Articles | Volume 1, issue 2
https://doi.org/10.5194/wcd-1-481-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-1-481-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the intermittency of orographic gravity wave hotspots and its importance for middle atmosphere dynamics
Institute for Meteorology, Universität Leipzig, Stephanstr. 3, 04103 Leipzig, Germany
Petr Sacha
Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 180 00 Prague 8, Czech Republic
Institute of Meteorology and Climatology, University of Natural Resources and Life Sciences, Vienna (BOKU), Gregor-Mendel-Strasse 33, 1180 Vienna, Austria
Roland Eichinger
Meteorological Institute, Ludwig-Maximilians-Universität (LMU), Munich, Germany
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Christoph Jacobi
Institute for Meteorology, Universität Leipzig, Stephanstr. 3, 04103 Leipzig, Germany
Petr Pisoft
Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 180 00 Prague 8, Czech Republic
Harald E. Rieder
Institute of Meteorology and Climatology, University of Natural Resources and Life Sciences, Vienna (BOKU), Gregor-Mendel-Strasse 33, 1180 Vienna, Austria
Related authors
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elisabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Lola Falletti, Peter R. Colarco, Eric Fleming, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3412, https://doi.org/10.5194/egusphere-2024-3412, 2024
Short summary
Short summary
To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model-observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goal of this activity: 1. evaluate the climate model performance; 2. understand the Earth system responses to this eruption.
Ales Kuchar, Timofei Sukhodolov, Gabriel Chiodo, Andrin Jörimann, Jessica Kult-Herdin, Eugene Rozanov, and Harald Rieder
EGUsphere, https://doi.org/10.5194/egusphere-2024-1909, https://doi.org/10.5194/egusphere-2024-1909, 2024
Short summary
Short summary
In January 2022, the Hunga Tonga-Hunga Ha'apai volcano erupted, sending massive amount of water vapor into the atmosphere. This event had a significant impact on stratospheric and lower mesosphere chemical composition. A year later stratospheric conditions have been disturbed during so-called Sudden Stratospheric. Here we simulate a novel pathway by which the water-rich eruption such as HT may have contributed to conditions during these events and consequently impacted surface climate.
Ales Kuchar, Maurice Öhlert, Roland Eichinger, and Christoph Jacobi
Weather Clim. Dynam., 5, 895–912, https://doi.org/10.5194/wcd-5-895-2024, https://doi.org/10.5194/wcd-5-895-2024, 2024
Short summary
Short summary
Exploring the polar vortex's impact on climate, the study evaluates model simulations against the ERA5 reanalysis data. Revelations about model discrepancies in simulating disruptive stratospheric warmings and vortex behavior highlight the need for refined model simulations of past climate. By enhancing our understanding of these dynamics, the research contributes to more reliable climate projections of the polar vortex with the impact on surface climate.
Christoph Jacobi, Ales Kuchar, Toralf Renkwitz, and Juliana Jaen
Adv. Radio Sci., 21, 111–121, https://doi.org/10.5194/ars-21-111-2023, https://doi.org/10.5194/ars-21-111-2023, 2023
Short summary
Short summary
Middle atmosphere long-term changes show the signature of climate change. We analyse 43 years of mesopause region horizontal winds obtained at two sites in Germany. We observe mainly positive trends of the zonal prevailing wind throughout the year, while the meridional winds tend to decrease in magnitude in both summer and winter. Furthermore, there is a change in long-term trends around the late 1990s, which is most clearly visible in summer winds.
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023, https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary
Short summary
Investigation of winds is important to understand atmospheric dynamics. In the summer mesosphere and lower thermosphere, there are three main wind flows: the mesospheric westward, the mesopause southward (equatorward), and the lower-thermospheric eastward wind. Combining almost 2 decades of measurements from different radars, we study the trend, their interannual oscillations, and the effects of the geomagnetic activity over these wind maxima.
Roland Eichinger, Sebastian Rhode, Hella Garny, Peter Preusse, Petr Pisoft, Aleš Kuchař, Patrick Jöckel, Astrid Kerkweg, and Bastian Kern
Geosci. Model Dev., 16, 5561–5583, https://doi.org/10.5194/gmd-16-5561-2023, https://doi.org/10.5194/gmd-16-5561-2023, 2023
Short summary
Short summary
The columnar approach of gravity wave (GW) schemes results in dynamical model biases, but parallel decomposition makes horizontal GW propagation computationally unfeasible. In the global model EMAC, we approximate it by GW redistribution at one altitude using tailor-made redistribution maps generated with a ray tracer. More spread-out GW drag helps reconcile the model with observations and close the 60°S GW gap. Polar vortex dynamics are improved, enhancing climate model credibility.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Ales Kuchar, Christoph Jacobi, Chris Meek, Diego Janches, Guiping Liu, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Meas. Tech., 15, 5769–5792, https://doi.org/10.5194/amt-15-5769-2022, https://doi.org/10.5194/amt-15-5769-2022, 2022
Short summary
Short summary
Precise and accurate measurements of vertical winds at the mesosphere and lower thermosphere are rare. Although meteor radars have been used for decades to observe horizontal winds, their ability to derive reliable vertical wind measurements was always questioned. In this article, we provide mathematical concepts to retrieve mathematically and physically consistent solutions, which are compared to the state-of-the-art non-hydrostatic model UA-ICON.
Ales Kuchar, Petr Sacha, Roland Eichinger, Christoph Jacobi, Petr Pisoft, and Harald Rieder
EGUsphere, https://doi.org/10.5194/egusphere-2022-474, https://doi.org/10.5194/egusphere-2022-474, 2022
Preprint archived
Short summary
Short summary
We focus on the impact of small-scale orographic gravity waves (OGWs) above the Himalayas. The interaction of GWs with the large-scale circulation in the stratosphere is not still well understood and can have implications on climate projections. We use a chemistry-climate model to show that these strong OGW events are associated with anomalously increased upward planetary-scale waves and in turn affect the circumpolar circulation and have the potential to alter ozone variability as well.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Nadja Samtleben, Aleš Kuchař, Petr Šácha, Petr Pišoft, and Christoph Jacobi
Ann. Geophys., 38, 95–108, https://doi.org/10.5194/angeo-38-95-2020, https://doi.org/10.5194/angeo-38-95-2020, 2020
Short summary
Short summary
The additional transfer of momentum and energy induced by locally breaking gravity wave hotspots in the lower stratosphere may lead to a destabilization of the polar vortex, which is strongly dependent on the position of the hotspot. The simulations with a global circulation model show that hotspots located above Eurasia cause a total decrease in the stationary planetary wave (SPW) activity, while the impact of hotspots located in North America mostly increase the SPW activity.
Nadja Samtleben, Christoph Jacobi, Petr Pišoft, Petr Šácha, and Aleš Kuchař
Ann. Geophys., 37, 507–523, https://doi.org/10.5194/angeo-37-507-2019, https://doi.org/10.5194/angeo-37-507-2019, 2019
Short summary
Short summary
Simulations of locally breaking gravity wave hot spots in the stratosphere show a suppression of wave propagation at midlatitudes, which is partly compensated for by additional wave propagation through the polar region. This leads to a displacement of the polar vortex towards lower latitudes. The effect is highly dependent on the position of the artificial gravity wave forcing. It is strongest (weakest) for hot spots at lower to middle latitudes (higher latitudes).
William T. Ball, Aleš Kuchař, Eugene V. Rozanov, Johannes Staehelin, Fiona Tummon, Anne K. Smith, Timofei Sukhodolov, Andrea Stenke, Laura Revell, Ancelin Coulon, Werner Schmutz, and Thomas Peter
Atmos. Chem. Phys., 16, 15485–15500, https://doi.org/10.5194/acp-16-15485-2016, https://doi.org/10.5194/acp-16-15485-2016, 2016
Short summary
Short summary
We find monthly, mid-latitude temperature changes above 40 km are related to ozone and temperature variations throughout the middle atmosphere. We develop an index to represent this atmospheric variability. In statistical analysis, the index can account for up to 60 % of variability in tropical temperature and ozone above 27 km. The uncertainties can be reduced by up to 35 % and 20 % in temperature and ozone, respectively. This index is an important tool to quantify current and future ozone recovery.
P. Šácha, A. Kuchař, C. Jacobi, and P. Pišoft
Atmos. Chem. Phys., 15, 13097–13112, https://doi.org/10.5194/acp-15-13097-2015, https://doi.org/10.5194/acp-15-13097-2015, 2015
Short summary
Short summary
In this study, we present a discovery of an internal gravity wave activity and breaking hotspot collocated with an area of anomalously low annual cycle amplitude and specific dynamics in the stratosphere over the Northeastern Pacific/Eastern Asia coastal region. The reasons why this particular IGW activity hotspot was not discovered before nor the specific dynamics of this region pointed out are discussed together with possible consequences on the middle atmospheric dynamics and transport.
A. Kuchar, P. Sacha, J. Miksovsky, and P. Pisoft
Atmos. Chem. Phys., 15, 6879–6895, https://doi.org/10.5194/acp-15-6879-2015, https://doi.org/10.5194/acp-15-6879-2015, 2015
Short summary
Short summary
We have studied the solar cycle manifestation in the latest generation of the reanalysed data sets by the means of both linear and nonlinear attribution analyses. The study is supplemented by the discussion of the dynamical implications.
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elisabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Lola Falletti, Peter R. Colarco, Eric Fleming, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3412, https://doi.org/10.5194/egusphere-2024-3412, 2024
Short summary
Short summary
To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model-observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goal of this activity: 1. evaluate the climate model performance; 2. understand the Earth system responses to this eruption.
Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, and Christoph Jacobi
Weather Clim. Dynam., 5, 1223–1268, https://doi.org/10.5194/wcd-5-1223-2024, https://doi.org/10.5194/wcd-5-1223-2024, 2024
Short summary
Short summary
This study introduces a novel deep learning (DL) approach to analyze how regional radiative forcing in Europe impacts the Arctic climate. By integrating atmospheric poleward energy transport with DL-based clustering of atmospheric patterns and attributing anomalies to specific clusters, our method reveals crucial, nuanced interactions within the climate system, enhancing our understanding of intricate climate dynamics.
Arthur Gauthier, Claudia Borries, Alexander Kozlovsky, Diego Janches, Peter Brown, Denis Vida, Christoph Jacobi, Damian Murphy, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Johan Kero, Nicholas Mitchell, Tracy Moffat-Griffin, and Gunter Stober
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-13, https://doi.org/10.5194/angeo-2024-13, 2024
Preprint under review for ANGEO
Short summary
Short summary
This study focuses on the TIMED Doppler Interferometer (TIDI)-Meteor Radar(MR) comparison of zonal and meridional winds and their dependence on local time and latitude. The correlation calculation between TIDI winds measurements and MR winds shows good agreement. A TIDI-MR seasonal comparison and the altitude-latitude dependence for winds is performed. TIDI reproduce the mean circulation well when compared with the MRs and might be useful as a lower boundary for general circulation models.
Ales Kuchar, Timofei Sukhodolov, Gabriel Chiodo, Andrin Jörimann, Jessica Kult-Herdin, Eugene Rozanov, and Harald Rieder
EGUsphere, https://doi.org/10.5194/egusphere-2024-1909, https://doi.org/10.5194/egusphere-2024-1909, 2024
Short summary
Short summary
In January 2022, the Hunga Tonga-Hunga Ha'apai volcano erupted, sending massive amount of water vapor into the atmosphere. This event had a significant impact on stratospheric and lower mesosphere chemical composition. A year later stratospheric conditions have been disturbed during so-called Sudden Stratospheric. Here we simulate a novel pathway by which the water-rich eruption such as HT may have contributed to conditions during these events and consequently impacted surface climate.
Ales Kuchar, Maurice Öhlert, Roland Eichinger, and Christoph Jacobi
Weather Clim. Dynam., 5, 895–912, https://doi.org/10.5194/wcd-5-895-2024, https://doi.org/10.5194/wcd-5-895-2024, 2024
Short summary
Short summary
Exploring the polar vortex's impact on climate, the study evaluates model simulations against the ERA5 reanalysis data. Revelations about model discrepancies in simulating disruptive stratospheric warmings and vortex behavior highlight the need for refined model simulations of past climate. By enhancing our understanding of these dynamics, the research contributes to more reliable climate projections of the polar vortex with the impact on surface climate.
