Articles | Volume 3, issue 4
https://doi.org/10.5194/wcd-3-1341-2022
https://doi.org/10.5194/wcd-3-1341-2022
Research article
 | 
18 Nov 2022
Research article |  | 18 Nov 2022

Non-linear intensification of monsoon low-pressure systems by the BSISO

Kieran M. R. Hunt and Andrew G. Turner

Related authors

Western disturbances and climate variability: a review of recent developments
Kieran M. R. Hunt, Jean-Philippe Baudouin, Andrew G. Turner, A. P. Dimri, Ghulam Jeelani, Pooja, Rajib Chattopadhyay, Forest Cannon, T. Arulalan, M. S. Shekhar, T. P. Sabin, and Eliza Palazzi
EGUsphere, https://doi.org/10.5194/egusphere-2024-820,https://doi.org/10.5194/egusphere-2024-820, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Increasing frequency and lengthening season of western disturbances are linked to increasing strength and delayed northward migration of the subtropical jet
Kieran M. R. Hunt
Weather Clim. Dynam., 5, 345–356, https://doi.org/10.5194/wcd-5-345-2024,https://doi.org/10.5194/wcd-5-345-2024, 2024
Short summary
Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States
Kieran M. R. Hunt, Gwyneth R. Matthews, Florian Pappenberger, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 5449–5472, https://doi.org/10.5194/hess-26-5449-2022,https://doi.org/10.5194/hess-26-5449-2022, 2022
Short summary

Related subject area

Dynamical processes in the tropics, incl. tropical–extratropical interactions
Increasing frequency and lengthening season of western disturbances are linked to increasing strength and delayed northward migration of the subtropical jet
Kieran M. R. Hunt
Weather Clim. Dynam., 5, 345–356, https://doi.org/10.5194/wcd-5-345-2024,https://doi.org/10.5194/wcd-5-345-2024, 2024
Short summary
Sustained intensification of the Aleutian Low induces weak tropical Pacific sea surface warming
William J. Dow, Christine M. McKenna, Manoj M. Joshi, Adam T. Blaker, Richard Rigby, and Amanda C. Maycock
Weather Clim. Dynam., 5, 357–367, https://doi.org/10.5194/wcd-5-357-2024,https://doi.org/10.5194/wcd-5-357-2024, 2024
Short summary
Multi-decadal pacemaker simulations with an intermediate-complexity climate model
Franco Molteni, Fred Kucharski, and Riccardo Farneti
Weather Clim. Dynam., 5, 293–322, https://doi.org/10.5194/wcd-5-293-2024,https://doi.org/10.5194/wcd-5-293-2024, 2024
Short summary
Replicating the Hadley cell edge and subtropical jet latitude disconnect in idealized atmospheric models
Molly E. Menzel, Darryn W. Waugh, Zheng Wu, and Thomas Reichler
Weather Clim. Dynam., 5, 251–261, https://doi.org/10.5194/wcd-5-251-2024,https://doi.org/10.5194/wcd-5-251-2024, 2024
Short summary
Warm conveyor belt activity over the Pacific: modulation by the Madden–Julian Oscillation and impact on tropical–extratropical teleconnections
Julian F. Quinting, Christian M. Grams, Edmund Kar-Man Chang, Stephan Pfahl, and Heini Wernli
Weather Clim. Dynam., 5, 65–85, https://doi.org/10.5194/wcd-5-65-2024,https://doi.org/10.5194/wcd-5-65-2024, 2024
Short summary

Cited articles

Adames, Á. F. and Ming, Y.: Interactions between water vapor and potential vorticity in synoptic-scale monsoonal disturbances: Moisture vortex instability, J. Atmos. Sci., 75, 2083–2106, 2018. a
Bluestein, H. B.: Synoptic-dynamic meteorology in midlatitudes. Volume II. Observations and theory of weather systems, New York, NY (United States), Oxford University Press, p. 392, ISBN-13: 978-0195062687, 1993. a
Boos, W. R., Hurley, J. V., and Murthy, V. S.: Adiabatic westward drift of Indian monsoon depressions, Q. J. Roy. Meteor. Soc., 141, 1035–1048, https://doi.org/10.1002/qj.2454, 2015. a, b, c, d, e, f
Chen, T.-C., Yoon, J.-H., and Wang, S.-Y.: Westward propagation of the Indian monsoon depression, Tellus, 57A, 758–769, https://doi.org/10.1111/j.1600-0870.2005.00140.x, 2005. a, b
Deoras, A. S., Hunt, K. M. R., and Turner, A. G.: The four varieties of South Asian monsoon low-pressure systems and their modulation by tropical intraseasonal variability, Weather, 76, 194–200, 2021. a, b, c
Download
Short summary
More than half of India's summer monsoon rainfall arises from low-pressure systems: storms originating over the Bay of Bengal. In observation-based data, we examine how the generation and pathway of these storms are changed by the boreal summer intraseasonal oscillation – the chief means of large-scale control on the monsoon at timescales of a few weeks. Our study offers new insights for useful prediction of these storms, important for both water resources planning and disaster early warning.