Articles | Volume 6, issue 2
https://doi.org/10.5194/wcd-6-489-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-6-489-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of the rotation rate on an aquaplanet's radiant energy budget: insights from experiments varying the Coriolis parameter
Abisha Mary Gnanaraj
CORRESPONDING AUTHOR
Max Planck Institute for Meteorology, Hamburg, Germany
Jiawei Bao
Max Planck Institute for Meteorology, Hamburg, Germany
Institute of Science and Technology Austria, Klosterneuburg, Austria
Hauke Schmidt
Max Planck Institute for Meteorology, Hamburg, Germany
Related authors
No articles found.
Arim Yoon, Cathy Hohenegger, Jiawei Bao, and Lukas Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3221, https://doi.org/10.5194/egusphere-2025-3221, 2025
Short summary
Short summary
We studied how removing the Amazon rainforest impacts extreme weather by using an advanced global model that resolves convection. Our results show deforestation significantly intensifies short but severe rainfall, leading to more frequent droughts and flooding. Temperatures rise sharply, creating dangerous heat conditions harmful to human health and productivity. Wind speeds drastically increase. These findings provide a stark warning of the effects of continuing deforestation of the Amazon.
Markus Kunze, Christoph Zülicke, Tarique A. Siddiqui, Claudia C. Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev., 18, 3359–3385, https://doi.org/10.5194/gmd-18-3359-2025, https://doi.org/10.5194/gmd-18-3359-2025, 2025
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with an upper-atmospheric extension with the physics package for numerical weather prediction (UA-ICON(NWP)). We optimized the parameters for the gravity wave parameterizations and achieved realistic modeling of the thermal and dynamic states of the mesopause regions. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
Ravikiran Hegde, Moritz Günther, Hauke Schmidt, and Clarissa Kroll
Atmos. Chem. Phys., 25, 3873–3887, https://doi.org/10.5194/acp-25-3873-2025, https://doi.org/10.5194/acp-25-3873-2025, 2025
Short summary
Short summary
Using a one-dimensional radiative–convective equilibrium model, we show that in clear-sky conditions, stratospheric sulfate aerosol forcing weakens with increasing surface temperature while CO2 forcing varies much less. This effect arises as sulfate aerosol, unlike CO2, absorbs mainly at wavelengths where the atmosphere is optically thin. It thereby masks the surface emission, which increases with warming. The spectral masking also results in weaker radiative feedback when aerosol is present.
Hairu Ding, Bjorn Stevens, and Hauke Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2025-876, https://doi.org/10.5194/egusphere-2025-876, 2025
Short summary
Short summary
This study examines the physical link between subtropical highs and stratocumulus variability. Using reanalysis data, we test two proposed pathways—one at the surface and one in the free troposphere—but find that neither is a dominant mechanism for stratocumulus variability on seasonal and interannual timescales. These results challenge the assumed influence of subtropical highs on stratocumulus and highlight the need for further research into lower tropospheric stability dynamics.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Moritz Günther, Hauke Schmidt, Claudia Timmreck, and Matthew Toohey
Atmos. Chem. Phys., 24, 7203–7225, https://doi.org/10.5194/acp-24-7203-2024, https://doi.org/10.5194/acp-24-7203-2024, 2024
Short summary
Short summary
Stratospheric aerosol has been shown to cause pronounced cooling in the tropical Indian and western Pacific oceans. Using a climate model, we show that this arises from enhanced meridional energy export via the stratosphere. The aerosol causes stratospheric heating and thus an acceleration of the Brewer–Dobson circulation that accomplishes this transport. Our findings highlight the importance of circulation adjustments and surface perspectives on forcing for understanding temperature responses.
