Articles | Volume 6, issue 4
https://doi.org/10.5194/wcd-6-1479-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-6-1479-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cold air outbreaks drive near-surface baroclinicity variability over storm track entrance regions in the Northern Hemisphere
Andrea Marcheggiani
CORRESPONDING AUTHOR
Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway
Thomas Spengler
Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway
Related authors
Henrik Auestad, Clemens Spensberger, Andrea Marcheggiani, Paulo Ceppi, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 5, 1269–1286, https://doi.org/10.5194/wcd-5-1269-2024, https://doi.org/10.5194/wcd-5-1269-2024, 2024
Short summary
Short summary
Latent heating due to condensation can influence atmospheric circulation by strengthening or weakening horizontal temperature contrasts. Strong temperature contrasts intensify storms and imply the existence of strong upper tropospheric winds called jets. It remains unclear whether latent heating preferentially reinforces or abates the existing jet. We show that this disagreement is attributable to how the jet is defined, confirming that latent heating reinforces the jet.
Andrea Marcheggiani and Thomas Spengler
Weather Clim. Dynam., 4, 927–942, https://doi.org/10.5194/wcd-4-927-2023, https://doi.org/10.5194/wcd-4-927-2023, 2023
Short summary
Short summary
There is a gap between the theoretical understanding and model representation of moist diabatic effects on the evolution of storm tracks. We seek to bridge this gap by exploring the relationship between diabatic and adiabatic contributions to changes in baroclinicity. We find reversed behaviours in the lower and upper troposphere in the maintenance of baroclinicity. In particular, our study reveals a link between higher moisture availability and upper-tropospheric restoration of baroclinicity.
Svenya Chripko, Thomas Spengler, Stefanie Semper, and Kjetil Våge
EGUsphere, https://doi.org/10.5194/egusphere-2025-4944, https://doi.org/10.5194/egusphere-2025-4944, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Using a high-resolution ocean reanalysis, we provide the first quantification of the three-dimensional ocean response to a strong cold air outbreak in the entire Nordic Seas. We show that the effects of the cold air outbreak on the mixed layer are masked by the effects of lateral heat transport in the eastern part of the region. The effects are only visible in the western Nordic Seas (away from sea ice and currents), which impacts water mass transformation in the area.
Clemens Spensberger, Kjersti Konstali, and Thomas Spengler
Weather Clim. Dynam., 6, 431–446, https://doi.org/10.5194/wcd-6-431-2025, https://doi.org/10.5194/wcd-6-431-2025, 2025
Short summary
Short summary
The transport of moisture from warmer and moister to colder and drier regions mainly occurs in brief and narrow bursts. In the mid-latitudes, such bursts are generally referred to as atmospheric rivers; in the Arctic they are often referred to as warm moist intrusions. We introduce a new definition to identify such bursts which is based primarily on their elongated structure. With this more general definition, we show that bursts in moisture transport occur frequently across all climate zones.
Chris Weijenborg and Thomas Spengler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3404, https://doi.org/10.5194/egusphere-2024-3404, 2024
Short summary
Short summary
The swift succession of storms, referred to as cyclone clustering, is often associated with weather extremes. We introduce a detection scheme for these events and subdivide these into two types. One type is associated with storms that follow each other in space, whereas the other type requires a proximity over time. Cyclone clustering is more frequent during winter and the first type is associated with stronger storms, suggesting that the two types emerge due to different mechanisms.
Henrik Auestad, Clemens Spensberger, Andrea Marcheggiani, Paulo Ceppi, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 5, 1269–1286, https://doi.org/10.5194/wcd-5-1269-2024, https://doi.org/10.5194/wcd-5-1269-2024, 2024
Short summary
Short summary
Latent heating due to condensation can influence atmospheric circulation by strengthening or weakening horizontal temperature contrasts. Strong temperature contrasts intensify storms and imply the existence of strong upper tropospheric winds called jets. It remains unclear whether latent heating preferentially reinforces or abates the existing jet. We show that this disagreement is attributable to how the jet is defined, confirming that latent heating reinforces the jet.