Christoph Staehle, Harald E. Rieder, Arlene M. Fiore, and Jordan L. Schnell
Atmos. Chem. Phys., 24, 5953–5969, https://doi.org/10.5194/acp-24-5953-2024, https://doi.org/10.5194/acp-24-5953-2024, 2024
Short summary
Short summary
Chemistry–climate models show biases compared to surface ozone observations and thus require bias correction for impact studies and the assessment of air quality changes. We compare the performance of commonly used correction techniques for model outputs available via CMIP6. While all methods can reduce model biases, better results are obtained from more complex approaches. Thus, our study suggests broader use of these techniques in studies seeking to inform air quality management and policy.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Hella Garny, Roland Eichinger, Johannes C. Laube, Eric A. Ray, Gabriele P. Stiller, Harald Bönisch, Laura Saunders, and Marianna Linz
Atmos. Chem. Phys., 24, 4193–4215, https://doi.org/10.5194/acp-24-4193-2024, https://doi.org/10.5194/acp-24-4193-2024, 2024
Short summary
Short summary
Transport circulation in the stratosphere is important for the distribution of tracers, but its strength is hard to measure. Mean transport times can be inferred from observations of trace gases with certain properties, such as sulfur hexafluoride (SF6). However, this gas has a chemical sink in the high atmosphere, which can lead to substantial biases in inferred transport times. In this paper we present a method to correct mean transport times derived from SF6 for the effects of chemical sinks.
Christoph Jacobi, Ales Kuchar, Toralf Renkwitz, and Juliana Jaen
Adv. Radio Sci., 21, 111–121, https://doi.org/10.5194/ars-21-111-2023, https://doi.org/10.5194/ars-21-111-2023, 2023
Short summary
Short summary
Middle atmosphere long-term changes show the signature of climate change. We analyse 43 years of mesopause region horizontal winds obtained at two sites in Germany. We observe mainly positive trends of the zonal prevailing wind throughout the year, while the meridional winds tend to decrease in magnitude in both summer and winter. Furthermore, there is a change in long-term trends around the late 1990s, which is most clearly visible in summer winds.
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023, https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary
Short summary
Investigation of winds is important to understand atmospheric dynamics. In the summer mesosphere and lower thermosphere, there are three main wind flows: the mesospheric westward, the mesopause southward (equatorward), and the lower-thermospheric eastward wind. Combining almost 2 decades of measurements from different radars, we study the trend, their interannual oscillations, and the effects of the geomagnetic activity over these wind maxima.
Roland Eichinger, Sebastian Rhode, Hella Garny, Peter Preusse, Petr Pisoft, Aleš Kuchař, Patrick Jöckel, Astrid Kerkweg, and Bastian Kern
Geosci. Model Dev., 16, 5561–5583, https://doi.org/10.5194/gmd-16-5561-2023, https://doi.org/10.5194/gmd-16-5561-2023, 2023
Short summary
Short summary
The columnar approach of gravity wave (GW) schemes results in dynamical model biases, but parallel decomposition makes horizontal GW propagation computationally unfeasible. In the global model EMAC, we approximate it by GW redistribution at one altitude using tailor-made redistribution maps generated with a ray tracer. More spread-out GW drag helps reconcile the model with observations and close the 60°S GW gap. Polar vortex dynamics are improved, enhancing climate model credibility.
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023, https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary
Short summary
Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
Khalil Karami, Rolando Garcia, Christoph Jacobi, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys., 23, 3799–3818, https://doi.org/10.5194/acp-23-3799-2023, https://doi.org/10.5194/acp-23-3799-2023, 2023
Short summary
Short summary
Alongside mitigation and adaptation efforts, stratospheric aerosol intervention (SAI) is increasingly considered a third pillar to combat dangerous climate change. We investigate the teleconnection between the quasi-biennial oscillation in the equatorial stratosphere and the Arctic stratospheric polar vortex under a warmer climate and an SAI scenario. We show that the Holton–Tan relationship weakens under both scenarios and discuss the physical mechanisms responsible for such changes.
Christoph Jacobi, Kanykei Kandieva, and Christina Arras
Adv. Radio Sci., 20, 85–92, https://doi.org/10.5194/ars-20-85-2023, https://doi.org/10.5194/ars-20-85-2023, 2023
Short summary
Short summary
Sporadic E (Es) layers are thin regions of accumulated ions in the lower ionosphere. They can be observed by disturbances of GNSS links between low-Earth orbiting satellites and GNSS satellites. Es layers are influenced by neutral atmospheric tides and show the coupling between the neutral atmosphere and the ionosphere. Here we analyse migrating (sun-synchronous) and non-migrating tidal components in Es. The main signatures are migrating Es, but nonmigrating components are found as well.
Gerhard Georg Bruno Schmidtke, Raimund Brunner, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2023-139, https://doi.org/10.5194/egusphere-2023-139, 2023
Short summary
Short summary
The instrument records annual changes in Spectral Outgoing Radiation from 200–1100 nm, with 60 photomultiplier tubes simultaneously providing spectrometer and photometer data. Using Total Solar Irradiance data with a stability of 0.01 Wm-2 per year to recalibrate the established instruments, stable data of ~0.1 Wm-2 over a solar cycle period is expected. Determination of the changes in the global green Earth coverage and mapping will also assess the impact of climate engineering actions.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Ales Kuchar, Christoph Jacobi, Chris Meek, Diego Janches, Guiping Liu, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Meas. Tech., 15, 5769–5792, https://doi.org/10.5194/amt-15-5769-2022, https://doi.org/10.5194/amt-15-5769-2022, 2022
Short summary
Short summary
Precise and accurate measurements of vertical winds at the mesosphere and lower thermosphere are rare. Although meteor radars have been used for decades to observe horizontal winds, their ability to derive reliable vertical wind measurements was always questioned. In this article, we provide mathematical concepts to retrieve mathematically and physically consistent solutions, which are compared to the state-of-the-art non-hydrostatic model UA-ICON.
Ales Kuchar, Petr Sacha, Roland Eichinger, Christoph Jacobi, Petr Pisoft, and Harald Rieder
EGUsphere, https://doi.org/10.5194/egusphere-2022-474, https://doi.org/10.5194/egusphere-2022-474, 2022
Preprint archived
Short summary
Short summary
We focus on the impact of small-scale orographic gravity waves (OGWs) above the Himalayas. The interaction of GWs with the large-scale circulation in the stratosphere is not still well understood and can have implications on climate projections. We use a chemistry-climate model to show that these strong OGW events are associated with anomalously increased upward planetary-scale waves and in turn affect the circumpolar circulation and have the potential to alter ozone variability as well.
Rudolf Brázdil, Petr Dobrovolný, Jiří Mikšovský, Petr Pišoft, Miroslav Trnka, Martin Možný, and Jan Balek
Clim. Past, 18, 935–959, https://doi.org/10.5194/cp-18-935-2022, https://doi.org/10.5194/cp-18-935-2022, 2022
Short summary
Short summary
The paper deals with 520-year series (1501–2020 CE) of temperature, precipitation, and four drought indices reconstructed from documentary evidence and instrumental observations for the Czech Lands. Basic features of their fluctuations, long-term trends, and periodicities as well as attribution to changes in external forcings and climate variability modes are analysed. Representativeness of Czech reconstructions at European scale is evaluated. The paper shows extreme character of past decades.
Sumanta Sarkhel, Gunter Stober, Jorge L. Chau, Steven M. Smith, Christoph Jacobi, Subarna Mondal, Martin G. Mlynczak, and James M. Russell III
Ann. Geophys., 40, 179–190, https://doi.org/10.5194/angeo-40-179-2022, https://doi.org/10.5194/angeo-40-179-2022, 2022
Short summary
Short summary
A rare gravity wave event was observed on the night of 25 April 2017 over northern Germany. An all-sky airglow imager recorded an upward-propagating wave at different altitudes in mesosphere with a prominent wave front above 91 km and faintly observed below. Based on wind and satellite-borne temperature profiles close to the event location, we have found the presence of a leaky thermal duct layer in 85–91 km. The appearance of this duct layer caused the wave amplitudes to diminish below 91 km.
Sheena Loeffel, Roland Eichinger, Hella Garny, Thomas Reddmann, Frauke Fritsch, Stefan Versick, Gabriele Stiller, and Florian Haenel
Atmos. Chem. Phys., 22, 1175–1193, https://doi.org/10.5194/acp-22-1175-2022, https://doi.org/10.5194/acp-22-1175-2022, 2022
Short summary
Short summary
SF6-derived trends of stratospheric AoA from observations and model simulations disagree in sign. SF6 experiences chemical degradation, which we explicitly integrate in a global climate model. In our simulations, the AoA trend changes sign when SF6 sinks are considered; thus, the process has the potential to reconcile simulated with observed AoA trends. We show that the positive AoA trend is due to the SF6 sinks themselves and provide a first approach for a correction to account for SF6 loss.
Juliana Jaen, Toralf Renkwitz, Jorge L. Chau, Maosheng He, Peter Hoffmann, Yosuke Yamazaki, Christoph Jacobi, Masaki Tsutsumi, Vivien Matthias, and Chris Hall
Ann. Geophys., 40, 23–35, https://doi.org/10.5194/angeo-40-23-2022, https://doi.org/10.5194/angeo-40-23-2022, 2022
Short summary
Short summary
To study long-term trends in the mesosphere and lower thermosphere (70–100 km), we established two summer length definitions and analyzed the variability over the years (2004–2020). After the analysis, we found significant trends in the summer beginning of one definition. Furthermore, we were able to extend one of the time series up to 31 years and obtained evidence of non-uniform trends and periodicities similar to those known for the quasi-biennial oscillation and El Niño–Southern Oscillation.
Christoph Jacobi, Friederike Lilienthal, Dmitry Korotyshkin, Evgeny Merzlyakov, and Gunter Stober
Adv. Radio Sci., 19, 185–193, https://doi.org/10.5194/ars-19-185-2021, https://doi.org/10.5194/ars-19-185-2021, 2021
Short summary
Short summary
We compare winds and tidal amplitudes in the upper mesosphere/lower thermosphere region for cases with disturbed and undisturbed geomagnetic conditions. The zonal winds in both the mesosphere and lower thermosphere tend to be weaker during disturbed conditions. The summer equatorward meridional wind jet is weaker for disturbed geomagnetic conditions. The effect of geomagnetic variability on tidal amplitudes, except for the semidiurnal tide, is relatively small.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Rajesh Vaishnav, Christoph Jacobi, Jens Berdermann, Mihail Codrescu, and Erik Schmölter
Ann. Geophys., 39, 641–655, https://doi.org/10.5194/angeo-39-641-2021, https://doi.org/10.5194/angeo-39-641-2021, 2021
Short summary
Short summary
We investigate the role of eddy diffusion in the delayed ionospheric response against solar flux changes in the solar rotation period using the CTIPe model. The study confirms that eddy diffusion is an important factor affecting the delay of the total electron content. An increase in eddy diffusion leads to faster transport processes and an increased loss rate, resulting in a decrease in the ionospheric delay.
Simone Dietmüller, Hella Garny, Roland Eichinger, and William T. Ball
Atmos. Chem. Phys., 21, 6811–6837, https://doi.org/10.5194/acp-21-6811-2021, https://doi.org/10.5194/acp-21-6811-2021, 2021
Rajesh Vaishnav, Erik Schmölter, Christoph Jacobi, Jens Berdermann, and Mihail Codrescu
Ann. Geophys., 39, 341–355, https://doi.org/10.5194/angeo-39-341-2021, https://doi.org/10.5194/angeo-39-341-2021, 2021
Short summary
Short summary
We investigate the delayed ionospheric response using the observed and CTIPe-model-simulated TEC against the solar EUV flux. The ionospheric delay estimated using model-simulated TEC is in good agreement with the delay estimated for observed TEC. The study confirms the model's capabilities to reproduce the delayed ionospheric response against the solar EUV flux. Results also indicate that the average delay is higher in the Northern Hemisphere as compared to the Southern Hemisphere.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Harikrishnan Charuvil Asokan, Jorge L. Chau, Raffaele Marino, Juha Vierinen, Fabio Vargas, Juan Miguel Urco, Matthias Clahsen, and Christoph Jacobi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-974, https://doi.org/10.5194/acp-2020-974, 2020
Preprint withdrawn
Short summary
Short summary
This paper explores the dynamics of gravity waves and turbulence present in the mesosphere and lower thermosphere (MLT) region. We utilized two different techniques on meteor radar observations and simulations to obtain power spectra at different horizontal scales. The techniques are applied to a special campaign conducted in northern Germany in November 2018. The study revealed the dominance of large-scale structures with horizontal scales larger than 500 km during the campaign period.
Frauke Fritsch, Hella Garny, Andreas Engel, Harald Bönisch, and Roland Eichinger
Atmos. Chem. Phys., 20, 8709–8725, https://doi.org/10.5194/acp-20-8709-2020, https://doi.org/10.5194/acp-20-8709-2020, 2020
Short summary
Short summary
We test two methods to derive age of air as a diagnostic of the Brewer–Dobson circulation from non-linear increasing trace gases such as SF6 using a chemistry-climate model and observations. Both the model and the observations show systematic variation of the age of air trend dependent on the chosen assumptions that are required when deriving age of air from measurements. This provides insight into the differences in age of air trends of observations and models.
