Articles | Volume 6, issue 3
https://doi.org/10.5194/wcd-6-789-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-6-789-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extreme weather anomalies and surface signatures associated with merged Atlantic–African jets during northern winter
Sohan Suresan
CORRESPONDING AUTHOR
Department of Geophysics, Tel Aviv University, Tel Aviv, Israel
Nili Harnik
Department of Geophysics, Tel Aviv University, Tel Aviv, Israel
Rodrigo Caballero
Department of Meteorology, Stockholm University, Stockholm, Sweden
Related authors
No articles found.
Volkmar Wirth and Nili Harnik
EGUsphere, https://doi.org/10.5194/egusphere-2025-2508, https://doi.org/10.5194/egusphere-2025-2508, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
It has been suggested that resonant amplification of Rossby waves may be responsible for the occurrence of extreme weather. Given that the recent literature has produced some conflicting results in this regard, the current paper clarifies some fundamental aspects of Rossby wave resonance in an idealized framework.
Dor Sandler, Hadas Saaroni, Baruch Ziv, Talia Tamarin-Brodsky, and Nili Harnik
Weather Clim. Dynam., 5, 1103–1116, https://doi.org/10.5194/wcd-5-1103-2024, https://doi.org/10.5194/wcd-5-1103-2024, 2024
Short summary
Short summary
The North Atlantic region serves as a source of moisture and energy for Mediterranean storms. Its impact over the Levant region remains an open question due to its smaller weather systems and their longer distance from the ocean. We find an optimal circulation pattern which allows North Atlantic influence to reach farther into the eastern Mediterranean, thus making storms stronger and rainier. This may be relevant for future Mediterranean climate, which is projected to become much drier.
Aleksa Stanković, Gabriele Messori, Joaquim G. Pinto, and Rodrigo Caballero
Weather Clim. Dynam., 5, 821–837, https://doi.org/10.5194/wcd-5-821-2024, https://doi.org/10.5194/wcd-5-821-2024, 2024
Short summary
Short summary
The article studies extreme winds near the surface over the North Atlantic Ocean. These winds are caused by storms that pass through this region. The strongest storms that have occurred in the winters from 1950–2020 are studied in detail and compared to weaker but still strong storms. The analysis shows that the storms associated with the strongest winds are preceded by another older storm that travelled through the same region and made the conditions suitable for development of extreme winds.
Talia Tamarin-Brodsky and Nili Harnik
Weather Clim. Dynam., 5, 87–108, https://doi.org/10.5194/wcd-5-87-2024, https://doi.org/10.5194/wcd-5-87-2024, 2024
Short summary
Short summary
Synoptic waves in the atmosphere tend to follow a typical Rossby wave lifecycle, involving a linear growth stage followed by nonlinear and irreversible Rossby wave breaking (RWB). Here we take a new approach to study RWB events and their fundamental relation to weather systems by combining a storm-tracking technique and an RWB detection algorithm. The synoptic-scale dynamics leading to RWB is then examined by analyzing time evolution composites of cyclones and anticyclones during RWB events.
Emma Holmberg, Gabriele Messori, Rodrigo Caballero, and Davide Faranda
Earth Syst. Dynam., 14, 737–765, https://doi.org/10.5194/esd-14-737-2023, https://doi.org/10.5194/esd-14-737-2023, 2023
Short summary
Short summary
We analyse the duration of large-scale patterns of air movement in the atmosphere, referred to as persistence, and whether unusually persistent patterns favour warm-temperature extremes in Europe. We see no clear relationship between summertime heatwaves and unusually persistent patterns. This suggests that heatwaves do not necessarily require the continued flow of warm air over a region and that local effects could be important for their occurrence.
Sonja Murto, Rodrigo Caballero, Gunilla Svensson, and Lukas Papritz
Weather Clim. Dynam., 3, 21–44, https://doi.org/10.5194/wcd-3-21-2022, https://doi.org/10.5194/wcd-3-21-2022, 2022
Short summary
Short summary
This study uses reanalysis data to investigate the role of atmospheric blocking, prevailing high-pressure systems and mid-latitude cyclones in driving high-Arctic wintertime warm extreme events. These events are mainly preceded by Ural and Scandinavian blocks, which are shown to be significantly influenced and amplified by cyclones in the North Atlantic. It also highlights processes that need to be well captured in climate models for improving their representation of Arctic wintertime climate.