Fumiaki Ogawa and Thomas Spengler
Weather Clim. Dynam., 5, 1031–1042, https://doi.org/10.5194/wcd-5-1031-2024, https://doi.org/10.5194/wcd-5-1031-2024, 2024
Short summary
Short summary
The exchange of energy and moisture between the atmosphere and ocean is maximised along strong meridional contrasts in sea surface temperature, such as across the Gulf Stream and Kuroshio. We find that these strong meridional contrasts confine and determine the position of evaporation and precipitation, as well as storm occurrence and intensity. The general intensity of the water cycle and storm activity, however, is determined by the underlying absolute sea surface temperature.
Christiane Duscha, Juraj Pálenik, Thomas Spengler, and Joachim Reuder
Atmos. Meas. Tech., 16, 5103–5123, https://doi.org/10.5194/amt-16-5103-2023, https://doi.org/10.5194/amt-16-5103-2023, 2023
Short summary
Short summary
We combine observations from two scanning Doppler lidars to obtain new and unique insights into the dynamic processes inherent to atmospheric convection. The approach complements and enhances conventional methods to probe convection and has the potential to substantially deepen our understanding of this complex process, which is crucial to improving our weather and climate models.
Andrea Marcheggiani and Thomas Spengler
Weather Clim. Dynam., 4, 927–942, https://doi.org/10.5194/wcd-4-927-2023, https://doi.org/10.5194/wcd-4-927-2023, 2023
Short summary
Short summary
There is a gap between the theoretical understanding and model representation of moist diabatic effects on the evolution of storm tracks. We seek to bridge this gap by exploring the relationship between diabatic and adiabatic contributions to changes in baroclinicity. We find reversed behaviours in the lower and upper troposphere in the maintenance of baroclinicity. In particular, our study reveals a link between higher moisture availability and upper-tropospheric restoration of baroclinicity.
Stephen Outten, Camille Li, Martin P. King, Lingling Suo, Peter Y. F. Siew, Hoffman Cheung, Richard Davy, Etienne Dunn-Sigouin, Tore Furevik, Shengping He, Erica Madonna, Stefan Sobolowski, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 4, 95–114, https://doi.org/10.5194/wcd-4-95-2023, https://doi.org/10.5194/wcd-4-95-2023, 2023
Short summary
Short summary
Strong disagreement exists in the scientific community over the role of Arctic sea ice in shaping wintertime Eurasian cooling. The observed Eurasian cooling can arise naturally without sea-ice loss but is expected to be a rare event. We propose a framework that incorporates sea-ice retreat and natural variability as contributing factors. A helpful analogy is of a dice roll that may result in cooling, warming, or anything in between, with sea-ice loss acting to load the dice in favour of cooling.
Tim Woollings, Camille Li, Marie Drouard, Etienne Dunn-Sigouin, Karim A. Elmestekawy, Momme Hell, Brian Hoskins, Cheikh Mbengue, Matthew Patterson, and Thomas Spengler
Weather Clim. Dynam., 4, 61–80, https://doi.org/10.5194/wcd-4-61-2023, https://doi.org/10.5194/wcd-4-61-2023, 2023
Short summary
Short summary
This paper investigates large-scale atmospheric variability in polar regions, specifically the balance between large-scale turbulence and Rossby wave activity. The polar regions are relatively more dominated by turbulence than lower latitudes, but Rossby waves are found to play a role and can even be triggered from high latitudes under certain conditions. Features such as cyclone lifetimes, high-latitude blocks, and annular modes are discussed from this perspective.
Clemens Spensberger, Trond Thorsteinsson, and Thomas Spengler
Geosci. Model Dev., 15, 2711–2729, https://doi.org/10.5194/gmd-15-2711-2022, https://doi.org/10.5194/gmd-15-2711-2022, 2022
Short summary
Short summary
In order to understand the atmosphere, we rely on a hierarchy of models ranging from very simple to very complex. Comparing different steps in this hierarchy usually entails comparing different models. Here we combine two such steps that are commonly used in one modelling framework. This makes comparisons both much easier and much more direct.
Leonidas Tsopouridis, Thomas Spengler, and Clemens Spensberger
Weather Clim. Dynam., 2, 953–970, https://doi.org/10.5194/wcd-2-953-2021, https://doi.org/10.5194/wcd-2-953-2021, 2021
Short summary
Short summary
Comparing simulations with realistic and smoothed SSTs, we find that the intensification of individual cyclones in the Gulf Stream and Kuroshio regions is only marginally affected by reducing the SST gradient. In contrast, we observe a reduced cyclone activity and a shift in storm tracks. Considering differences of the variables occurring within/outside of a radius of any cyclone, we find cyclones to play only a secondary role in explaining the mean states differences among the SST experiments.