Hauke Schmidt, Sebastian Rast, Jiawei Bao, Amrit Cassim, Shih-Wei Fang, Diego Jimenez-de la Cuesta, Paul Keil, Lukas Kluft, Clarissa Kroll, Theresa Lang, Ulrike Niemeier, Andrea Schneidereit, Andrew I. L. Williams, and Bjorn Stevens
Geosci. Model Dev., 17, 1563–1584, https://doi.org/10.5194/gmd-17-1563-2024, https://doi.org/10.5194/gmd-17-1563-2024, 2024
Short summary
Short summary
A recent development in numerical simulations of the global atmosphere is the increase in horizontal resolution to grid spacings of a few kilometers. However, the vertical grid spacing of these models has not been reduced at the same rate as the horizontal grid spacing. Here, we assess the effects of much finer vertical grid spacings, in particular the impacts on cloud quantities and the atmospheric energy balance.
Sandra Wallis, Hauke Schmidt, and Christian von Savigny
Atmos. Chem. Phys., 23, 7001–7014, https://doi.org/10.5194/acp-23-7001-2023, https://doi.org/10.5194/acp-23-7001-2023, 2023
Short summary
Short summary
Strong volcanic eruptions are able to alter the temperature and the circulation of the middle atmosphere. This study simulates the atmospheric response to an idealized strong tropical eruption and focuses on the impact on the mesosphere. The simulations show a warming of the polar summer mesopause in the first November after the eruption. Our study indicates that this is mainly due to dynamical coupling in the summer hemisphere with a potential contribution from interhemispheric coupling.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Shih-Wei Fang, Claudia Timmreck, Johann Jungclaus, Kirstin Krüger, and Hauke Schmidt
Earth Syst. Dynam., 13, 1535–1555, https://doi.org/10.5194/esd-13-1535-2022, https://doi.org/10.5194/esd-13-1535-2022, 2022
Short summary
Short summary
The early 19th century was the coldest period over the past 500 years, when strong tropical volcanic events and a solar minimum coincided. This study quantifies potential surface cooling from the solar and volcanic forcing in the early 19th century with large ensemble simulations, and identifies the regions that their impacts cannot be simply additive. The cooling perspective of Arctic amplification exists in both solar and post-volcano period with the albedo feedback as the main contribution.
Mohammad M. Khabbazan, Marius Stankoweit, Elnaz Roshan, Hauke Schmidt, and Hermann Held
Earth Syst. Dynam., 12, 1529–1542, https://doi.org/10.5194/esd-12-1529-2021, https://doi.org/10.5194/esd-12-1529-2021, 2021
Short summary
Short summary
We ask for an optimal amount of solar radiation management (SRM) in conjunction with mitigation if global warming is limited to 2 °C and regional precipitation anomalies are confined to an amount ethically compatible with the 2 °C target. Then, compared to a scenario without regional targets, most of the SRM usage is eliminated from the portfolio even if transgressing regional targets are tolerated in terms of 1/10 of the standard deviation of natural variability.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Clarissa Alicia Kroll, Sally Dacie, Alon Azoulay, Hauke Schmidt, and Claudia Timmreck
Atmos. Chem. Phys., 21, 6565–6591, https://doi.org/10.5194/acp-21-6565-2021, https://doi.org/10.5194/acp-21-6565-2021, 2021
Short summary
Short summary
Volcanic forcing is counteracted by stratospheric water vapor (SWV) entering the stratosphere as a consequence of aerosol-induced cold-point warming. We find that depending on the emission strength, aerosol profile height and season of the eruption, up to 4 % of the tropical aerosol forcing can be counterbalanced. A power function relationship between cold-point warming/SWV forcing and AOD in the yearly average is found, allowing us to estimate the SWV forcing for comparable eruptions.
Cathy W. Y. Li, Guy P. Brasseur, Hauke Schmidt, and Juan Pedro Mellado
Atmos. Chem. Phys., 21, 483–503, https://doi.org/10.5194/acp-21-483-2021, https://doi.org/10.5194/acp-21-483-2021, 2021
Short summary
Short summary
Intense and localised emissions of pollutants are common in urban environments, in which turbulence cannot mix these segregated pollutants efficiently in the atmosphere. Despite their relatively high resolution, regional models cannot resolve such segregation and assume instantaneous mixing of these pollutants in their model grids, which potentially induces significant error in the subsequent chemical calculation, based on our calculation with a model that explicitly resolves turbulent motions.