Gabriele Messori, Nili Harnik, Erica Madonna, Orli Lachmy, and Davide Faranda
Earth Syst. Dynam., 12, 233–251, https://doi.org/10.5194/esd-12-233-2021, https://doi.org/10.5194/esd-12-233-2021, 2021
Short summary
Short summary
Atmospheric jets are a key component of the climate system and of our everyday lives. Indeed, they affect human activities by influencing the weather in many mid-latitude regions. However, we still lack a complete understanding of their dynamical properties. In this study, we try to relate the understanding gained in idealized computer simulations of the jets to our knowledge from observations of the real atmosphere.
Ying Liu, Rodrigo Caballero, and Joy Merwin Monteiro
Geosci. Model Dev., 13, 4399–4412, https://doi.org/10.5194/gmd-13-4399-2020, https://doi.org/10.5194/gmd-13-4399-2020, 2020
Short summary
Short summary
The calculation of atmospheric radiative transfer is the most computationally expensive part of climate models. Reducing this computational burden could potentially improve our ability to simulate the earth's climate at finer scales. We propose using a statistical model – a deep neural network – to compute approximate radiative transfer in the earth's atmosphere. We demonstrate a significant reduction in computational burden as compared to a traditional scheme, especially when using GPUs.
Cited articles
Alexander, L. V., Uotila, P., and Nicholls, N.: Influence of sea surface temperature variability on global temperature and precipitation extremes, J. Geophys. Res.-Atmos., 114, D18116, https://doi.org/10.1029/2009JD012301, 2009. a
Amaya, D. J.: The Pacific meridional mode and ENSO: A review, Current Climate Change Reports, 5, 296–307, 2019. a
Arblaster, J. M. and Alexander, L. V.: The impact of the El Niño-Southern Oscillation on maximum temperature extremes, Geophys. Res. Lett., 39, L20702, https://doi.org/10.1029/2012GL053409, 2012. a
Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., Mcphaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., and Jin, F. F: Increasing frequency of extreme El Niño events due to greenhouse warming, Nat. Clim. Change, 4, 111–116, 2014. a
Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson-Delmotte, V., and Codron, F.: Winter 2010 in Europe: A cold extreme in a warming climate, Geophys. Res. Lett., 37, L20704, https://doi.org/10.1029/2010GL044613, 2010. a, b
Chang, P., Zhang, L., Saravanan, R., Vimont, D. J., Chiang, J. C., Ji, L., Seidel, H., and Tippett, M. K.: Pacific meridional mode and El Niño–Southern oscillation, Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL030302, 2007. a
Chemke, R. and Polvani, L. M.: Linking midlatitudes eddy heat flux trends and polar amplification, npj Clim. Atmos. Sci., 3, 8, https://doi.org/10.1038/s41612-020-0111-7, 2020. a, b
Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., and Jones, J.: Recent Arctic amplification and extreme mid-latitude weather, Nat. Geosci., 7, 627–637, 2014. a
Cohen, J., Agel, L., Barlow, M., Garfinkel, C. I., and White, I.: Linking Arctic variability and change with extreme winter weather in the United States, Science, 373, 1116–1121, 2021. a
Donat, M. G., Peterson, T. C., Brunet, M., King, A. D., Almazroui, M., Kolli, R. K., Boucherf, D., Al-Mulla, A. Y., Nour, A. Y., Aly, A. A., Nada, T. A. A., Semawi, M. M., Al Dashti, H. A., Salhab, T. G., El Fadli, K. I., Muftah, M. K., Dah Eida, S., Badi, W., Driouech, F., El Rhaz, K., Abubaker, M. J. Y., Ghulam, A. S., Erayah, A. S., Mansour, M. B., Alabdouli, W. O., Al Dhanhani, J. S., and Al Shekaili, M. N.: Changes in extreme temperature and precipitation in the Arab region: long-term trends and variability related to ENSO and NAO, Int. J. Climatol., 34, 581–592, 2014. a, b
Drouard, M., Kornhuber, K., and Woollings, T.: Disentangling dynamic contributions to summer 2018 anomalous weather over Europe, Geophys. Res. Lett., 46, 12537–12546, 2019. a