Christoph Geißler, Christoph Jacobi, and Friederike Lilienthal
Ann. Geophys., 38, 527–544, https://doi.org/10.5194/angeo-38-527-2020, https://doi.org/10.5194/angeo-38-527-2020, 2020
Short summary
Short summary
This is an extensive model study to analyze the migrating quarterdiurnal solar tide (QDT) and its forcing mechanisms in the middle atmosphere. We first show a climatology of the QDT amplitudes and examine the contribution of the different forcing mechanisms, including direct solar, nonlinear and gravity wave forcing, on the QDT amplitude. We then investigate the destructive interference between the individual forcing mechanisms.
Peter Huszar, Jan Karlický, Jana Ďoubalová, Kateřina Šindelářová, Tereza Nováková, Michal Belda, Tomáš Halenka, Michal Žák, and Petr Pišoft
Atmos. Chem. Phys., 20, 1977–2016, https://doi.org/10.5194/acp-20-1977-2020, https://doi.org/10.5194/acp-20-1977-2020, 2020
Short summary
Short summary
Urban surfaces alter meteorological conditions which consequently alter air pollution due to modified transport and chemical reactions. Here, we focus on a major component of this influence, enhanced vertical eddy diffusion. Using a regional climate model coupled to a chemistry transport model, we investigate how different representations of turbulent transport translate to urban canopy impact on ozone and PM2.5 concentrations and whether turbulence remains the most important component.
Friederike Lilienthal, Erdal Yiğit, Nadja Samtleben, and Christoph Jacobi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-339, https://doi.org/10.5194/gmd-2019-339, 2020
Preprint withdrawn
Short summary
Short summary
Gravity waves are a small-scale but prominent dynamical feature in the Earth's atmosphere. Here, we use a mechanistic nonlinear general circulation model and implement a modern whole atmosphere gravity wave parameterization. We study the response of the atmosphere on several phase speed spectra. We find a large influence of fast travelling waves on the background dynamics in the thermosphere and also a strong dependence of the amplitude of the terdiurnal solar tide, indicating wave interactions.
Erik Schmölter, Jens Berdermann, Norbert Jakowski, and Christoph Jacobi
Ann. Geophys., 38, 149–162, https://doi.org/10.5194/angeo-38-149-2020, https://doi.org/10.5194/angeo-38-149-2020, 2020
Short summary
Short summary
This study correlates ionospheric parameters with the integrated solar radiation for an analysis of the delayed ionospheric response in order to confirm previous studies on the delay and to further specify variations of the delay (seasonal and spatial). Results also indicate the dependence on the geomagnetic activity as well as on the 11-year solar cycle. The results are important for the understanding of ionospheric processes and could be used for the validation of ionospheric models.
Stefan Lossow, Charlotta Högberg, Farahnaz Khosrawi, Gabriele P. Stiller, Ralf Bauer, Kaley A. Walker, Sylvia Kellmann, Andrea Linden, Michael Kiefer, Norbert Glatthor, Thomas von Clarmann, Donal P. Murtagh, Jörg Steinwagner, Thomas Röckmann, and Roland Eichinger
Atmos. Meas. Tech., 13, 287–308, https://doi.org/10.5194/amt-13-287-2020, https://doi.org/10.5194/amt-13-287-2020, 2020
Nadja Samtleben, Aleš Kuchař, Petr Šácha, Petr Pišoft, and Christoph Jacobi
Ann. Geophys., 38, 95–108, https://doi.org/10.5194/angeo-38-95-2020, https://doi.org/10.5194/angeo-38-95-2020, 2020
Short summary
Short summary
The additional transfer of momentum and energy induced by locally breaking gravity wave hotspots in the lower stratosphere may lead to a destabilization of the polar vortex, which is strongly dependent on the position of the hotspot. The simulations with a global circulation model show that hotspots located above Eurasia cause a total decrease in the stationary planetary wave (SPW) activity, while the impact of hotspots located in North America mostly increase the SPW activity.
Rajesh Vaishnav, Christoph Jacobi, and Jens Berdermann
Ann. Geophys., 37, 1141–1159, https://doi.org/10.5194/angeo-37-1141-2019, https://doi.org/10.5194/angeo-37-1141-2019, 2019
Short summary
Short summary
We investigate the ionospheric response to the temporal and spatial dynamics of the solar activity using total electron content (TEC) maps and multiple solar proxies. The maximum correlation at a 16–32-d timescale is observed between the He-II, Mg-II, and F30 with respect to global mean TEC, with an effective time delay of about 1 d. The most suitable proxy to represent the solar activity at the timescales of 16–32 d and 32–64 d is He-II.
Friederike Lilienthal and Christoph Jacobi
Ann. Geophys., 37, 943–953, https://doi.org/10.5194/angeo-37-943-2019, https://doi.org/10.5194/angeo-37-943-2019, 2019
Short summary
Short summary
We analyzed the forcing mechanisms of the migrating terdiurnal solar tide in the middle atmosphere, focusing the impact on the zonal mean circulation. We show that the primary solar forcing is the most dominant one but secondary wave–wave interactions also contribute in the lower thermosphere region. We further demonstrate that small-scale gravity waves can strongly and irregularly influence the amplitude of the terdiurnal tide as well as the background circulation in the thermosphere.
Christoph Jacobi and Christina Arras
Adv. Radio Sci., 17, 213–224, https://doi.org/10.5194/ars-17-213-2019, https://doi.org/10.5194/ars-17-213-2019, 2019
Short summary
Short summary
We analyze tidal phases and related wind shear in the mesosphere and
lower thermosphere as observed by a meteor radar. The wind shear phases are compared with those of sporadic E occurrence rates, which were derived from GPS radio occultation observations. We find good correspondence between radar derived wind shear and sporadic E phases for the semidiurnal, terdiurnal, and quarterdiurnal tidal components, but not for the diurnal tide.
Nadja Samtleben, Christoph Jacobi, Petr Pišoft, Petr Šácha, and Aleš Kuchař
Ann. Geophys., 37, 507–523, https://doi.org/10.5194/angeo-37-507-2019, https://doi.org/10.5194/angeo-37-507-2019, 2019
Short summary
Short summary
Simulations of locally breaking gravity wave hot spots in the stratosphere show a suppression of wave propagation at midlatitudes, which is partly compensated for by additional wave propagation through the polar region. This leads to a displacement of the polar vortex towards lower latitudes. The effect is highly dependent on the position of the artificial gravity wave forcing. It is strongest (weakest) for hot spots at lower to middle latitudes (higher latitudes).
Petr Šácha, Roland Eichinger, Hella Garny, Petr Pišoft, Simone Dietmüller, Laura de la Torre, David A. Plummer, Patrick Jöckel, Olaf Morgenstern, Guang Zeng, Neal Butchart, and Juan A. Añel
Atmos. Chem. Phys., 19, 7627–7647, https://doi.org/10.5194/acp-19-7627-2019, https://doi.org/10.5194/acp-19-7627-2019, 2019
Short summary
Short summary
Climate models robustly project a Brewer–Dobson circulation (BDC) acceleration in the course of climate change. Analyzing mean age of stratospheric air (AoA) from a subset of climate projection simulations, we find a remarkable agreement in simulating the largest AoA trends in the extratropical stratosphere. This is shown to be related with the upward shift of the circulation, resulting in a so-called stratospheric shrinkage, which could be one of the so-far-omitted BDC acceleration drivers.
Christoph Jacobi, Christina Arras, Christoph Geißler, and Friederike Lilienthal
Ann. Geophys., 37, 273–288, https://doi.org/10.5194/angeo-37-273-2019, https://doi.org/10.5194/angeo-37-273-2019, 2019
Short summary
Short summary
Sporadic E (Es) layers in the Earth's ionosphere are produced by ion convergence due to vertical wind shear in the presence of a horizontal component of the Earth's magnetic field. We present analyses of the 6 h tidal signatures in ES occurrence rates derived from GPS radio observations. Times of maxima in ES agree well with those of negative wind shear obtained from radar observation. The global distribution of ES amplitudes agrees with wind shear amplitudes from numerical modeling.
Jiří Mikšovský, Rudolf Brázdil, Miroslav Trnka, and Petr Pišoft
Clim. Past, 15, 827–847, https://doi.org/10.5194/cp-15-827-2019, https://doi.org/10.5194/cp-15-827-2019, 2019
Short summary
Short summary
To reveal sources of variability imprinted in central European drought records, regression and wavelet analysis were applied to 5 centuries of reconstructed data characterizing Czech climate. Mid- to long-term changes in temperature in the North Atlantic and North Pacific were identified as one of the potential sources of drought variations; transient colder and wetter episodes were linked to the effects of large volcanic eruptions.
Daniel Mewes and Christoph Jacobi
Atmos. Chem. Phys., 19, 3927–3937, https://doi.org/10.5194/acp-19-3927-2019, https://doi.org/10.5194/acp-19-3927-2019, 2019
Short summary
Short summary
Horizontal moist static energy (MSE) transport patterns were extracted from reanalysis data using an artificial neuronal network for the winter months. The results show that during the last 30 years transport pathways that favour MSE transport through the North Atlantic are getting more frequent. This North Atlantic pathway is connected to positive temperature anomalies over the central Arctic, which implies a connection between Arctic amplification and the change in horizontal heat transport.
Roland Eichinger, Simone Dietmüller, Hella Garny, Petr Šácha, Thomas Birner, Harald Bönisch, Giovanni Pitari, Daniele Visioni, Andrea Stenke, Eugene Rozanov, Laura Revell, David A. Plummer, Patrick Jöckel, Luke Oman, Makoto Deushi, Douglas E. Kinnison, Rolando Garcia, Olaf Morgenstern, Guang Zeng, Kane Adam Stone, and Robyn Schofield
Atmos. Chem. Phys., 19, 921–940, https://doi.org/10.5194/acp-19-921-2019, https://doi.org/10.5194/acp-19-921-2019, 2019
Short summary
Short summary
To shed more light upon the changes in stratospheric circulation in the 21st century, climate projection simulations of 10 state-of-the-art global climate models, spanning from 1960 to 2100, are analyzed. The study shows that in addition to changes in transport, mixing also plays an important role in stratospheric circulation and that the properties of mixing vary over time. Furthermore, the influence of mixing is quantified and a dynamical framework is provided to understand the changes.
Sven Wilhelm, Gunter Stober, Vivien Matthias, Christoph Jacobi, and Damian J. Murphy
Ann. Geophys., 37, 1–14, https://doi.org/10.5194/angeo-37-1-2019, https://doi.org/10.5194/angeo-37-1-2019, 2019
Short summary
Short summary
This study shows that the mesospheric winds are affected by an expansion–shrinking of the mesosphere and lower thermosphere that takes place due to changes in the intensity of the solar radiation, which affects the density within the atmosphere. On seasonal timescales, an increase in the neutral density occurs together with a decrease in the eastward-directed zonal wind. Further, even after removing the seasonal and the 11-year solar cycle variations, we show a connection between them.
Friederike Lilienthal, Christoph Jacobi, and Christoph Geißler
Atmos. Chem. Phys., 18, 15725–15742, https://doi.org/10.5194/acp-18-15725-2018, https://doi.org/10.5194/acp-18-15725-2018, 2018
Short summary
Short summary
The terdiurnal solar tide is an atmospheric wave, owing to the daily variation of solar heating with a period of 8 h. Here, we present model simulations of this tide and investigate the relative importance of possible forcing mechanisms because they are still under debate. These are, besides direct solar heating, nonlinear interactions between other tides and gravity wave–tide interactions. As a result, solar heating is most important and nonlinear effects partly counteract this forcing.
Peter Huszar, Michal Belda, Jan Karlický, Tatsiana Bardachova, Tomas Halenka, and Petr Pisoft
Atmos. Chem. Phys., 18, 14059–14078, https://doi.org/10.5194/acp-18-14059-2018, https://doi.org/10.5194/acp-18-14059-2018, 2018
Short summary
Short summary
The impact of meteorological changes introduced by urbanization on aerosol concentration using a regional climate model and a chemistry transport model over central Europe is investigated. We found a strong increase of temperature and turbulence and a decrease of humidity and wind speed due to urban surfaces. This resulted in a clear decrease of aerosol concentrations near the surface: PM2.5 concentrations were reduced by 3 μg/m3. The dominating effect is the increased turbulent transport.
Christoph Jacobi, Christoph Geißler, Friederike Lilienthal, and Amelie Krug
Adv. Radio Sci., 16, 141–147, https://doi.org/10.5194/ars-16-141-2018, https://doi.org/10.5194/ars-16-141-2018, 2018
Short summary
Short summary
The possible sources of the quarterdiurnal tide (QDT) in the middle atmosphere are still under discussion. Therefore, meteor radar winds were analyzed with respect to non-linear interaction, which probably plays a role in winter, but to a lesser degree in summer. Numerical model experiments lead to the conclusion that, although non-linear tidal interaction is indeed one source of the QDT, the major source is direct solar forcing of the 6-hr tidal components.