Cited articles
Barry, L., Craig, G. C., and Thuburn, J.: Poleward heat transport by the atmospheric heat engine, Nature, 415, 774–777, https://doi.org/10.1038/415774a, 2002. a
Bourdin, S., Kluft, L., and Stevens, B.: Dependence of climate sensitivity on the given distribution of relative humidity, Geophys. Res. Lett., 48, e2021GL092462, https://doi.org/10.1029/2021GL092462, 2021. a
Ceppi, P., Brient, F., Zelinka, M. D., and Hartmann, D. L.: Cloud feedback mechanisms and their representation in global climate models, WIREs Clim. Change, 8, e465, https://doi.org/10.1002/wcc.465, 2017. a
Chang, E. K.: Mean meridional circulation driven by eddy forcings of different timescales, J. Atmos. Sci., 53, 113–125, https://doi.org/10.1175/1520-0469(1996)053<0113:MMCDBE>2.0.CO;2, 1996. a
Cox, T., Armour, K. C., Roe, G. H., Donohoe, A., and Frierson, D. M.: Radiative and dynamic controls on atmospheric heat transport over different planetary rotation rates, J. Climate, 34, 3543–3554, https://doi.org/10.1175/JCLI-D-20-0533.1, 2021. a, b
Datseris, G., Blanco, J., Hadas, O., Bony, S., Caballero, R., Kaspi, Y., and Stevens, B.: Minimal recipes for global cloudiness, Geophys. Res. Lett., 49, e2022GL099678, https://doi.org/10.1029/2022GL099678, 2022. a
Eady, E. T.: Long waves and cyclone waves, Tellus, 1, 33–52, https://doi.org/10.1111/j.2153-3490.1949.tb01265.x, 1949. a, b
Gnanaraj, A. M.: Code for “The impact of the rotation rate on an aquaplanet's radiant energy budget: Insights from experiments varying the Coriolis parameter”, Version V1, Edmond [code], https://doi.org/10.17617/3.G5CAJW, 2024. a
Gómez-Leal, I., Kaltenegger, L., Lucarini, V., and Lunkeit, F.: Climate sensitivity to ozone and its relevance on the habitability of Earth-like planets, Icarus, 321, 608–618, https://doi.org/10.1016/j.icarus.2018.11.019, 2019. a
Guzewich, S. D., Lustig-Yaeger, J., Davis, C. E., Kopparapu, R. K., Way, M. J., and Meadows, V. S.: The impact of planetary rotation rate on the reflectance and thermal emission spectrum of terrestrial exoplanets around sunlike stars, Astrophys. J., 893, 140, https://doi.org/10.3847/1538-4357/ab83ec, 2020. a, b, c
Hadas, O., Datseris, G., Blanco, J., Bony, S., Caballero, R., Stevens, B., and Kaspi, Y.: The role of baroclinic activity in controlling Earth's albedo in the present and future climates, P. Natl. Acad. Sci. USA, 120, e2208778120, https://doi.org/10.1073/pnas.2208778120, 2023. a, b
Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G., Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V., Perlwitz, Ja., Perlwitz, Ju., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and Zhang, S.: Efficacy of climate forcings, J. Geophys. Res.-Atmos., 110, D18104, https://doi.org/10.1029/2005JD005776, 2005. a
Haqq-Misra, J., Wolf, E. T., Joshi, M., Zhang, X., and Kopparapu, R. K.: Demarcating circulation regimes of synchronously rotating terrestrial planets within the habitable zone, Astrophys. J., 852, 67, https://doi.org/10.3847/1538-4357/aa9f1f, 2018. a, b
Held, I. M. and Hou, A. Y.: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere, J. Atmos. Sci., 37, 515–533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2, 1980. a, b, c
Hines, C. O.: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation, J. Atmos. Sol.-Terr. Phy., 59, 371–386, https://doi.org/10.1016/S1364-6826(96)00079-X, 1997a. a
