Articles | Volume 4, issue 1
https://doi.org/10.5194/wcd-4-81-2023
https://doi.org/10.5194/wcd-4-81-2023
Research article
 | 
16 Jan 2023
Research article |  | 16 Jan 2023

Increased vertical resolution in the stratosphere reveals role of gravity waves after sudden stratospheric warmings

Wolfgang Wicker, Inna Polichtchouk, and Daniela I. V. Domeisen

Data sets

ERA5 hourly data on pressure levels from 1959 to present H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J-N. Thépaut https://doi.org/10.24381/cds.bd0915c6

Model code and software

wwicker/IFS_GW_SSW: Original release (v1.0.0) W. Wicker https://doi.org/10.5281/zenodo.7529461

Download
Short summary
Sudden stratospheric warmings are extreme weather events where the winter polar stratosphere warms by about 25 K. An improved representation of small-scale gravity waves in sub-seasonal prediction models can reduce forecast errors since their impact on the large-scale circulation is predictable multiple weeks ahead. After a sudden stratospheric warming, vertically propagating gravity waves break at a lower altitude than usual, which strengthens the long-lasting positive temperature anomalies.