Erik Schmölter, Jens Berdermann, Norbert Jakowski, Christoph Jacobi, and Rajesh Vaishnav
Adv. Radio Sci., 16, 149–155, https://doi.org/10.5194/ars-16-149-2018, https://doi.org/10.5194/ars-16-149-2018, 2018
Short summary
Short summary
Physical and chemical processes in the ionosphere are driven by complex interactions with the solar radiation. The ionospheric plasma is in particular sensitive to solar variations with a time delay between one and two days.
Here we present preliminary results of the ionospheric delay based on a comprehensive and reliable database consisting of GNSS TEC Maps and EUV spectral flux data.
Rajesh Vaishnav, Christoph Jacobi, Jens Berdermann, Erik Schmölter, and Mihail Codrescu
Adv. Radio Sci., 16, 157–165, https://doi.org/10.5194/ars-16-157-2018, https://doi.org/10.5194/ars-16-157-2018, 2018
Short summary
Short summary
We investigate the ionospheric response to solar Extreme Ultraviolet (EUV) variations using different solar proxies and IGS TEC maps. An ionospheric delay in GTEC is observed at the 27 days solar rotation period with the time scale of about ~ 1–2 days. Here we present preliminary results from the CTIPe model simulations which qualitatively reproduce the observed ~1-2 days delay in GTEC, which is might be due to vertical transport processes.
Gunter Stober, Jorge L. Chau, Juha Vierinen, Christoph Jacobi, and Sven Wilhelm
Atmos. Meas. Tech., 11, 4891–4907, https://doi.org/10.5194/amt-11-4891-2018, https://doi.org/10.5194/amt-11-4891-2018, 2018
Jan Karlický, Peter Huszár, Tomáš Halenka, Michal Belda, Michal Žák, Petr Pišoft, and Jiří Mikšovský
Atmos. Chem. Phys., 18, 10655–10674, https://doi.org/10.5194/acp-18-10655-2018, https://doi.org/10.5194/acp-18-10655-2018, 2018
Short summary
Short summary
Our work presents a comparison of modelled and observed urban-induced meteorological changes in long-term perspective using 10-year simulations. It contains an evaluation of models' urban parameterizations, investigations of the benefits of more sophisticated urban parameterizations with respect to simple approaches and evaluation of urban-induced meteorological changes from the perspective of pollutant dispersion.
Petr Šácha, Jiri Miksovsky, and Petr Pisoft
Earth Syst. Dynam., 9, 647–661, https://doi.org/10.5194/esd-9-647-2018, https://doi.org/10.5194/esd-9-647-2018, 2018
Short summary
Short summary
The paper investigates variability in the gravity wave drag in the stratosphere in connection with climate phenomena like the El Niño–Southern Oscillation. This link represents a possible mechanism of tropospheric influence on the higher atmospheric layers, a mechanism of utmost importance that has not been studied in detail yet. The results illustrate that there are indeed significant changes in the gravity wave drag distribution and strength depending on the phase of the studied oscillations.
Sabine Wüst, Thomas Offenwanger, Carsten Schmidt, Michael Bittner, Christoph Jacobi, Gunter Stober, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III
Atmos. Meas. Tech., 11, 2937–2947, https://doi.org/10.5194/amt-11-2937-2018, https://doi.org/10.5194/amt-11-2937-2018, 2018
Short summary
Short summary
OH*-spectrometer measurements allow the analysis of gravity wave ground-based periods, but spatial information cannot necessarily be deduced. We combine the approach of Wachter at al. (2015) in order to derive horizontal wavelengths (but based on only one OH* spectrometer) with additional information about wind and temperature and compute vertical wavelengths. Knowledge of these parameters is a precondition for the calculation of further information such as the wave group velocity.
Simone Dietmüller, Roland Eichinger, Hella Garny, Thomas Birner, Harald Boenisch, Giovanni Pitari, Eva Mancini, Daniele Visioni, Andrea Stenke, Laura Revell, Eugene Rozanov, David A. Plummer, John Scinocca, Patrick Jöckel, Luke Oman, Makoto Deushi, Shibata Kiyotaka, Douglas E. Kinnison, Rolando Garcia, Olaf Morgenstern, Guang Zeng, Kane Adam Stone, and Robyn Schofield
Atmos. Chem. Phys., 18, 6699–6720, https://doi.org/10.5194/acp-18-6699-2018, https://doi.org/10.5194/acp-18-6699-2018, 2018
Petr Pisoft, Petr Sacha, Jiri Miksovsky, Peter Huszar, Barbara Scherllin-Pirscher, and Ulrich Foelsche
Atmos. Meas. Tech., 11, 515–527, https://doi.org/10.5194/amt-11-515-2018, https://doi.org/10.5194/amt-11-515-2018, 2018
Short summary
Short summary
We revise selected findings regarding utilization of Global Positioning System radio occultation density profiles for analysis of internal gravity waves. The results show that previously published results are valid only for one specific data version only. Using radiosonde profiles, we also analyze a nonhydrostatic component in temperature profiles. The last part presents detailed study on the utilization of density profiles for characterization of the wave field stability.
Roland Eichinger, Gary Shaffer, Nelson Albarrán, Maisa Rojas, and Fabrice Lambert
Geosci. Model Dev., 10, 3481–3498, https://doi.org/10.5194/gmd-10-3481-2017, https://doi.org/10.5194/gmd-10-3481-2017, 2017
Short summary
Short summary
We reformulate the land biosphere of the reduced-complexity DCESS model by introducing three vegetation types and relating their latitudinal borders to global temperature change. This enhancement yields more realistic estimates of biosphere carbon cycling for cold conditions like the Last Glacial Maximum. As a first application we conduct transient simulations across the last glacial termination to estimate the importance of different processes on temperature, pCO2 and carbon isotope ratios.
Christoph Jacobi, Tatiana Ermakova, Daniel Mewes, and Alexander I. Pogoreltsev
Adv. Radio Sci., 15, 199–206, https://doi.org/10.5194/ars-15-199-2017, https://doi.org/10.5194/ars-15-199-2017, 2017
Short summary
Short summary
There is continuous interest in coupling processes between the lower and middle atmosphere. Here we analyse midlatitude winds measured by radar at 82–97 km and find that especially in February they are positively correlated with El Niño. The signal is strong for the upper altitudes accessible to the radar, but weakens below. The observations can be qualitatively reproduced by numerical experiments using a mechanistic global circulation model.
Friederike Lilienthal, Christoph Jacobi, Torsten Schmidt, Alejandro de la Torre, and Peter Alexander
Ann. Geophys., 35, 785–798, https://doi.org/10.5194/angeo-35-785-2017, https://doi.org/10.5194/angeo-35-785-2017, 2017
Short summary
Short summary
Gravity waves (GWs) are one of the most important dynamical features of the middle atmosphere that extends from the tropopause to the lower thermosphere. They originate from the troposphere and propagate upward. Here, we show the impact of the horizontal GW distribution in the lower atmosphere on the dynamics of the middle atmosphere using a global circulation model. As a result, we find that non-zonal GW structures can force additional stationary planetary waves.
Gunter Stober, Vivien Matthias, Christoph Jacobi, Sven Wilhelm, Josef Höffner, and Jorge L. Chau
Ann. Geophys., 35, 711–720, https://doi.org/10.5194/angeo-35-711-2017, https://doi.org/10.5194/angeo-35-711-2017, 2017
Dietmar J. Baumgartner, Werner Pötzi, Heinrich Freislich, Heinz Strutzmann, Astrid M. Veronig, and Harald E. Rieder
Atmos. Meas. Tech., 10, 1181–1190, https://doi.org/10.5194/amt-10-1181-2017, https://doi.org/10.5194/amt-10-1181-2017, 2017
Short summary
Short summary
In this work we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a platform-independent, fully automated, and cost-effective system to evaluate the pointing accuracy of Sun-tracking devices as well as its application at the Kanzelhöhe Observatory (KSO) Austrian radiation monitoring network (ARAD) site and to the results from a 15-week evaluating period.
Sandro M. Oswald, Helga Pietsch, Dietmar J. Baumgartner, Philipp Weihs, and Harald E. Rieder
Atmos. Meas. Tech., 10, 1169–1179, https://doi.org/10.5194/amt-10-1169-2017, https://doi.org/10.5194/amt-10-1169-2017, 2017
Short summary
Short summary
This study investigates effects of precipitation events on the accuracy of solar radiation measurements. To quantify pyranometer responses to precipitation, a series of controlled laboratory experiments and two field campaigns were performed. The results indicate that precipitation significantly affects the thermal environment of the instruments and thus their stability. A high accuracy of solar radiation measurements is important to improve the prediction of Earth's climate change.
Petr Šácha, Friederike Lilienthal, Christoph Jacobi, and Petr Pišoft
Atmos. Chem. Phys., 16, 15755–15775, https://doi.org/10.5194/acp-16-15755-2016, https://doi.org/10.5194/acp-16-15755-2016, 2016
Short summary
Short summary
With a mechanistic model for the middle and upper atmosphere we performed sensitivity simulations to study a possible impact of a localized GW breaking hotspot in the eastern Asia–northern Pacific region and also the possible influence of the spatial distribution of gravity wave activity on the middle atmospheric circulation and transport. We show implications for polar vortex stability, in situ PW generation and longitudinal variability and strength of the Brewer–Dobson circulation.
William T. Ball, Aleš Kuchař, Eugene V. Rozanov, Johannes Staehelin, Fiona Tummon, Anne K. Smith, Timofei Sukhodolov, Andrea Stenke, Laura Revell, Ancelin Coulon, Werner Schmutz, and Thomas Peter
Atmos. Chem. Phys., 16, 15485–15500, https://doi.org/10.5194/acp-16-15485-2016, https://doi.org/10.5194/acp-16-15485-2016, 2016
Short summary
Short summary
We find monthly, mid-latitude temperature changes above 40 km are related to ozone and temperature variations throughout the middle atmosphere. We develop an index to represent this atmospheric variability. In statistical analysis, the index can account for up to 60 % of variability in tropical temperature and ozone above 27 km. The uncertainties can be reduced by up to 35 % and 20 % in temperature and ozone, respectively. This index is an important tool to quantify current and future ozone recovery.
Peter Huszár, Michal Belda, Jan Karlický, Petr Pišoft, and Tomáš Halenka
Atmos. Chem. Phys., 16, 12993–13013, https://doi.org/10.5194/acp-16-12993-2016, https://doi.org/10.5194/acp-16-12993-2016, 2016
Short summary
Short summary
Using an online coupled system of a regional climate model and chemistry transport model we investigated the radiative/climate impact of short-lived pollutants directly emitted by urban areas and those secondarily formed, focusing on the area of central Europe. We found that the direct/indirect effects of aerosols dominate, causing small but statistically significant cooling in summer and winter (up to −0.04 K). The radiative impact of ozone changes remains negligible.
Ch. Jacobi, N. Samtleben, and G. Stober
Adv. Radio Sci., 14, 169–174, https://doi.org/10.5194/ars-14-169-2016, https://doi.org/10.5194/ars-14-169-2016, 2016
Short summary
Short summary
VHF meteor radar observations of mesosphere/lower thermosphere daily temperatures have been performed at Collm, Germany. The data have been analyzed with respect to long-period oscillations at time scales of 2 to 30 days. The results reveal that oscillations with periods of up to 6 days are more frequently observed during summer, while those with longer periods have larger amplitudes during winter. The results are comparable with analyses from radar wind measurements.
Christoph Jacobi, Norbert Jakowski, Gerhard Schmidtke, and Thomas N. Woods
Adv. Radio Sci., 14, 175–180, https://doi.org/10.5194/ars-14-175-2016, https://doi.org/10.5194/ars-14-175-2016, 2016
Short summary
Short summary
The ionospheric response to solar extreme ultraviolet variability is shown by simple proxies based on Solar Dynamics Observatory/Extreme Ultraviolet Variability Experiment solar spectra. The daily proxies are compared with global mean total electron content. At time scales of the solar rotation up to about 40 days there is a time lag between EUV and TEC variability of about one day, with a tendency to increase for longer time scales.
Marc Olefs, Dietmar J. Baumgartner, Friedrich Obleitner, Christoph Bichler, Ulrich Foelsche, Helga Pietsch, Harald E. Rieder, Philipp Weihs, Florian Geyer, Thomas Haiden, and Wolfgang Schöner
Atmos. Meas. Tech., 9, 1513–1531, https://doi.org/10.5194/amt-9-1513-2016, https://doi.org/10.5194/amt-9-1513-2016, 2016
Short summary
Short summary
We present the Austrian RADiation monitoring network (ARAD) that has been established to advance national climate monitoring and to support satellite retrieval, atmospheric modeling and solar energy techniques' development. Measurements cover the downwelling solar and thermal infrared radiation using instruments according to Baseline Surface Radiation Network (BSRN) standards. The paper outlines the aims and scopes of ARAD, its measurement and calibration standards, methods and strategies.