Kristine Flacké Haualand and Thomas Spengler
Weather Clim. Dynam., 2, 695–712, https://doi.org/10.5194/wcd-2-695-2021, https://doi.org/10.5194/wcd-2-695-2021, 2021
Short summary
Short summary
Given the recent focus on the influence of upper tropospheric structure in wind and temperature on midlatitude weather, we use an idealised model to investigate how structural modifications impact cyclone development. We find that cyclone intensification is less sensitive to these modifications than to changes in the amount of cloud condensation, suggesting that an accurate representation of the upper-level troposphere is less important for midlatitude weather than previously anticipated.
Patrick Johannes Stoll, Thomas Spengler, Annick Terpstra, and Rune Grand Graversen
Weather Clim. Dynam., 2, 19–36, https://doi.org/10.5194/wcd-2-19-2021, https://doi.org/10.5194/wcd-2-19-2021, 2021
Short summary
Short summary
Polar lows are intense meso-scale cyclones occurring at high latitudes. The research community has not agreed on a conceptual model to describe polar-low development. Here, we apply self-organising maps to identify the typical ambient sub-synoptic environments of polar lows and find that they can be described as moist-baroclinic cyclones that develop in four different environments characterised by the vertical wind shear.
Cited articles
Charney, J. G.: The dynamics of long waves in a baroclinic westerly current, Journal of Atmospheric Sciences, 4, 136–162, 1947. a
Eady, E. T.: Long waves and cyclone waves, Tellus, 1, 33–52, 1949. a
Harden, B., Renfrew, I., and Petersen, G.: Meteorological buoy observations from the central Iceland Sea, Journal of Geophysical Research: Atmospheres, 120, 3199–3208, 2015. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloy-aux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049, 2020. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: Complete ERA5 global atmospheric reanalysis, Copernicus Climate Change Service (C3S) Data Store (CDS) [data set], https://doi.org/10.24381/cds.143582cf, last access: 17 December 2024. a
Hoskins, B. J. and Valdes, P. J.: On the existence of storm-tracks, Journal of Atmospheric Sciences, 47, 1854–1864, 1990. a
Hoskins, B. J., Pedder, M., and Jones, D. W.: The omega equation and potential vorticity, Quarterly Journal of the Royal Meteorological Society, 129, 3277–3303, 2003. a
Hotta, D. and Nakamura, H.: On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks, Journal of Climate, 24, 3377–3401, 2011. a
Isachsen, P., Drivdal, M., Eastwood, S., Gusdal, Y., Noer, G., and Saetra, Ø.: Observations of the ocean response to cold air outbreaks and polar lows over the Nordic Seas, Geophysical Research Letters, 40, 3667–3671, 2013. a
Jensen, T. G., Campbell, T. J., Allard, R. A., Small, R. J., and Smith, T. A.: Turbulent heat fluxes during an intense cold-air outbreak over the Kuroshio Extension Region: results from a high-resolution coupled atmosphere–ocean model, Ocean Dynamics, 61, 657–674, 2011. a
Kolstad, E. W.: A global climatology of favourable conditions for polar lows, Quarterly Journal of the Royal Meteorological Society, 137, 1749–1761, 2011. a
Lavers, D. A., Ingleby, N. B., Subramanian, A. C., Richardson, D. S., Ralph, F. M., Doyle, J. D., Reynolds, C. A., Torn, R. D., Rodwell, M. J., Tallapragada, V., and Pappenberger, F.: Forecast errors and uncertainties in atmospheric rivers, Weather and Forecasting, 35, 1447–1458, 2020. a
Marcheggiani, A. and Ambaum, M. H. P.: The role of heat-flux–temperature covariance in the evolution of weather systems, Weather Clim. Dynam., 1, 701–713, https://doi.org/10.5194/wcd-1-701-2020, 2020. a
Marcheggiani, A., Ambaum, M. H. P., and Messori, G.: The life cycle of meridional heat flux peaks, Quarterly Journal of the Royal Meteorological Society, 148, 1113–1126, 2022. a
Messori, G. and Czaja, A.: On the sporadic nature of meridional heat transport by transient eddies, Quarterly Journal of the Royal Meteorological Society, 139, 999–1008, 2013. a