Hines, C. O.: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation, J. Atmos. Sol.-Terr. Phy., 59, 387–400, https://doi.org/10.1016/S1364-6826(96)00080-6, 1997b. a
Houze Jr., R. A.: Mesoscale convective systems, Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150, 2004. a
Hunt, B.: The influence of the Earth's rotation rate on the general circulation of the atmosphere, J. Atmos. Sci., 36, 1392–1408, https://doi.org/10.1175/1520-0469(1979)036<1392:TIOTER>2.0.CO;2, 1979. a, b
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008. a
Ingram, W.: A very simple model for the water vapour feedback on climate change, Q. J. Roy. Meteor. Soc., 136, 30–40, https://doi.org/10.1002/qj.546, 2010. a
Jeevanjee, N., Koll, D. D., and Lutsko, N.: “Simpson's Law” and the spectral cancellation of climate feedbacks, Geophys. Res. Lett., 48, e2021GL093699, https://doi.org/10.1029/2021GL093699, 2021. a
Kaspi, Y. and Showman, A. P.: Atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters, Astrophys. J., 804, 60, https://doi.org/10.1088/0004-637X/804/1/60, 2015. a, b, c, d
Kasting, J. F., Whitmire, D. P., and Reynolds, R. T.: Habitable zones around main sequence stars, Icarus, 101, 108–128, https://doi.org/10.1006/icar.1993.1010, 1993. a, b
Lohmann, U. and Roeckner, E.: Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model, Clim. Dynam., 12, 557–572, https://doi.org/10.1007/BF00207939, 1996. a
Myhre, G., Shindell, D., Bréon, F., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J., Lee, D., Mendoza, B., T. Nakajima, A. Robock, G. Stephens, G., Takemura, T., and Zhang, H.: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, https://doi.org/10.1017/CBO9781107415324.020, 2013. a
Neale, R. B. and Hoskins, B. J.: A standard test for AGCMs including their physical parametrizations: I: the proposal, Atmos. Sci. Lett., 1, 101–107, https://doi.org/10.1006/asle.2000.0022, 2000. a
Nordeng, T. E.: Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics, Research Department Technical Memorandum, 206, 1–41, https://doi.org/10.21957/e34xwhysw, 1994. a
Phillips, N. A.: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model, Tellus, 6, 274–286, https://doi.org/10.1111/j.2153-3490.1954.tb01123.x, 1954. a
Pierrehumbert, R. T.: Thermostats, radiator fins, and the local runaway greenhouse, J. Atmos. Sci., 52, 1784–1806, https://doi.org/10.1175/1520-0469(1995)052<1784:TRFATL>2.0.CO;2, 1995. a, b
Rose, B. E., Ferreira, D., and Marshall, J.: The role of oceans and sea ice in abrupt transitions between multiple climate states, J. Climate, 26, 2862–2879, https://doi.org/10.1175/JCLI-D-12-00175.1, 2013. a
Salameh, J., Popp, M., and Marotzke, J.: The role of sea-ice albedo in the climate of slowly rotating aquaplanets, Clim. Dynam., 50, 2395–2410, https://doi.org/10.1007/s00382-017-3548-6, 2018. a, b, c, d
Schneider, T. and Walker, C. C.: Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy-eddy interactions, J. Atmos. Sci., 63, 1569–1586, https://doi.org/10.1175/JAS3699.1, 2006. a, b, c, d
Shine, K. P., Cook, J., Highwood, E. J., and Joshi, M. M.: An alternative to radiative forcing for estimating the relative importance of climate change mechanisms, Geophys. Res. Lett., 30, 2047, https://doi.org/10.1029/2003GL018141, 2003. a
Sobel, A. H., Nilsson, J., and Polvani, L. M.: The weak temperature gradient approximation and balanced tropical moisture waves, J. Atmos. Sci., 58, 3650–3665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2, 2001. a