Christopher R. Hoyle, Clare S. Webster, Harald E. Rieder, Athanasios Nenes, Emanuel Hammer, Erik Herrmann, Martin Gysel, Nicolas Bukowiecki, Ernest Weingartner, Martin Steinbacher, and Urs Baltensperger
Atmos. Chem. Phys., 16, 4043–4061, https://doi.org/10.5194/acp-16-4043-2016, https://doi.org/10.5194/acp-16-4043-2016, 2016
Short summary
Short summary
A simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from the high-altitude site Jungfraujoch. It is found that cloud droplet formation at the Jungfraujoch is predominantly controlled by the number concentration of aerosol particles. A statistical model based on only the number of particles larger than 80nm can explain 79 % of the observed variance in droplet numbers.
Jiří Mikšovský, Eva Holtanová, and Petr Pišoft
Earth Syst. Dynam., 7, 231–249, https://doi.org/10.5194/esd-7-231-2016, https://doi.org/10.5194/esd-7-231-2016, 2016
Short summary
Short summary
Using regression analysis, near-surface temperatures from several gridded data sets were investigated for the presence of components attributable to external climate forcings and to major internal climate variability modes, over the 1901–2010 period. The spatial patterns of local temperature response and their combination in globally averaged temperature were shown and discussed, with special focus on highlighting the inter-dataset contrasts.
Roland Eichinger, Gary Shaffer, Nelson Albarrán, Maisa Rojas, and Fabrice Lambert
Clim. Past Discuss., https://doi.org/10.5194/cp-2015-190, https://doi.org/10.5194/cp-2015-190, 2016
Revised manuscript not accepted
Short summary
Short summary
We apply the DCESS ESM to assess the process of Southern Ocean deep water upwelling as to whether it can explain the climate change between 17.5 and 14.5 kaBP. From a glacial climate state, which was generated under the guidance of proxy data records, transient climate simulations are conducted to analyse the impact of various parameters. This approach can explain parts but not all of the observed atmospheric variations in temperatures, carbon dioxide and carbon isotopes across that period.
P. Šácha, A. Kuchař, C. Jacobi, and P. Pišoft
Atmos. Chem. Phys., 15, 13097–13112, https://doi.org/10.5194/acp-15-13097-2015, https://doi.org/10.5194/acp-15-13097-2015, 2015
Short summary
Short summary
In this study, we present a discovery of an internal gravity wave activity and breaking hotspot collocated with an area of anomalously low annual cycle amplitude and specific dynamics in the stratosphere over the Northeastern Pacific/Eastern Asia coastal region. The reasons why this particular IGW activity hotspot was not discovered before nor the specific dynamics of this region pointed out are discussed together with possible consequences on the middle atmospheric dynamics and transport.
F. Lilienthal and Ch. Jacobi
Atmos. Chem. Phys., 15, 9917–9927, https://doi.org/10.5194/acp-15-9917-2015, https://doi.org/10.5194/acp-15-9917-2015, 2015
Short summary
Short summary
The quasi 2-day wave (QTDW), one of the most striking features in the mesosphere/lower thermosphere, is analyzed using meteor radar measurements at Collm (51°N, 13°E) during 2004-2014. The QTDW has periods lasting between 43 and 52h during strong summer bursts, and weaker enhancements are found during winter. A correlation between QTDW amplitudes and wind shear suggests baroclinic instability to be a likely forcing mechanism.
R. Eichinger, P. Jöckel, and S. Lossow
Atmos. Chem. Phys., 15, 7003–7015, https://doi.org/10.5194/acp-15-7003-2015, https://doi.org/10.5194/acp-15-7003-2015, 2015
A. Kuchar, P. Sacha, J. Miksovsky, and P. Pisoft
Atmos. Chem. Phys., 15, 6879–6895, https://doi.org/10.5194/acp-15-6879-2015, https://doi.org/10.5194/acp-15-6879-2015, 2015
Short summary
Short summary
We have studied the solar cycle manifestation in the latest generation of the reanalysed data sets by the means of both linear and nonlinear attribution analyses. The study is supplemented by the discussion of the dynamical implications.
R. Eichinger, P. Jöckel, S. Brinkop, M. Werner, and S. Lossow
Atmos. Chem. Phys., 15, 5537–5555, https://doi.org/10.5194/acp-15-5537-2015, https://doi.org/10.5194/acp-15-5537-2015, 2015
P. Šácha, U. Foelsche, and P. Pišoft
Atmos. Meas. Tech., 7, 4123–4132, https://doi.org/10.5194/amt-7-4123-2014, https://doi.org/10.5194/amt-7-4123-2014, 2014
Short summary
Short summary
In the presented paper, we introduce a method for the density background separation and a methodology for internal gravity waves analysis using the GPS RO density profiles. Various background choices are discussed, and the correspondence between analytical forms of the density and dry temperature background profiles is examined. Finally the advantages of the density instead of dry temperature GPS RO data utilization are listed (e.g. inclusion of non-hydrostatic waves).
G. Schmidtke, Ch. Jacobi, B. Nikutowski, and Ch. Erhardt
Adv. Radio Sci., 12, 251–260, https://doi.org/10.5194/ars-12-251-2014, https://doi.org/10.5194/ars-12-251-2014, 2014
F. Lilienthal and Ch. Jacobi
Adv. Radio Sci., 12, 205–210, https://doi.org/10.5194/ars-12-205-2014, https://doi.org/10.5194/ars-12-205-2014, 2014
Ch. Jacobi
Adv. Radio Sci., 12, 161–165, https://doi.org/10.5194/ars-12-161-2014, https://doi.org/10.5194/ars-12-161-2014, 2014
R. Eichinger and P. Jöckel
Geosci. Model Dev., 7, 1573–1582, https://doi.org/10.5194/gmd-7-1573-2014, https://doi.org/10.5194/gmd-7-1573-2014, 2014
Related subject area
Atmospheric teleconnections incl. stratosphere–troposphere coupling
The role of the Indian Ocean Dipole in modulating the austral spring ENSO teleconnection to the Southern Hemisphere
Model spread in multidecadal North Atlantic Oscillation variability connected to stratosphere–troposphere coupling
A process-based evaluation of biases in extratropical stratosphere-troposphere coupling in subseasonal forecast systems
Opposite spectral properties of Rossby waves during weak and strong stratospheric polar vortex events
Stratospheric influence on the winter North Atlantic storm track in subseasonal reforecasts
How do different pathways connect the stratospheric polar vortex to its tropospheric precursors?
A critical evaluation of decadal solar cycle imprints in the MiKlip historical ensemble simulations
The teleconnection of extreme El Niño–Southern Oscillation (ENSO) events to the tropical North Atlantic in coupled climate models
Using large ensembles to quantify the impact of sudden stratospheric warmings and their precursors on the North Atlantic Oscillation
The stratosphere: a review of the dynamics and variability
Stratospheric downward wave reflection events modulate North American weather regimes and cold spells
Modulation of the El Niño teleconnection to the North Atlantic by the tropical North Atlantic during boreal spring and summer
Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems
Stratospheric modulation of Arctic Oscillation extremes as represented by extended-range ensemble forecasts
The tropical route of quasi-biennial oscillation (QBO) teleconnections in a climate model
Decline in Etesian winds after large volcanic eruptions in the last millennium
Stationary wave biases and their effect on upward troposphere– stratosphere coupling in sub-seasonal prediction models
Stratospheric wave driving events as an alternative to sudden stratospheric warmings
Tropical influence on heat-generating atmospheric circulation over Australia strengthens through spring
Sudden stratospheric warmings during El Niño and La Niña: sensitivity to atmospheric model biases
Minimal impact of model biases on Northern Hemisphere El Niño–Southern Oscillation teleconnections
Resampling of ENSO teleconnections: accounting for cold-season evolution reduces uncertainty in the North Atlantic
The wave geometry of final stratospheric warming events
Origins of multi-decadal variability in sudden stratospheric warmings
Tropospheric eddy feedback to different stratospheric conditions in idealised baroclinic life cycles
Impacts of the North Atlantic Oscillation on winter precipitations and storm track variability in southeast Canada and the northeast United States
The role of Barents–Kara sea ice loss in projected polar vortex changes
Mechanisms and predictability of sudden stratospheric warming in winter 2018
The role of North Atlantic–European weather regimes in the surface impact of sudden stratospheric warming events
Nonlinearity in the tropospheric pathway of ENSO to the North Atlantic
Luciano Gustavo Andrian, Marisol Osman, and Carolina Susana Vera
Weather Clim. Dynam., 5, 1505–1522, https://doi.org/10.5194/wcd-5-1505-2024, https://doi.org/10.5194/wcd-5-1505-2024, 2024
Short summary
Short summary
The interplay between the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) is well-researched in the tropical Indian Ocean, but their effects on the Southern Hemisphere's extratropical regions during spring are less studied. We show that the positive phase of the IOD can strengthen the El Niño circulation anomalies, heightening their continental impacts. On the other hand, negative IOD combined with La Niña shows less consistent changes among the different methodologies.
Rémy Bonnet, Christine M. McKenna, and Amanda C. Maycock
Weather Clim. Dynam., 5, 913–926, https://doi.org/10.5194/wcd-5-913-2024, https://doi.org/10.5194/wcd-5-913-2024, 2024
Short summary
Short summary
Climate models underestimate multidecadal winter North Atlantic Oscillation (NAO) variability. Understanding the origin of this weak variability is important for making reliable climate projections. We use multi-model climate simulations to explore statistical relationships with drivers that may contribute to NAO variability. We find a relationship between modelled stratosphere–troposphere coupling and multidecadal NAO variability, offering an avenue to improve the simulation of NAO variability.
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Yu. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzaguena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1762, https://doi.org/10.5194/egusphere-2024-1762, 2024
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere are coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too-weak, however downward coupling from the lower stratosphere to the near surface is too strong.
Michael Schutte, Daniela I. V. Domeisen, and Jacopo Riboldi
Weather Clim. Dynam., 5, 733–752, https://doi.org/10.5194/wcd-5-733-2024, https://doi.org/10.5194/wcd-5-733-2024, 2024
Short summary
Short summary
The winter circulation in the stratosphere, a layer of the Earth’s atmosphere between 10 and 50 km height, is tightly linked to the circulation in the lower atmosphere determining our daily weather. This interconnection happens in the form of waves propagating in and between these two layers. Here, we use space–time spectral analysis to show that disruptions and enhancements of the stratospheric circulation modify the shape and propagation of waves in both layers.
Hilla Afargan-Gerstman, Dominik Büeler, C. Ole Wulff, Michael Sprenger, and Daniela I. V. Domeisen
Weather Clim. Dynam., 5, 231–249, https://doi.org/10.5194/wcd-5-231-2024, https://doi.org/10.5194/wcd-5-231-2024, 2024
Short summary
Short summary
The stratosphere is a layer of Earth's atmosphere found above the weather systems. Changes in the stratosphere can affect the winds and the storm tracks in the North Atlantic region for a relatively long time, lasting for several weeks and even months. We show that the stratosphere can be important for weather forecasts beyond 1 week, but more work is needed to improve the accuracy of these forecasts for 3–4 weeks.
Raphael Harry Köhler, Ralf Jaiser, and Dörthe Handorf
Weather Clim. Dynam., 4, 1071–1086, https://doi.org/10.5194/wcd-4-1071-2023, https://doi.org/10.5194/wcd-4-1071-2023, 2023
Short summary
Short summary
This study explores the local mechanisms of troposphere–stratosphere coupling on seasonal timescales during extended winter in the Northern Hemisphere. The detected tropospheric precursor regions exhibit very distinct mechanisms of coupling to the stratosphere, thus highlighting the importance of the time- and zonally resolved picture. Moreover, this study demonstrates that the ICOsahedral Non-hydrostatic atmosphere model (ICON) can realistically reproduce troposphere–stratosphere coupling.
Tobias C. Spiegl, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
Weather Clim. Dynam., 4, 789–807, https://doi.org/10.5194/wcd-4-789-2023, https://doi.org/10.5194/wcd-4-789-2023, 2023
Short summary
Short summary
We investigate the role of the solar cycle in atmospheric domains with the Max Plank Institute Earth System Model in high resolution (MPI-ESM-HR). We focus on the tropical upper stratosphere, Northern Hemisphere (NH) winter dynamics and potential surface imprints. We found robust solar signals at the tropical stratopause and a weak dynamical response in the NH during winter. However, we cannot confirm the importance of the 11-year solar cycle for decadal variability in the troposphere.