Michel, C., Terpstra, A., and Spengler, T.: Polar mesoscale cyclone climatology for the Nordic Seas based on ERA-Interim, Journal of Climate, 31, 2511–2532, 2018. a
Nakamura, H., Sampe, T., Goto, A., Ohfuchi, W., and Xie, S.-P.: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation, Geophysical Research Letters, 35, L15709, https://doi.org/10.1029/2008GL034010, 2008. a, b
Novak, L., Ambaum, M. H. P., and Tailleux, R.: Marginal stability and predator–prey behaviour within storm tracks, Quarterly Journal of the Royal Meteorological Society, 143, 1421–1433, 2017. a
Papritz, L.: Synoptic environments and characteristics of cold air outbreaks in the Irminger Sea, International Journal of Climatology, 37, 193–207, 2017. a
Pithan, F., Svensson, G., Caballero, R., Chechin, D., Cronin, T. W., Ekman, A. M. L., Neggers, R., Shupe, M. D., Solomon, A., Tjernström, M., and Wendisch, M.: Role of air-mass transformations in exchange between the Arctic and mid-latitudes, Nature Geoscience, 11, 805–812, 2018. a
Renfrew, I. A., Barrell, C., Elvidge, A. D., Brooke, J. K., Duscha, C., King, J. C., Kristiansen, J., Lachlan Cope, T., Moore, G. W. K., Pickart, R. S., Reuder, J., Sandu, I., Sergeev, D., Terpstra, A., Våge, K., and Weiss, A.: An evaluation of surface meteorology and fluxes over the Iceland and Greenland Seas in ERA5 reanalysis: The impact of sea ice distribution, Quarterly Journal of the Royal Meteorological Society, 147, 691–712, 2021. a
Sampe, T., Nakamura, H., Goto, A., and Ohfuchi, W.: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet, Journal of Climate, 23, 1793–1814, 2010. a
Seethala, C., Zuidema, P., Edson, J., Brunke, M., Chen, G., Li, X.-Y., Painemal, D., Robinson, C., Shingler, T., Shook, M., Sorooshian, A., Thornhill, L., Tornow, F., Wang, H., Zeng, X., and Ziemba, L.: On assessing ERA5 and MERRA2 representations of cold-air outbreaks across the Gulf Stream, Geophysical Research Letters, 48, e2021GL094364, https://doi.org/10.1029/2021GL094364, 2021. a
Simmons, A. J.: Trends in the tropospheric general circulation from 1979 to 2022, Weather Clim. Dynam., 3, 777–809, https://doi.org/10.5194/wcd-3-777-2022, 2022. a
Spensberger, C.: Dynlib: A library of diagnostics, feature detection algorithms, plotting and convenience functions for dynamic meteorology, Zenodo [code], https://doi.org/10.5281/zenodo.10471187, 2024. a
Terpstra, A., Michel, C., and Spengler, T.: Forward and reverse shear environments during polar low genesis over the Northeast Atlantic, Monthly Weather Review, 144, 1341–1354, 2016. a
Terpstra, A., Renfrew, I. A., and Sergeev, D. E.: Characteristics of cold-air outbreak events and associated polar mesoscale cyclogenesis over the North Atlantic region, Journal of Climate, 34, 4567–4584, 2021. a
Weijenborg, C. and Spengler, T.: Diabatic heating as a pathway for cyclone clustering encompassing the extreme storm Dagmar, Geophysical Research Letters, 47, e2019GL085777, https://doi.org/10.1029/2019GL085777, 2020. a, b
Wenta, M., Grams, C. M., Papritz, L., and Federer, M.: Linking Gulf Stream air–sea interactions to the exceptional blocking episode in February 2019: a Lagrangian perspective, Weather Clim. Dynam., 5, 181–209, https://doi.org/10.5194/wcd-5-181-2024, 2024. a
Short summary
Cold air outbreaks, where cold polar air flows over warmer oceans, help restore midlatitude atmospheric temperature gradients near strong ocean currents, supporting storm formation. Using a novel method, we show that moderate outbreaks cover less than 15 % of the Gulf Stream region but explain up to 40 % of near-surface variability. In the North Pacific, they are more extensive and still account for a large share of variability, highlighting their key role in shaping storm tracks.
Cold air outbreaks, where cold polar air flows over warmer oceans, help restore midlatitude...