity and Monthly Environmental Parameters, J. Climate, 27, 2983–2999, https://doi.org/10.1175/JCLI-D-13-00345.1, 2014.
Tippett, M. K., Lepore, C., and L'Heureux, M. L.: Predictability of a Tornado Environment Index from El Nino Southern Oscillation (ENSO) and the Arctic Oscillation, Weather Clim. Dyn., 3, 1063–1075, https://doi.org/10.5194/wcd-3-1063-2022, 2022.
Tippett, M. K., Malloy, K., and Lee, S. H.: Modulation of U.S. Tornado Activity by year-round North American Weather Regimes, Mon. Weather Rev., 152, 2189–2202, https://doi.org/10.1175/MWR-D-24-0016.1, 2024.
Trapp, R. J.: Mesoscale-Convective Processes in the Atmosphere, Cambridge University Press, 377 pp., https://doi.org/10.1017/CBO9781139047241, 2013.
Trapp, R. J.: On the Significance of Multiple Consecutive Days of Tornado Activity, Mon. Weather Rev., 142, 1452–1459, https://doi.org/10.1175/MWR-D-13-00347.1, 2014.
Trapp, R. J., Diffenbaugh, N. S., Brooks, H. E., Baldwin, M. E., Robinson, E. D., and Pal, J. S.: Changes in Severe Thunderstorm Environment Frequency during the 21st Century caused by Anthropogenically Enhanced Global Radiative Forcing, P. Natl. Acad. Sci. USA, 104, 19719–19723, https://doi.org/10.1073/pnas.0705494104, 2007.
Vigaud, N., Robertson, A. W., and Tippett, M. K.: Predictability of Recurrent Weather Regimes over North America during Winter from Submonthly Reforecasts, Mon. Weather Rev., 146, 2559–2577, 2018a.
Vigaud, N., Tippett, M. K., and Robertson, A. W.: Probabilistic Skill of Subseasonal Precipitation Forecasts for the East Africa-West Asia Sector during September-May, Weather Forecast., 33, 1513–1532, https://doi.org/10.1175/WAF-D-18-0074.1, 2018b.
Wakimoto, R. M. and Wilson, J. W.: Non-supercell Tornadoes, Mon. Weather Rev., 117, 1113–1140, https://doi.org/10.1175/1520-0493(1989)117<1113:NST>2.0.CO;2, 1989.
Zhang, W., S-Y Wang, S., Chikamoto, Y., Gillies, R., LaPlante, M., and Hari, V.: A Weather Pattern Responsible for Increasing wildfires in the western United States, Environ. Res. Lett., 20, 014007, https://doi.org/10.1088/1748-9326/ad928f, 2024.
Short summary
This study identifies five warm-season weather regimes (WRs) to investigate the link between tornado activity and large-scale atmospheric circulations. Certain WRs strongly affect tornado activity due to their relationship with the environment. When a WR that positively affects tornado activity persists over multiple days, it further increases the tornado activity probability. The links found highlight the potential application of WRs for developing better seasonal prediction of tornadoes.
This study identifies five warm-season weather regimes (WRs) to investigate the link between...