Jake W. Casselman, Joke F. Lübbecke, Tobias Bayr, Wenjuan Huo, Sebastian Wahl, and Daniela I. V. Domeisen
Weather Clim. Dynam., 4, 471–487, https://doi.org/10.5194/wcd-4-471-2023, https://doi.org/10.5194/wcd-4-471-2023, 2023
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) has remote effects on the tropical North Atlantic (TNA), but the connections' nonlinearity (strength of response to an increasing ENSO signal) is not always well represented in models. Using the Community Earth System Model version 1 – Whole Atmosphere Community Climate Mode (CESM-WACCM) and the Flexible Ocean and Climate Infrastructure version 1, we find that the TNA responds linearly to extreme El Niño but nonlinearly to extreme La Niña for CESM-WACCM.
Philip E. Bett, Adam A. Scaife, Steven C. Hardiman, Hazel E. Thornton, Xiaocen Shen, Lin Wang, and Bo Pang
Weather Clim. Dynam., 4, 213–228, https://doi.org/10.5194/wcd-4-213-2023, https://doi.org/10.5194/wcd-4-213-2023, 2023
Short summary
Short summary
Sudden-stratospheric-warming (SSW) events can severely affect the subsequent weather at the surface. We use a large ensemble of climate model hindcasts to investigate features of the climate that make strong impacts more likely through negative NAO conditions. This allows a more robust assessment than using observations alone. Air pressure over the Arctic prior to an SSW and the zonal-mean zonal wind in the lower stratosphere have the strongest relationship with the subsequent NAO response.
Neal Butchart
Weather Clim. Dynam., 3, 1237–1272, https://doi.org/10.5194/wcd-3-1237-2022, https://doi.org/10.5194/wcd-3-1237-2022, 2022
Short summary
Short summary
In recent years, it has emerged that there is an affinity between stratospheric variability and surface events. Waves from the troposphere interacting with the mean flow drive much of the variability in the polar vortex, sudden stratospheric warmings and tropical quasi-biennial oscillation. Here we review the historical evolution of established knowledge of the stratosphere's global structure and dynamical variability, along with recent advances and theories, and identify outstanding challenges.
Gabriele Messori, Marlene Kretschmer, Simon H. Lee, and Vivien Wendt
Weather Clim. Dynam., 3, 1215–1236, https://doi.org/10.5194/wcd-3-1215-2022, https://doi.org/10.5194/wcd-3-1215-2022, 2022
Short summary
Short summary
Over 10 km above the ground, there is a region of the atmosphere called the stratosphere. While there is very little air in the stratosphere itself, its interactions with the lower parts of the atmosphere – where we live – can affect the weather. Here we study a specific example of such an interaction, whereby processes occurring at the boundary of the stratosphere can lead to a continent-wide drop in temperatures in North America during winter.
Jake W. Casselman, Bernat Jiménez-Esteve, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 1077–1096, https://doi.org/10.5194/wcd-3-1077-2022, https://doi.org/10.5194/wcd-3-1077-2022, 2022
Short summary
Short summary
Using an atmospheric general circulation model, we analyze how the tropical North Atlantic influences the El Niño–Southern Oscillation connection towards the North Atlantic European region. We also focus on the lesser-known boreal spring and summer response following an El Niño–Southern Oscillation event. Our results show that altered tropical Atlantic sea surface temperatures may cause different responses over the Caribbean region, consequently influencing the North Atlantic European region.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Jonas Spaeth and Thomas Birner
Weather Clim. Dynam., 3, 883–903, https://doi.org/10.5194/wcd-3-883-2022, https://doi.org/10.5194/wcd-3-883-2022, 2022
Short summary
Short summary
Past research has demonstrated robust stratosphere–troposphere dynamical coupling following stratospheric circulation extremes. Here, we use a large set of extended-range ensemble forecasts to robustly quantify the increased risk for tropospheric circulation extremes following stratospheric extreme events. In particular, we provide estimates of the fraction of tropospheric extremes that may be attributable to preceding stratospheric extremes.
Jorge L. García-Franco, Lesley J. Gray, Scott Osprey, Robin Chadwick, and Zane Martin
Weather Clim. Dynam., 3, 825–844, https://doi.org/10.5194/wcd-3-825-2022, https://doi.org/10.5194/wcd-3-825-2022, 2022
Short summary
Short summary
This paper establishes robust links between the stratospheric quasi-biennial oscillation (QBO) and several features of tropical climate. Robust precipitation responses, as well as changes to the Walker circulation, were found to be robustly linked to the variability in the lower stratosphere associated with the QBO using a 500-year simulation of a state-of-the-art climate model.
Stergios Misios, Ioannis Logothetis, Mads F. Knudsen, Christoffer Karoff, Vassilis Amiridis, and Kleareti Tourpali
Weather Clim. Dynam., 3, 811–823, https://doi.org/10.5194/wcd-3-811-2022, https://doi.org/10.5194/wcd-3-811-2022, 2022
Short summary
Short summary
We investigate the impact of strong volcanic eruptions on the northerly Etesian winds blowing in the eastern Mediterranean. Μodel simulations of the last millennium demonstrate a robust reduction in the total number of days with Etesian winds in the post-eruption summers. The decline in the Etesian winds is attributed to a weakened Indian summer monsoon in the post-eruption summer. These findings could improve seasonal predictions of the wind circulation in the eastern Mediterranean.
Chen Schwartz, Chaim I. Garfinkel, Priyanka Yadav, Wen Chen, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 679–692, https://doi.org/10.5194/wcd-3-679-2022, https://doi.org/10.5194/wcd-3-679-2022, 2022
Short summary
Short summary
Eleven operational forecast models that run on subseasonal timescales (up to 2 months) are examined to assess errors in their simulated large-scale stationary waves in the Northern Hemisphere winter. We found that models with a more finely resolved stratosphere generally do better in simulating the waves in both the stratosphere (10–50 km) and troposphere below. Moreover, a connection exists between errors in simulated time-mean convection in tropical regions and errors in the simulated waves.
Thomas Reichler and Martin Jucker
Weather Clim. Dynam., 3, 659–677, https://doi.org/10.5194/wcd-3-659-2022, https://doi.org/10.5194/wcd-3-659-2022, 2022
Short summary
Short summary
Variations in the stratospheric polar vortex, so-called vortex events, can improve predictions of surface weather and climate. There are various ways to detect such events, and here we use the amount of wave energy that propagates into the stratosphere. The new definition is tested against so-called stratospheric sudden warmings (SSWs). We find that the wave definition has advantages over SSWs, for example in terms of a stronger surface response that follows the events.
Roseanna C. McKay, Julie M. Arblaster, and Pandora Hope
Weather Clim. Dynam., 3, 413–428, https://doi.org/10.5194/wcd-3-413-2022, https://doi.org/10.5194/wcd-3-413-2022, 2022
Short summary
Short summary
Understanding what makes it hot in Australia in spring helps us better prepare for harmful impacts. We look at how the higher latitudes and tropics change the atmospheric circulation from early to late spring and how that changes maximum temperatures in Australia. We find that the relationship between maximum temperatures and the tropics is stronger in late spring than early spring. These findings could help improve forecasts of hot months in Australia in spring.
Nicholas L. Tyrrell, Juho M. Koskentausta, and Alexey Yu. Karpechko
Weather Clim. Dynam., 3, 45–58, https://doi.org/10.5194/wcd-3-45-2022, https://doi.org/10.5194/wcd-3-45-2022, 2022
Short summary
Short summary
El Niño events are known to effect the variability of the wintertime stratospheric polar vortex. The observed relationship differs from what is seen in climate models. Climate models have errors in their average winds and temperature, and in this work we artificially reduce those errors to see how that changes the communication of El Niño events to the polar stratosphere. We find reducing errors improves stratospheric variability, but does not explain the differences with observations.
Nicholas L. Tyrrell and Alexey Yu. Karpechko
Weather Clim. Dynam., 2, 913–925, https://doi.org/10.5194/wcd-2-913-2021, https://doi.org/10.5194/wcd-2-913-2021, 2021
Short summary
Short summary
Tropical Pacific sea surface temperatures (El Niño) affect the global climate. The Pacific-to-Europe connection relies on interactions of large atmospheric waves with winds and surface pressure. We looked at how mean errors in a climate model affect its ability to simulate the Pacific-to-Europe connection. We found that even large errors in the seasonal winds did not affect the response of the model to an El Niño event, which is good news for seasonal forecasts which rely on these connections.
Martin P. King, Camille Li, and Stefan Sobolowski
Weather Clim. Dynam., 2, 759–776, https://doi.org/10.5194/wcd-2-759-2021, https://doi.org/10.5194/wcd-2-759-2021, 2021
Short summary
Short summary
We re-examine the uncertainty of ENSO teleconnection to the North Atlantic by considering the November–December and January–February months in the cold season, in addition to the conventional DJF months. This is motivated by previous studies reporting varying teleconnected atmospheric anomalies and the mechanisms concerned. Our results indicate an improved confidence in the patterns of the teleconnection. The finding may also have implications on research in predictability and climate impact.
Amy H. Butler and Daniela I. V. Domeisen
Weather Clim. Dynam., 2, 453–474, https://doi.org/10.5194/wcd-2-453-2021, https://doi.org/10.5194/wcd-2-453-2021, 2021
Short summary
Short summary
We classify by wave geometry the stratospheric polar vortex during the final warming that occurs every spring in both hemispheres due to a combination of radiative and dynamical processes. We show that the shape of the vortex, as well as the timing of the seasonal transition, is linked to total column ozone prior to and surface weather following the final warming. These results have implications for prediction and our understanding of stratosphere–troposphere coupling processes in springtime.
Oscar Dimdore-Miles, Lesley Gray, and Scott Osprey
Weather Clim. Dynam., 2, 205–231, https://doi.org/10.5194/wcd-2-205-2021, https://doi.org/10.5194/wcd-2-205-2021, 2021
Short summary
Short summary
Observations of the stratosphere span roughly half a century, preventing analysis of multi-decadal variability in circulation using these data. Instead, we rely on long simulations of climate models. Here, we use a model to examine variations in northern polar stratospheric winds and find they vary with a period of around 90 years. We show that this is possibly due to variations in the size of winds over the Equator. This result may improve understanding of Equator–polar stratospheric coupling.
Philip Rupp and Thomas Birner
Weather Clim. Dynam., 2, 111–128, https://doi.org/10.5194/wcd-2-111-2021, https://doi.org/10.5194/wcd-2-111-2021, 2021
Short summary
Short summary
We use the simple framework of an idealised baroclinic life cycle to study the tropospheric eddy feedback to different stratospheric conditions and, hence, obtain insights into the fundamental processes of stratosphere–troposphere coupling – in particular, the processes involved in creating the robust equatorward shift in the tropospheric mid-latitude jet that has been observed following sudden stratospheric warming events.
Julien Chartrand and Francesco S. R. Pausata
Weather Clim. Dynam., 1, 731–744, https://doi.org/10.5194/wcd-1-731-2020, https://doi.org/10.5194/wcd-1-731-2020, 2020
Short summary
Short summary
This study explores the relationship between the North Atlantic Oscillation and the winter climate of eastern North America using reanalysis data. Results show that negative phases are linked with an increase in frequency of winter storms developing on the east coast of the United States, resulting in much heavier snowfall over the eastern United States. On the contrary, an increase in cyclone activity over southeastern Canada results in slightly heavier precipitation during positive phases.
Marlene Kretschmer, Giuseppe Zappa, and Theodore G. Shepherd
Weather Clim. Dynam., 1, 715–730, https://doi.org/10.5194/wcd-1-715-2020, https://doi.org/10.5194/wcd-1-715-2020, 2020
Short summary
Short summary
The winds in the polar stratosphere affect the weather in the mid-latitudes, making it important to understand potential changes in response to global warming. However, climate model projections disagree on how this so-called polar vortex will change in the future. Here we show that sea ice loss in the Barents and Kara (BK) seas plays a central role in this. The time when the BK seas become ice-free differs between models, which explains some of the disagreement regarding vortex projections.
Irene Erner, Alexey Y. Karpechko, and Heikki J. Järvinen
Weather Clim. Dynam., 1, 657–674, https://doi.org/10.5194/wcd-1-657-2020, https://doi.org/10.5194/wcd-1-657-2020, 2020
Short summary
Short summary
In this paper we investigate the role of the tropospheric forcing in the occurrence of the sudden stratospheric warming (SSW) that took place in February 2018, its predictability and teleconnection with the Madden–Julian oscillation (MJO) by analysing the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecast. The purpose of the paper is to present the results of the analysis of the atmospheric circulation before and during the SSW and clarify the driving mechanisms.
