Articles | Volume 6, issue 3
https://doi.org/10.5194/wcd-6-995-2025
https://doi.org/10.5194/wcd-6-995-2025
Research article
 | Highlight paper
 | 
26 Sep 2025
Research article | Highlight paper |  | 26 Sep 2025

Learning predictable and informative dynamical drivers of extreme precipitation using variational autoencoders

Fiona R. Spuler, Marlene Kretschmer, Magdalena Alonso Balmaseda, Yevgeniya Kovalchuk, and Theodore G. Shepherd

Related authors

State of Wildfires 2024–25
Douglas I. Kelley, Chantelle Burton, Francesca Di Giuseppe, Matthew W. Jones, Maria L. F. Barbosa, Esther Brambleby, Joe R. McNorton, Zhongwei Liu, Anna S. I. Bradley, Katie Blackford, Eleanor Burke, Andrew Ciavarella, Enza Di Tomaso, Jonathan Eden, Igor José M. Ferreira, Lukas Fiedler, Andrew J. Hartley, Theodore R. Keeping, Seppe Lampe, Anna Lombardi, Guilherme Mataveli, Yuquan Qu, Patrícia S. Silva, Fiona R. Spuler, Carmen B. Steinmann, Miguel Ángel Torres-Vázquez, Renata Veiga, Dave van Wees, Jakob B. Wessel, Emily Wright, Bibiana Bilbao, Mathieu Bourbonnais, Gao Cong, Carlos M. Di Bella, Kebonye Dintwe, Victoria M. Donovan, Sarah Harris, Elena A. Kukavskaya, Brigitte N’Dri, Cristina Santín, Galia Selaya, Johan Sjöström, John Abatzoglou, Niels Andela, Rachel Carmenta, Emilio Chuvieco, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Meier, Mark Parrington, Mojtaba Sadegh, Jesus San-Miguel-Ayanz, Fernando Sedano, Marco Turco, Guido R. van der Werf, Sander Veraverbeke, Liana O. Anderson, Hamish Clarke, Paulo M. Fernandes, and Crystal A. Kolden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-483,https://doi.org/10.5194/essd-2025-483, 2025
Preprint under review for ESSD
Short summary
State of Wildfires 2023–2024
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024,https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
ibicus: a new open-source Python package and comprehensive interface for statistical bias adjustment and evaluation in climate modelling (v1.0.1)
Fiona Raphaela Spuler, Jakob Benjamin Wessel, Edward Comyn-Platt, James Varndell, and Chiara Cagnazzo
Geosci. Model Dev., 17, 1249–1269, https://doi.org/10.5194/gmd-17-1249-2024,https://doi.org/10.5194/gmd-17-1249-2024, 2024
Short summary

Cited articles

Allen, S., Evans, G. R., Buchanan, P., and Kwasniok, F.: Incorporating the North Atlantic Oscillation into the post-processing of MOGREPS-G wind speed forecasts, Quarterly Journal of the Royal Meteorological Society, 147, 1403–1418, https://doi.org/10.1002/qj.3983, 2021. a
Bach, E., Krishnamurthy, V., Mote, S., Shukla, J., Sharma, A. S., Kalnay, E., and Ghil, M.: Improved subseasonal prediction of South Asian monsoon rainfall using data-driven forecasts of oscillatory modes, Proceedings of the National Academy of Sciences, 121, e2312573121, https://doi.org/10.1073/pnas.2312573121, 2024. a
Baker, L. H., Shaffrey, L. C., and Scaife, A. A.: Improved seasonal prediction of UK regional precipitation using atmospheric circulation, International Journal of Climatology, 38, e437–e453, https://doi.org/10.1002/joc.5382, 2018. a
Bloomfield, H. C., Brayshaw, D. J., and Charlton-Perez, A. J.: Characterizing the winter meteorological drivers of the European electricity system using targeted circulation types, Meteorological Applications, 27, e1858, https://doi.org/10.1002/met.1858, 2020. a, b
Bloomfield, H. C., Brayshaw, D. J., Gonzalez, P. L. M., and Charlton‐Perez, A.: Pattern‐based conditioning enhances sub‐seasonal prediction skill of European national energy variables, Meteorological Applications, 28, https://doi.org/10.1002/met.2018, 2021. a, b
Download
Executive editor
The occurrence and predictability of extreme events is often modulated by regional dynamical drivers, but their identification is not straightforward. This paper by Fiona Spuler et al. presents an innovate approach to dimensionality reduction targeted on regionally occurring phenomena. Their approach is based on a machine-learning method demonstrating, in a broad sense, that these method can identify physically interpretable drivers of targeted phenomena. The authors discuss the tradeoff between regime informativeness of local precipitation extremes and predictability of the regimes at subseasonal lead times. The novel machine-learning-based approach may find useful application beyond atmospheric and climate science.
Short summary
Large-scale atmospheric dynamics modulate the occurrence of extreme events and can improve their prediction. We present a generative machine learning method to identify key dynamical drivers of an impact variable in the form of targeted circulation regimes. Applied to extreme precipitation in Morocco, we show that these targeted regimes are more predictive of the impact while preserving their own predictability and physical consistency.
Share