Articles | Volume 7, issue 1
https://doi.org/10.5194/wcd-7-1-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-7-1-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The multi-year negative Indian Ocean Dipole of 2021–2022
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
Gill M. Martin
Met Office, Exeter, UK
Maheswar Pradhan
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
Suryachandra A. Rao
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
Sarah Ineson
Met Office, Exeter, UK
Related authors
Richard J. Keane, Ankur Srivastava, and Gill M. Martin
Weather Clim. Dynam., 5, 671–702, https://doi.org/10.5194/wcd-5-671-2024, https://doi.org/10.5194/wcd-5-671-2024, 2024
Short summary
Short summary
We evaluate the performance of two widely used models in forecasting the Indian summer monsoon, which is one of the most challenging meteorological phenomena to simulate. The work links previous studies evaluating the use of the models in weather forecasting and climate simulation, as the focus here is on seasonal forecasting, which involves intermediate timescales. As well as being important in itself, this evaluation provides insights into how errors develop in the two modelling systems.
Gill M. Martin and José M. Rodríguez
Weather Clim. Dynam., 5, 711–731, https://doi.org/10.5194/wcd-5-711-2024, https://doi.org/10.5194/wcd-5-711-2024, 2024
Short summary
Short summary
Using sensitivity experiments, we show that model errors developing in the Maritime Continent region contribute substantially to the Asian summer monsoon (ASM) circulation and rainfall errors through their effects on the western North Pacific subtropical high-pressure region and the winds and sea surface temperatures in the equatorial Indian Ocean, exacerbated by local coupled feedback. Such information will inform future model developments aimed at improving model predictions for the ASM.
Richard J. Keane, Ankur Srivastava, and Gill M. Martin
Weather Clim. Dynam., 5, 671–702, https://doi.org/10.5194/wcd-5-671-2024, https://doi.org/10.5194/wcd-5-671-2024, 2024
Short summary
Short summary
We evaluate the performance of two widely used models in forecasting the Indian summer monsoon, which is one of the most challenging meteorological phenomena to simulate. The work links previous studies evaluating the use of the models in weather forecasting and climate simulation, as the focus here is on seasonal forecasting, which involves intermediate timescales. As well as being important in itself, this evaluation provides insights into how errors develop in the two modelling systems.
Deepeshkumar Jain, Suryachandra A. Rao, Ramu A. Dandi, Prasanth A. Pillai, Ankur Srivastava, Maheswar Pradhan, and Kiran V. Gangadharan
Geosci. Model Dev., 17, 709–729, https://doi.org/10.5194/gmd-17-709-2024, https://doi.org/10.5194/gmd-17-709-2024, 2024
Short summary
Short summary
The present paper discusses and evaluates the new Monsoon Mission Coupled Forecast System model (MMCFS) version 2.0 which upgrades the currently operational MMCFS v1.0 at the Indian Meteorological Department, India. The individual model components have been substantially upgraded independently by their respective scientific groups. MMCFS v2.0 includes these upgrades in the operational coupled model. The new model shows significant skill improvement in simulating the Indian monsoon.
Bipin Kumar, Rahul Ranjan, Man-Kong Yau, Sudarsan Bera, and Suryachandra A. Rao
Atmos. Chem. Phys., 21, 12317–12329, https://doi.org/10.5194/acp-21-12317-2021, https://doi.org/10.5194/acp-21-12317-2021, 2021
Short summary
Short summary
The characteristics of turbulent clouds are affected by the entrainment of ambient dry air and its subsequent mixing. A turbulent flow generates vorticities of different intensities, and regions with high vorticity (HV) and low vorticity (LV) exist. This study provides a detailed analysis of different properties of turbulent flows and cloud droplets in the HV and LV regions in order to understand the impact of vorticity production on cloud microphysical and mixing processes.
Gill M. Martin, Richard C. Levine, José M. Rodriguez, and Michael Vellinga
Geosci. Model Dev., 14, 1007–1035, https://doi.org/10.5194/gmd-14-1007-2021, https://doi.org/10.5194/gmd-14-1007-2021, 2021
Short summary
Short summary
Our study highlights a number of different techniques that can be employed to investigate the sources of model error. We demonstrate how this methodology can be used to identify the regions and model components responsible for the development of long-standing errors in the Asian summer monsoon. Once these are known, further work can be done to explore the local processes contributing to this behaviour and their sensitivity to changes in physical parameterisations and/or model resolution.
Cited articles
Ajayamohan, R. S. and Rao, S. A.: Indian Ocean Dipole Modulates the Number of Extreme Rainfall Events over India in a Warming Environment, J. Meteorol. Soc. Jpn., 86, 245–252, https://doi.org/10.2151/jmsj.86.245, 2008.