Daniela I. V. Domeisen, Christian M. Grams, and Lukas Papritz
Weather Clim. Dynam., 1, 373–388, https://doi.org/10.5194/wcd-1-373-2020, https://doi.org/10.5194/wcd-1-373-2020, 2020
Short summary
Short summary
We cannot currently predict the weather over Europe beyond 2 weeks. The stratosphere provides a promising opportunity to go beyond that limit by providing a change in probability of certain weather regimes at the surface. However, not all stratospheric extreme events are followed by the same surface weather evolution. We show that this weather evolution is related to the tropospheric weather regime around the onset of the stratospheric extreme event for many stratospheric events.
Bernat Jiménez-Esteve and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 225–245, https://doi.org/10.5194/wcd-1-225-2020, https://doi.org/10.5194/wcd-1-225-2020, 2020
Short summary
Short summary
Atmospheric predictability over Europe on subseasonal to seasonal timescales remains limited. However, the remote impact from the El Niño–Southern Oscillation (ENSO) can help to improve predictability. Research has suggested that the ENSO impact in the North Atlantic region is affected by nonlinearities. Here, we isolate the nonlinearities in the tropospheric pathway through the North Pacific, finding that a strong El Niño leads to a stronger and distinct impact compared to a strong La Niña.
Cited articles
Abalos, M., Legras, B., Ploeger, F., and Randel, W. J.: Evaluating the
advective Brewer-Dobson circulation in three reanalyses for the period 1979–2012, J. Geophys. Res.-Atmos., 120, 7534–7554,
https://doi.org/10.1002/2015JD023182, 2015. a
Albers, J. R. and Birner, T.: Vortex Preconditioning due to Planetary and
Gravity Waves prior to Sudden Stratospheric Warmings, J. Atmos. Sci., 71, 4028–4054, https://doi.org/10.1175/JAS-D-14-0026.1, 2014. a, b, c
Alexander, M. J.: Gravity Waves in the Stratosphere, American Geophysical Union (AGU), Geophysical Monograph Series, 109–121, available at: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/9781118666630.ch6 (last access: 25 September 2020), 2013.
a
Alexander, S. P., Sato, K., Watanabe, S., Kawatani, Y., and Murphy, D. J.:
Southern Hemisphere Extratropical Gravity Wave Sources and Intermittency
Revealed by a Middle-Atmosphere General Circulation Model, J. Atmos. Sci., 73, 1335–1349, https://doi.org/10.1175/JAS-D-15-0149.1, 2016. a, b
Andrews, D. G. and McIntyre, M. E.: JR Holton, and CB Leovy, 1987: Middle
Atmosphere Dynamics, Academic Press, London, 1987. a
Boos, W. R. and Shaw, T. A.: The effect of moist convection on the tropospheric response to tropical and subtropical zonally asymmetric torques, J. Atmos. Sci., 70, 4089–4111, https://doi.org/10.1175/JAS-D-13-041.1, 2013. a
Bramberger, M., Dörnbrack, A., Bossert, K., Ehard, B., Fritts, D. C.,
Kaifler, B., Mallaun, C., Orr, A., Pautet, P.-D., Rapp, M., Taylor, M. J.,
Vosper, S., Williams, B. P., and Witschas, B.: Does Strong Tropospheric
Forcing Cause Large-Amplitude Mesospheric Gravity Waves? A DEEPWAVE Case
Study, J. Geophys. Res.-Atmos., 122, 11,422–11,443, https://doi.org/10.1002/2017JD027371, 2017. a, b
Butchart, N.: The Brewer-Dobson circulation, Rev. Geophys., 52, 157–184, https://doi.org/10.1002/2013RG000448, 2014. a
Canadian Centre for Climate Modelling and Analysis: CMAM30 Data, available at: http://climate-modelling.canada.ca/climatemodeldata/cmam/output/CMAM/CMAM30-SD/index.shtml, last access: 25 September 2020. a
Cao, B. and Liu, A. Z.: Intermittency of gravity wave momentum flux in the
mesopause region observed with an all-sky airglow imager, J. Geophys. Res.-Atmos., 121, 650–663, https://doi.org/10.1002/2015JD023802, 2016. a
Charlton, A. J. and Polvani, L. M.: A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks, J. Climate, 20, 449–469, https://doi.org/10.1175/JCLI3996.1, 2007. a
Cohen, N. Y. and Boos, W. R.: The influence of orographic Rossby and gravity
waves on rainfall, Q. J. Roy. Meteorol. Soc., 143, 845–851, https://doi.org/10.1002/qj.2969, 2017. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N.,
and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Dietmüller, S., Eichinger, R., Garny, H., Birner, T., Boenisch, H., Pitari, G., Mancini, E., Visioni, D., Stenke, A., Revell, L., Rozanov, E., Plummer, D. A., Scinocca, J., Jöckel, P., Oman, L., Deushi, M., Kiyotaka, S., Kinnison, D. E., Garcia, R., Morgenstern, O., Zeng, G., Stone, K. A., and
Schofield, R.: Quantifying the effect of mixing on the mean age of air in
CCMVal-2 and CCMI-1 models, Atmos. Chem. Phys., 18, 6699–6720, https://doi.org/10.5194/acp-18-6699-2018, 2018. a
Duarte, M.: detecta: A Python module to detect events in data, Github,
https://github.com/demotu/detecta, last access: 25 September 2020. a
Ebita, A., Kobayashi, S., Ota, Y., Moriya, M., Kumabe, R., Onogi, K., Harada,
Y., Yasui, S., Miyaoka, K., Takahashi, K., Kamahori, H., Kobayashi, C., Endo,
H., Soma, M., Oikawa, Y., and Ishimizu, T.: The Japanese 55-year Reanalysis (JRA-55): an interim report, Scient. Onl. Lett. Atmos., 7, 149–152, https://doi.org/10.2151/sola.2011-038, 2011. a
Ehard, B., Kaifler, B., Dörnbrack, A., Preusse, P., Eckermann, S. D.,
Bramberger, M., Gisinger, S., Kaifler, N., Liley, B., Wagner, J., and Rapp, M.: Horizontal propagation of large-amplitude mountain waves into the polar
night jet, J. Geophys. Res., 122, 1423–1436, https://doi.org/10.1002/2016JD025621, 2017. a
Ern, M., Preusse, P., Alexander, M. J., and Warner, C. D.: Absolute values of
gravity wave momentum flux derived from satellite data, J. Geophys. Res.-Atmos., 109, D20103, https://doi.org/10.1029/2004JD004752, 2004. a
Ern, M., Trinh, Q. T., Kaufmann, M., Krisch, I., Preusse, P., Ungermann, J.,
Zhu, Y., Gille, J. C., Mlynczak, M. G., Russell III, J. M., Schwartz, M. J., and Riese, M.: Satellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratospheric warmings, Atmos. Chem. Phys., 16, 9983–10019, https://doi.org/10.5194/acp-16-9983-2016, 2016. a
Ern, M., Trinh, Q. T., Preusse, P., Gille, J. C., Mlynczak, M. G., Russell III, J. M., and Riese, M.: GRACILE: A comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings, link to data in NetCDF format, PANGAEA, https://doi.org/10.1594/PANGAEA.879658, 2017. a
Ern, M., Trinh, Q. T., Preusse, P., Gille, J. C., Mlynczak, M. G., Russell III, J. M., and Riese, M.: GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings, Earth Syst. Sci. Data, 10, 857–892, https://doi.org/10.5194/essd-10-857-2018, 2018. a, b, c
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the
middle atmosphere, Rev. Geophys., 41, 1003–2003, https://doi.org/10.1029/2001RG000106, 2003. a
Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner,
T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin, M. I., Homeyer, C. R.,
Knox, J. A., Krüger, K., Lambert, A., Long, C. S., Martineau, P., Molod,
A., Monge-Sanz, B. M., Santee, M. L., Tegtmeier, S., Chabrillat, S., Tan, D.
G. H., Jackson, D. R., Polavarapu, S., Compo, G. P., Dragani, R., Ebisuzaki,
W., Harada, Y., Kobayashi, C., McCarty, W., Onogi, K., Pawson, S., Simmons,
A., Wargan, K., Whitaker, J. S., and Zou, C.-Z.: Introduction to the SPARC
Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis
systems, Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, 2017. a
Garcia, R. R. and Boville, B. A.: “Downward Control” of the Mean Meridional
Circulation and Temperature Distribution of the Polar Winter Stratosphere, J. Atmos. Sci., 51, 2238–2245,
https://doi.org/10.1175/1520-0469(1994)051<2238:COTMMC>2.0.CO;2, 1994. a
Garcia, R. R., Smith, A. K., Kinnison, D. E., de la Cámara, Á., and
Murphy, D. J.: Modification of the Gravity Wave Parameterization in the Whole Atmosphere Community Climate Model: Motivation and Results, J. Atmos. Sci., 74, 275–291, https://doi.org/10.1175/JAS-D-16-0104.1, 2017. a
Geller, M. A., Alexander, M. J., Love, P. T., Bacmeister, J., Ern, M., Hertzog, A., Manzini, E., Preusse, P., Sato, K., Scaife, A. A., and Zhou, T.: A Comparison between Gravity Wave Momentum Fluxes in Observations and Climate
Models, J. Climate, 26, 6383–6405, https://doi.org/10.1175/JCLI-D-12-00545.1, 2013. a, b, c, d, e
Gini, C.: Italian: Variabilità e mutabilità, Variability and
Mutability, C. Cuppini, Bologna, 1912. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J., and Shine,
K. P.: On the “Downward Control” of Extratropical Diabatic Circulations by
Eddy-Induced Mean Zonal Forces, J. Atmos. Sci., 48, 651–678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2, 1991. a
Hertzog, A., Alexander, M. J., and Plougonven, R.: On the Intermittency of
Gravity Wave Momentum Flux in the Stratosphere, J. Atmos. Sci., 69, 3433–3448, https://doi.org/10.1175/JAS-D-12-09.1, 2012. a, b, c
Hoffmann, L., Xue, X., and Alexander, M. J.: A global view of stratospheric
gravity wave hotspots located with Atmospheric Infrared Sounder observations, J. Geophys. Res.-Atmospheres, 118, 416–434, https://doi.org/10.1029/2012JD018658, 2013. a
Hoyer, S., Fitzgerald, C., Hamman, J., Akleeman, A., Kluyver, T., Roos, M., Helmus, J. J., Ferro, M., Cable, P., Maussion, F., Miles, A., Kanmae, T., Wolfram, P., Sinclair, S., Bovy, B., Brevdo, E., Guedes, R., Abernathey, R., Filipe, Hill, S., Richards, N., Lee, A., Koldunov, N., Graham, M., Maciekswat, Gerard, J., Babuschkin, I., Deil, C., Welch, E., and Hilboll, A.: xarray: v0.8.0, Zenodo, https://doi.org/10.5281/zenodo.59499, 2016. a
Huard, D., Smith, T. J., Logan, T., Bourgault, P., Sbiner, Caron, D., Roy, P., Jwenfai, Rondeau, G., Whelan, C., and Stephens, A.: Ouranosinc/xclim: v0.15.0, Zenodo, https://doi.org/10.5281/zenodo.3708391, 2020. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, 2007. a
Iwasaki, T., Yamada, S., and Tada, K.: A parameterization scheme of orographic gravity wave drag with two different vertical partitionings, J.