Stevens, B. and Kluft, L.: A colorful look at climate sensitivity, Atmos. Chem. Phys., 23, 14673–14689, https://doi.org/10.5194/acp-23-14673-2023, 2023. a
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.: Atmospheric component of the MPI-M Earth System Model: ECHAM6, J. Adv. Model. Earth Sy., 5, 146–172, https://doi.org/10.1002/jame.20015, 2013. a
Sundqvist, H., Berge, E., and Kristjánsson, J. E.: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model, Mon. Weather Rev., 117, 1641–1657, https://doi.org/10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2, 1989. a
Tiedtke, M.: A Comprehensive mass flux scheme for cumulus parameterization in large-scale models, Mon. Weather Rev., 117, 1779–1800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989. a
Walker, C. C. and Schneider, T.: Eddy influences on Hadley circulations: simulations with an idealized GCM, J. Atmos. Sci., 63, 3333–3350, https://doi.org/10.1175/JAS3821.1, 2006. a, b, c, d
Wang, Y., Read, P. L., Tabataba-Vakili, F., and Young, R. M.: Comparative terrestrial atmospheric circulation regimes in simplified global circulation models. Part I: From cyclostrophic super-rotation to geostrophic turbulence, Q. J. Roy. Meteor. Soc., 144, 2537–2557, https://doi.org/10.1002/qj.3350, 2018. a
Way, M. J., Del Genio, A. D., Aleinov, I., Clune, T. L., Kelley, M., and Kiang, N. Y.: Climates of warm Earth-like planets. I. 3D model simulations, Astrophys. J. Suppl. S., 239, 24, https://doi.org/10.3847/1538-4365/aae9e1, 2018. a, b, c, d
Webb, M. J., Andrews, T., Bodas-Salcedo, A., Bony, S., Bretherton, C. S., Chadwick, R., Chepfer, H., Douville, H., Good, P., Kay, J. E., Klein, S. A., Marchand, R., Medeiros, B., Siebesma, A. P., Skinner, C. B., Stevens, B., Tselioudis, G., Tsushima, Y., and Watanabe, M.: The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6, Geosci. Model Dev., 10, 359–384, https://doi.org/10.5194/gmd-10-359-2017, 2017. a
Wells, N. C.: The Earth within the Solar System, Chap. 1, John Wiley and Sons, Ltd, https://doi.org/10.1002/9781119994589.ch1, 2011. a
Williams, G. P. and Holloway Jr., J. L.: The range and unity of planetary circulations, Nature, 297, 295–299, https://doi.org/10.1038/297295a0, 1982. a, b
Yang, J., Boue, G., Fabrycky, D., and Abbot, D.: Strong dependence of the inner edge of the habitable zone on planetary rotation rate, Astrophys. J. Lett., 787, L2, https://doi.org/10.1088/2041-8205/787/1/L2, 2014. a, b
Yang, J., Zhang, Y., Fu, Z., Yan, M., Song, X., Wei, M., Liu, J., Ding, F., and Tan, Z.: Cloud behaviour on tidally locked rocky planets from global high-resolution modelling, Nature Astronomy, 7, 1070–1080, https://doi.org/10.1038/s41550-023-02015-8, 2023. a
Zsom, A., Seager, S., De Wit, J., and Stamenković, V.: Toward the minimum inner edge distance of the habitable zone, Astrophys. J., 778, 109, https://doi.org/10.1088/0004-637X/778/2/109, 2013. a
Short summary
We study how the Coriolis force caused by a planet's rotation affects its energy budget and habitability. Using an atmospheric general circulation model in a simplified water-covered planet setup, we analyse how rotation rates both slower and faster than Earth affect the amount of water vapour and clouds in the atmosphere. Our results suggest that rotation slower than Earth's makes the planet colder and drier, while faster rotation makes it warmer and moister, reducing its habitability.
We study how the Coriolis force caused by a planet's rotation affects its energy budget and...