Ajayamohan, R. S., Rao, S. A., and Yamagata, T.: Influence of Indian Ocean Dipole on Poleward Propagation of Boreal Summer Intraseasonal Oscillations, J. Climate, 21, 5437–5454, https://doi.org/10.1175/2008JCLI1758.1, 2008.
Ajayamohan, R. S., Rao, S. A., Luo, J., and Yamagata, T.: Influence of Indian Ocean Dipole on boreal summer intraseasonal oscillations in a coupled general circulation model, J. Geophys. Res., 114, D06119, https://doi.org/10.1029/2008JD011096, 2009.
Annamalai, H., Xie, S. P., McCreary, J. P., and Murtugudde, R.: Impact of Indian Ocean Sea surface temperature on developing El Niño, J. Climate, 18, https://doi.org/10.1175/JCLI-3268.1, 2005.
Ashok, K., Guan, Z., and Yamagata, T.: Impact of the Indian Ocean Dipole on the Relationship between the Indian Monsoon Rainfall and ENSO, Geophys. Res. Lett., 28, 4499–4502, https://doi.org/10.1029/2001GL013294, 2001.
Ashok, K., Guan, Z., Saji, N. H., and Yamagata, T.: Individual and combined influences of ENSO and the Indian Ocean Dipole on the Indian summer monsoon, J. Climate, 17, 3141–3155, https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2, 2004.
Bazo, J., Lorenzo, M. D. L. N., and Porfirio Da Rocha, R.: Relationship between monthly rainfall in NW peru and tropical sea surface temperature, Adv. Meteorol., 2013, 152875, https://doi.org/10.1155/2013/152875, 2013.
Behera, S. K., Luo, J. J., Masson, S., Rao, S. A., Sakuma, H., Yamagata, T., Behera, S. K., Luo, J. J., Masson, S., Rao, S. A., Sakuma, H., and Yamagata, T.: A CGCM Study on the Interaction between IOD and ENSO, J. Climate, 19, 1688–1705, https://doi.org/10.1175/JCLI3797.1, 2006.
Behringer, D. W., Ji, M., and Leetmaa, A.: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system, Mon. Weather Rev., 126, https://doi.org/10.1175/1520-0493(1998)126<1013:AICMFE>2.0.CO;2, 1998.
Black, E., Slingo, J., and Sperber, K. R.: An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian ocean SST, Mon. Weather Rev., 131, https://doi.org/10.1175/1520-0493(2003)131<0074:AOSOTR>2.0.CO;2, 2003.
Cai, W., Cowan, T., and Sullivan, A.: Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall, Geophys. Res. Lett., 36, https://doi.org/10.1029/2009GL037604, 2009.
Cai, W., Santoso, A., Wang, G., Weller, E., Wu, L., Ashok, K., Masumoto, Y., and Yamagata, T.: Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming, Nature, 510, 254–8, https://doi.org/10.1038/nature13327, 2014.
Chan, S. C., Behera, S. K., and Yamagata, T.: Indian Ocean Dipole influence on South American rainfall, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL034204, 2008.
Cherchi, A. and Navarra, A.: Influence of ENSO and of the Indian Ocean Dipole on the Indian summer monsoon variability, Clim. Dynam., 41, https://doi.org/10.1007/s00382-012-1602-y, 2013.
Cherchi, A., Gualdi, S., Behera, S., Luo, J. J., Masson, S., Yamagata, T., and Navarra, A.: The influence of tropical Indian Ocean SST on the Indian summer monsoon, J. Climate, https://doi.org/10.1175/JCLI4161.1, 2007.
CMEMS: Global Ocean Gridded L 4 Sea Surface Heights And Derived Variables Reprocessed 1993 Ongoing, Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00148, 2024.
Copernicus Climate Change Service: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023a.
Copernicus Climate Change Service: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023b.
Eisenman, I., Yu, L., and Tziperman, E.: Westerly wind bursts: ENSO's tail rather than the dog?, J. Climate, 18, https://doi.org/10.1175/JCLI3588.1, 2005.
Endris, H. S., Lennard, C., Hewitson, B., Dosio, A., Nikulin, G., and Artan, G. A.: Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa, Clim. Dynam., 52, https://doi.org/10.1007/s00382-018-4239-7, 2019.
ESR: OSCAR third deg, Ver. 1, PO.DAAC [data set], CA, USA, https://doi.org/10.5067/OSCAR-03D01, 2009.