Meteorol. Soc. Jpn. Ser. II, 67, 11–27, 1989. a
Japan Meteorological Agency: Japanese 55-year Reanalysis project, available at: http://jra.kishou.go.jp/JRA-55/index_en.html, last access: 10 January 2020. a
Jewtoukoff, V., Hertzog, A., Plougonven, R., d. l. Cámara, A., and Lott,
F.: Comparison of gravity waves in the Southern Hemisphere derived from
balloon observations and the ECMWF analyses, J. Atmos. Sci., 72, 3449–3468, https://doi.org/10.1175/JAS-D-14-0324.1, 2015. a, b, c
Jucker, M.: mjucker/aostools: aostools v2.1.5, Zenodo, https://doi.org/10.5281/zenodo.1252733, 2018. a
Kalisch, S., Preusse, P., Ern, M., Eckermann, S. D., and Riese, M.:
Differences in gravity wave drag between realistic oblique and assumed
vertical propagation, J. Geophys. Res.-Atmos., 119, 10081–10099, https://doi.org/10.1002/2014JD021779, 2014. a
Kendall, M. and Stuart, A.: The advanced theory of statistics, in: Vol. 1:
Distribution theory, 4th Edn., Griffin, London, 1977. a
Kruse, C. G., Smith, R. B., and Eckermann, S. D.: The Midlatitude
Lower-Stratospheric Mountain Wave “Valve Layer”, J. Atmos. Sci., 73, 5081–5100, https://doi.org/10.1175/JAS-D-16-0173.1, 2016. a, b, c, d
Kuchar, A.: kuchaale/wcd_2020: Third release of my WCD code repository,
Zenodo, https://doi.org/10.5281/zenodo.3997650, 2020a. a
Kuchar, A.: Accompanying data to “On the intermittency of orographic gravity
wave hotspots and its importance for middle atmosphere dynamics”, Mendeley Data, https://doi.org/10.17632/j3hj7f9t67.2, 2020b. a
Kuilman, M., Karlsson, B., Benze, S., and Megner, L.: Exploring noctilucent
cloud variability using the nudged and extended version of the Canadian
Middle Atmosphere Model, J. Atmos. Sol.-Terr. Phys., 164, 276–288, https://doi.org/10.1016/j.jastp.2017.08.019, 2017. a
Mahrt, L.: Intermittency of Atmospheric Turbulence, J. Atmos. Sci., 46, 79–95, https://doi.org/10.1175/1520-0469(1989)046<0079:IOAT>2.0.CO;2, 1988. a
Martineau, P.: S-RIP: Zonal-mean dynamical variables of global atmospheric
reanalyses on pressure levels, Centre for Environmental Data Analysis, https://doi.org/10.5285/b241a7f536a244749662360bd7839312, 2017. a
Martineau, P., Son, S.-W., and Taguchi, M.: Dynamical Consistency of Reanalysis Datasets in the Extratropical Stratosphere, J. Climate, 29, 3057–3074, https://doi.org/10.1175/JCLI-D-15-0469.1, 2016. a
McFarlane, N. A.: The Effect of Orographically Excited Gravity Wave Drag on
the General Circulation of the Lower Stratosphere and Troposphere, J. Atmos. Sci., 44, 1775–1800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2, 1987. a, b
McKinney, W.: Data Structures for Statistical Computing in Python, in:
Proceedings of the 9th Python in Science Conference, edited by: van der Walt,
S. and Millman, J., SciPy 2010, Austin, Texas, 51–56, 2010. a
McLandress, C., Shepherd, T. G., Polavarapu, S., and Beagley, S. R.: Is
Missing Orographic Gravity Wave Drag near 60∘ S the Cause of the
Stratospheric Zonal Wind Biases in Chemistry-Climate Models?, J. Atmos. Sci., 69, 802–818, https://doi.org/10.1175/JAS-D-11-0159.1, 2012. a, b, c
McLandress, C., Scinocca, J. F., Shepherd, T. G., Reader, M. C., and Manney,
G. L.: Dynamical Control of the Mesosphere by Orographic and Nonorographic
Gravity Wave Drag during the Extended Northern Winters of 2006 and 2009, J. Atmos. Sci., 70, 2152–2169, https://doi.org/10.1175/JAS-D-12-0297.1, 2013. a, b, c, d, e
McLandress, C., Plummer, D. A., and Shepherd, T. G.: Technical Note: A simple
procedure for removing temporal discontinuities in ERA-Interim upper stratospheric temperatures for use in nudged chemistry-climate model simulations, Atmos. Chem. Phys., 14, 1547–1555,
https://doi.org/10.5194/acp-14-1547-2014, 2014. a, b
Met Office: Cartopy: a cartographic python library with a matplotlib interface, Exeter, Devon, available at: http://scitools.org.uk/cartopy (last acces: 25 September 2020), 2010–2015. a
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the
GEOS-5 atmospheric general circulation model: evolution from MERRA to
MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015. a
Nakamura, H., Miyasaka, T., Kosaka, Y., Takaya, K., and Honda, M.: Northern
Hemisphere Extratropical Tropospheric Planetary Waves and their Low-Frequency
Variability: Their Vertical Structure and Interaction with Transient Eddies
and Surface Thermal Contrasts, Climate Dynamics: Why Does Climate Vary, in: Book Series: Geophysical Monograph Series, AGU, 149–179, https://doi.org/10.1029/2008GM000789, 2013. a
NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC): Web Interface Subsetter, available at: http://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset2.pl, last access: 10 January 2020. a
Okamoto, K., Sato, K., and Akiyoshi, H.: A study on the formation and trend of the Brewer–Dobson circulation, J. Geophys. Res.-Atmos., 116, D10117, https://doi.org/10.1029/2010JD014953, 2011. a
Pendlebury, D., Plummer, D., Scinocca, J., Sheese, P., Strong, K., Walker, K., and Degenstein, D.: Comparison of the CMAM30 data set with ACE-FTS and
OSIRIS: polar regions, Atmos. Chem. Phys., 15, 12465–12485, https://doi.org/10.5194/acp-15-12465-2015, 2015. a
Pisoft, P., Sacha, P., Miksovsky, J., Huszar, P., Scherllin-Pirscher, B., and
Foelsche, U.: Revisiting internal gravity waves analysis using GPS RO density
profiles: comparison with temperature profiles and application for wave field
stability study, Atmos. Meas. Tech., 11, 515–527, https://doi.org/10.5194/amt-11-515-2018, 2018. a
Plumb, R. A.: Stratospheric Transport, J. Meteorol. Soc. Jpn. Ser. II, 80, 793–809, https://doi.org/10.2151/jmsj.80.793, 2002. a
Šácha, P., Kuchar, A., Jacobi, C., and Pišoft, P.: Enhanced
internal gravity wave activity and breaking over the northeastern Pacific-eastern Asian region, Atmos. Chem. Phys., 15, 13097–13112, https://doi.org/10.5194/acp-15-13097-2015, 2015. a
Šácha, P., Lilienthal, F., Jacobi, C., and Pišoft, P.: Influence of the spatial distribution of gravity wave activity on the middle atmospheric dynamics, Atmos. Chem. Phys., 16, 15755–15775,
https://doi.org/10.5194/acp-16-15755-2016, 2016. a
Šácha, P., Miksovsky, J., and Pisoft, P.: Interannual variability in the gravity wave drag – vertical coupling and possible climate links, Earth
Syst. Dynam., 9, 647–661, https://doi.org/10.5194/esd-9-647-2018, 2018. a, b, c, d
Šácha, P., Eichinger, R., Garny, H., Pišoft, P., Dietmüller, S., de la Torre, L., Plummer, D. A., Jöckel, P., Morgenstern, O., Zeng, G., Butchart, N., and Añel, J. A.: Extratropical age of air trends and causative factors in climate projection simulations, Atmos. Chem. Phys., 19, 7627–7647, https://doi.org/10.5194/acp-19-7627-2019, 2019. a, b
Sato, K. and Hirano, S.: The climatology of the Brewer–Dobson circulation and the contribution of gravity waves, Atmos. Chem. Phys., 19, 4517–4539, https://doi.org/10.5194/acp-19-4517-2019, 2019. a
Scheffler, G. and Pulido, M.: Compensation between Resolved and Unresolved
Wave Drag in the Stratospheric Final Warmings of the Southern Hemisphere, J. Atmos. Sci., 72, 4393–4411, https://doi.org/10.1175/JAS-D-14-0270.1, 2015. a
Scinocca, J. F.: An Accurate Spectral Nonorographic Gravity Wave Drag
Parameterization for General Circulation Models, J. Atmos. Sci., 60, 667–682,
https://doi.org/10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2, 2003. a
Scinocca, J. F. and McFarlane, N. A.: The parametrization of drag induced by
stratified flow over anisotropic orography, Q. J. Roy. Meteorol. Soc., 126, 2353–2393, https://doi.org/10.1002/qj.49712656802, 2000. a, b, c
Scinocca, J. F., McFarlane, N. A., Lazare, M., Li, J., and Plummer, D.:
Technical Note: The CCCma third generation AGCM and its extension into the
middle atmosphere, Atmos. Chem. Phys., 8, 7055–7074, https://doi.org/10.5194/acp-8-7055-2008, 2008. a, b
Seviour, W. J. M., Mitchell, D. M., and Gray, L. J.: A practical method to
identify displaced and split stratospheric polar vortex events, Geophys. Res. Lett., 40, 5268–5273, https://doi.org/10.1002/grl.50927, 2013. a, b
Shaw, T. A. and Boos, W. R.: The Tropospheric Response to Tropical and
Subtropical Zonally Asymmetric Torques: Analytical and Idealized Numerical
Model Results, J. Atmos. Sci., 69, 214–235, https://doi.org/10.1175/JAS-D-11-0139.1, 2012. a
Shepherd, T. G., Plummer, D. A., Scinocca, J. F., Hegglin, M. I., Fioletov, V. E., Reader, M. C., Remsberg, E., Von Clarmann, T., and Wang, H. J.:
Reconciliation of halogen-induced ozone loss with the total-column ozone
record, Nat. Geosci., 7, 443–449, https://doi.org/10.1038/ngeo2155, 2014. a, b
Song, B.-G. and Chun, H.-Y.: Residual Mean Circulation and Temperature Changes during the Evolution of Stratospheric Sudden Warming Revealed in MERRA, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-729, 2016. a
Stephan, C. C., Schmidt, H., Zülicke, C., and Matthias, V.: Oblique Gravity Wave Propagation During Sudden Stratospheric Warmings, J. Geophys.
Res.-Atmos., 125, e2019JD031528, https://doi.org/10.1029/2019JD031528, 2020. a
Teixeira, M. A.: The physics of orographic gravity wave drag, Front. Phys., 2, 43, 2014. a
Trinh, Q. T., Kalisch, S., Preusse, P., Chun, H.-Y., Eckermann, S. D., Ern, M., and Riese, M.: A comprehensive observational filter for satellite infrared limb sounding of gravity waves, Atmos. Meas. Tech., 8, 1491–1517, https://doi.org/10.5194/amt-8-1491-2015, 2015. a
van Niekerk, A., Sandu, I., and Vosper, S. B.: The Circulation Response to
Resolved Versus Parametrized Orographic Drag Over Complex Mountain Terrains,
J. Adv. Model. Earth Syst., 10, 2527–2547, https://doi.org/10.1029/2018MS001417, 2018. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y., Moore, E. W., Van der Plas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Meth., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Waskom, M., Botvinnik, O., O'Kane, D., Hobson, P., David, Halchenko, Y., Lukauskas, S., Cole, J. B., Warmenhoven, J., de Ruiter, J., Hoyer, S., Vanderplas, J., Villalba, S., Kunter, G., Quintero, E., Martin, M., Miles, A., Meyer, K., Augspurger, T., Yarkoni, T., Bachant, P., Williams, M., Evans, C., Fitzgerald, C., Bailey, B., Wehner, D., Hitz, G., Ziegler, E., Qalieh, A., and Lee, A.: seaborn: v0.7.1 (June 2016), Zenodo, https://doi.org/10.5281/zenodo.54844, 2016. a
White, R. H., Battisti, D. S., and Sheshadri, A.: Orography and the Boreal
Winter Stratosphere: The Importance of the Mongolian Mountains, Geophys. Res. Lett., 45, 2088–2096, https://doi.org/10.1002/2018GL077098, 2018. a
Wright, C. J. and Hindley, N. P.: How well do stratospheric reanalyses reproduce high-resolution satellite temperature measurements?, Atmos. Chem. Phys., 18, 13703–13731, https://doi.org/10.5194/acp-18-13703-2018, 2018. a
Wright, C. J., Osprey, S. M., and Gille, J. C.: Global observations of gravity wave intermittency and its impact on the observed momentum flux morphology, J. Geophys. Res.-Atmos., 118, 10980–10993,
https://doi.org/10.1002/jgrd.50869, 2013.
a, b, c, d
Wright, C. J., Osprey, S. M., and Gille, J. C.: Global distributions of
overlapping gravity waves in HIRDLS data, Atmos. Chem. Phys., 15, 8459–8477, https://doi.org/10.5194/acp-15-8459-2015, 2015. a
Xu, X., Wang, Y., Xue, M., and Zhu, K.: Impacts of Horizontal Propagation of
Orographic Gravity Waves on the Wave Drag in the Stratosphere and Lower
Mesosphere, J. Geophys. Res.-Atmos., 122, 11301–11312, https://doi.org/10.1002/2017JD027528, 2017. a
Xu, X., Tang, Y., Wang, Y., and Xue, M.: Directional Absorption of
Parameterized Mountain Waves and Its Influence on the Wave Momentum Transport
in the Northern Hemisphere, J. Geophys. Res.-Atmos., 123, 2640–2654, https://doi.org/10.1002/2017JD027968, 2018. a
Zel'Dovich, Y. B., Molchanov, S., Ruzma\ĭkin, A., and Sokolov, D. D.:
Intermittency in random media, Soviet Physics Uspekhi, 30, 353, 1987. a
Short summary
Our study focuses on the impact of topographic structures such as the Himalayas and Rocky Mountains, so-called orographic gravity-wave hotspots. These hotspots play an important role in the dynamics of the middle atmosphere, in particular in the lower stratosphere. We study intermittency and zonally asymmetric character of these hotspots and their effects on the upper stratosphere and mesosphere using a new detection method in various modeling and observational datasets.
Our study focuses on the impact of topographic structures such as the Himalayas and Rocky...