Francis, J. A. and Vavrus, S. J.: Evidence linking Arctic amplification to extreme weather in mid-latitudes, Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000, 2012. a
Held, I. M.: Momentum transport by quasi-geostrophic eddies, J. Atmos. Sci, 32, 1494–1497, 1975. a
Held, I. M. and Hou, A. Y.: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere, J. Atmos. Sci., 37, 515–533, 1980. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2023a. a, b
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.6860a573, 2023b. a
Holton, J. R.: An introduction to dynamic meteorology, Elsevier Academic Press Boston, ISBN 9780123848666, 2007. a
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons, J. Climate, 30, 8179–8205, 2017. a
Jianping, L. and Wang, J. X.: A new North Atlantic Oscillation index and its variability, Adv. Atmos. Sci., 20, 661–676, 2003. a
Kenyon, J. and Hegerl, G. C.: Influence of modes of climate variability on global precipitation extremes, J. Climate, 23, 6248–6262, 2010. a
Kim, B.-M., Son, S.-W., Min, S.-K., Jeong, J.-H., Kim, S.-J., Zhang, X., Shim, T., and Yoon, J.-H.: Weakening of the stratospheric polar vortex by Arctic sea-ice loss, Nat. Commun., 5, 4646, https://doi.org/10.1038/ncomms5646, 2014. a
Kim, H.-K. and Lee, S.: The wave–zonal mean flow interaction in the Southern Hemisphere, J. Atmos. Sci., 61, 1055–1067, 2004. a
Kim, J.-W., Yu, J.-Y., and Tian, B.: Overemphasized role of preceding strong El Niño in generating multi-year La Niña events, Nat. Commun., 14, 6790, https://doi.org/10.1038/s41467-023-42373-5, 2023. a
Kinnard, C., Zdanowicz, C. M., Fisher, D. A., Isaksson, E., de Vernal, A., and Thompson, L. G.: Reconstructed changes in Arctic sea ice over the past 1450 years, Nature, 479, 509–512, 2011. a
Lachmy, O. and Harnik, N.: The transition to a subtropical jet regime and its maintenance, J. Atmos. Sci., 71, 1389–1409, 2014. a
Lachmy, O. and Harnik, N.: Tropospheric jet variability in different flow regimes, Q. J. Roy. Meteor. Soc., 146, 327–347, 2020. a
Lee, S. and Kim, H.-K.: The dynamical relationship between subtropical and eddy-driven jets, J. Atmos. Sci., 60, 1490–1503, 2003. a
Li, C. and Wettstein, J. J.: Thermally driven and eddy-driven jet variability in reanalysis, J. Climate, 25, 1587–1596, 2012. a
Lorenz, D. J. and Hartmann, D. L.: Eddy–zonal flow feedback in the Northern Hemisphere winter, J. Climate, 16, 1212–1227, 2003. a
Lu, J., Chen, G., and Frierson, D. M.: The position of the midlatitude storm track and eddy-driven westerlies in aquaplanet AGCMs, J. Atmos. Sci., 67, 3984–4000, 2010. a
Michel, C. and Rivière, G.: Sensitivity of the position and variability of the eddy-driven jet to different SST profiles in an aquaplanet general circulation model, J. Atmos. Sci., 71, 349–371, 2014. a
Moore, G. and Renfrew, I.: Cold European winters: interplay between the NAO and the East Atlantic mode, Atmos. Sci. Lett., 13, 1–8, 2012. a
National Climatic Data Center: 2009–2010 Cold Season, NOAA's National Climatic Data Center, Asheville, NC, https://www.climatesignals.org/sites/default/files/resources/2009-2010-Cold-Season.compressed.pdf (last access: 21 February 2024), 2010. a
Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R., Caballero, R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich, K., Grieger, J., Gulev, S., Hanley, J., Hewson, T., Inatsu, M., Keay, K., Kew, S. F., Kindem, I., Leckebusch, G. C., Liberato, M. L. R., Lionello, P., Mokhov, I. I., Pinto, J. G., Raible, C. C., Reale, M., Rudeva, I., Schuster, M., Simmonds, I., Sinclair, M., Sprenger, M., Tilinina, N. D., Trigo, I. F., Ulbrich, S., Ulbrich, U., Wang, X. L., and Wernli, H.: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms, B. Am. Meteorol. Soc., 94, 529–547, 2013. a
NOAA: North Atlantic Oscillation index, Climate Indices: Monthly Atmospheric and Ocean Time Series, NOAA (National Oceanic and Atmospheric Administration) [data set], https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml, last access: 10 January 2024a. a
