Articles | Volume 6, issue 2
https://doi.org/10.5194/wcd-6-489-2025
https://doi.org/10.5194/wcd-6-489-2025
Research article
 | 
25 Apr 2025
Research article |  | 25 Apr 2025

The impact of the rotation rate on an aquaplanet's radiant energy budget: insights from experiments varying the Coriolis parameter

Abisha Mary Gnanaraj, Jiawei Bao, and Hauke Schmidt

Viewed

Total article views: 909 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
403 129 377 909 16 25 24
  • HTML: 403
  • PDF: 129
  • XML: 377
  • Total: 909
  • Supplement: 16
  • BibTeX: 25
  • EndNote: 24
Views and downloads (calculated since 26 Aug 2024)
Cumulative views and downloads (calculated since 26 Aug 2024)

Viewed (geographical distribution)

Total article views: 909 (including HTML, PDF, and XML) Thereof 909 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 16 May 2025
Download
Short summary
We study how the Coriolis force caused by a planet's rotation affects its energy budget and habitability. Using an atmospheric general circulation model in a simplified water-covered planet setup, we analyse how rotation rates both slower and faster than Earth affect the amount of water vapour and clouds in the atmosphere. Our results suggest that rotation slower than Earth's makes the planet colder and drier, while faster rotation makes it warmer and moister, reducing its habitability.
Share