NOAA: Oceanic Niño Index (ONI), Climate Indices: Monthly Atmospheric and Ocean Time Series, NOAA (National Oceanic and Atmospheric Administration) [data set], https://psl.noaa.gov/data/correlation/oni.data, last access: 10 January 2024b. a
O'Rourke, A. K. and Vallis, G. K.: Jet interaction and the influence of a minimum phase speed bound on the propagation of eddies, J. Atmos. Sci., 70, 2614–2628, 2013. a
Panetta, R. L.: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection, J. Atmos. Sci., 50, 2073–2106, 1993. a
Peings, Y., Davini, P., and Magnusdottir, G.: Impact of Ural Blocking on Early Winter Climate Variability Under Different Barents-Kara Sea Ice Conditions, J. Geophys. Res.-Atmos., 128, e2022JD036994, https://doi.org/10.1029/2022JD036994, 2023. a
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe since 1979, Commun. Earth Environ., 3, 168, https://doi.org/10.1038/s43247-022-00498-3, 2022. a
Rhines, P. B.: Waves and turbulence on a beta-plane, J. Fluid Mech., 69, 417–443, 1975. a
Ropelewski, C. F. and Halpert, M. S.: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO), Mon. Weather Rev., 114, 2352–2362, 1986. a
Santos, J. A., Woollings, T., and Pinto, J. G.: Are the winters 2010 and 2012 archetypes exhibiting extreme opposite behavior of the North Atlantic jet stream?, Mon. Weather Rev., 141, 3626–3640, 2013. a
Schneider, E. K.: Axially symmetric steady-state models of the basic state for instability and climate studies. Part II. Nonlinear calculations, J. Atmos. Sci., 34, 280–296, 1977. a
Schubert, S. D., Chang, Y., Suarez, M. J., and Pegion, P. J.: ENSO and wintertime extreme precipitation events over the contiguous United States, J. Climate, 21, 22–39, 2008. a
Screen, J. A. and Simmonds, I.: Amplified mid-latitude planetary waves favour particular regional weather extremes, Nat. Clim. Change, 4, 704–709, 2014. a
Seager, R., Kushnir, Y., Nakamura, J., Ting, M., and Naik, N.: Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10, Geophys. Res. Lett., 37, L14703, https://doi.org/10.1029/2010GL043830, 2010. a, b
Seager, R., Hoerling, M., Schubert, S., Wang, H., Lyon, B., Kumar, A., Nakamura, J., and Henderson, N.: Causes of the 2011–14 California drought, J. Climate, 28, 6997–7024, 2015. a
Son, S.-W. and Lee, S.: Preferred modes of variability and their relationship with climate change, J. Climate, 19, 2063–2075, 2006. a
Thompson, D. W. and Wallace, J. M.: Regional climate impacts of the Northern Hemisphere annular mode, Science, 293, 85–89, 2001. a
Wang, B., Luo, X., Yang, Y.-M., Sun, W., Cane, M. A., Cai, W., Yeh, S.-W., and Liu, J.: Historical change of El Niño properties sheds light on future changes of extreme El Niño, P. Natl. Acad. Sci. USA, 116, 22512–22517, 2019. a
Wang, C., Liu, H., and Lee, S.-K.: The record-breaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere, Atmos. Sci. Lett., 11, 161–168, 2010. a
You, Y. and Furtado, J. C.: The role of South Pacific atmospheric variability in the development of different types of ENSO, Geophys. Res. Lett., 44, 7438–7446, 2017. a
Zhang, H., Clement, A., and Di Nezio, P.: The South Pacific meridional mode: A mechanism for ENSO-like variability, J. Climate, 27, 769–783, 2014. a
Short summary
This study is an exploration of how extreme winter weather events across the Northern Hemisphere are influenced by the rare merging of the Atlantic and African jets, beyond such typical factors as the North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO). We identify unique surface signals and changes in cyclone paths associated with such persistent winter jets merging over the Atlantic, offering insights into these extreme winter weather patterns.
This study is an exploration of how extreme winter weather events across the Northern Hemisphere...