Fedorov, A. V., Harper, S. L., Philander, S. G., Winter, B., and Wittenberg, A.: How predictable is El Niño?, B. Am Meteorol. Soc., 84, https://doi.org/10.1175/BAMS-84-7-911, 2003.
Geng, T., Jia, F., Cai, W., Wu, L., Gan, B., Jing, Z., Li, S., and McPhaden, M. J.: Increased occurrences of consecutive La Niña events under global warming, Nature, 619, https://doi.org/10.1038/s41586-023-06236-9, 2023.
Hendon, H. H.: Indonesian rainfall variability: Impacts of ENSO and local air-sea interaction, J. Climate, 16, https://doi.org/10.1175/1520-0442(2003)016<1775:IRVIOE>2.0.CO;2, 2003.
Hendon, H. H., Lim, E. P., and Liu, G.: The role of air-sea interaction for prediction of Australian summer monsoon rainfall, J. Climate, 25, https://doi.org/10.1175/JCLI-D-11-00125.1, 2012.
Hosoda, S., Ohira, T., and Nakamura, T.: A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations, JAMSTEC Report of Research and Development, 8, https://doi.org/10.5918/jamstecr.8.47, 2008.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H. M.: Extended reconstructed Sea surface temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons, J. Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., and Zhang, H. M.: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1, J. Climate, 34, https://doi.org/10.1175/JCLI-D-20-0166.1, 2021.
India Meteorological Department: Brief Report on Extremely Heavy Rainfall Events over Tamil Nadu (1–15 Jan 2021), 32 pp., https://internal.imd.gov.in/severewx/20210211_severe_1.pdf (last access: 2 January 2026), 2021.
Kikuchi, K.: Extension of the bimodal intraseasonal oscillation index using JRA-55 reanalysis, Clim. Dynam., 54, https://doi.org/10.1007/s00382-019-05037-z, 2020.
Kikuchi, K., Wang, B., and Kajikawa, Y.: Bimodal representation of the tropical intraseasonal oscillation, Clim. Dynam., 38, https://doi.org/10.1007/s00382-011-1159-1, 2012.
Krishnan, R., Ayantika, D. C., Kumar, V., and Pokhrel, S.: The long-lived monsoon depressions of 2006 and their linkage with the Indian Ocean Dipole, Int. J. Climatol., 31, 1334–1352, https://doi.org/10.1002/joc.2156, 2011.
Lengaigne, M., Boulanger, J. P., Menkes, C., Madec, G., Delecluse, P., Guilyardi, E., and Slingo, J.: The March 1997 Westerly Wind Event and the onset of the 1997/98 El Niño: Understanding the role of the atmospheric response, J. Climate, 16, https://doi.org/10.1175/1520-0442(2003)016<3330:TMWWEA>2.0.CO;2, 2003.
Lengaigne, M., Guilyardi, E., Boulanger, J. P., Menkes, C., Delecluse, P., Inness, P., Cole, J., and Slingo, J.: Triggering of El Niño by westerly wind events in a coupled general circulation model, Clim. Dynam., 23, https://doi.org/10.1007/s00382-004-0457-2, 2004.
L'Heureux, M. L., Tippett, M. K., Wheeler, M. C., Nguyen, H., Narsey, S., Johnson, N., Hu, Z. Z., Watkins, A. B., Lucas, C., Ganter, C., Becker, E., Wang, W., and Di Liberto, T.: A Relative Sea Surface Temperature Index for Classifying ENSO Events in a Changing Climate, J. Climate, 37, https://doi.org/10.1175/JCLI-D-23-0406.1, 2024.
Li, K., Yin, Y., Yang, Y., Liu, Y., and Yu, W.: Dynamic Response of the Spring Wyrtki Jet to the Monsoon Onset Over the Bay of Bengal, Geophys. Res. Lett., 49, https://doi.org/10.1029/2022GL101435, 2022.
Lu, B., Ren, H. L., Scaife, A. A., Wu, J., Dunstone, N., Smith, D., Wan, J., Eade, R., MacLachlan, C., and Gordon, M.: An extreme negative Indian Ocean Dipole event in 2016: dynamics and predictability, Clim. Dynam., 51, https://doi.org/10.1007/s00382-017-3908-2, 2018.
Luo, J. J., Zhang, R., Behera, S. K., Masumoto, Y., Jin, F. F., Lukas, R., and Yamagata, T.: Interaction between El Niño and extreme Indian Ocean dipole, J. Climate, 23, https://doi.org/10.1175/2009JCLI3104.1, 2010.
Manatsa, D. and Behera, S. K.: On the major shifts in the IOD during the last century, the role of the Mascarene High displacements, Int. J. Climatol., 34, https://doi.org/10.1002/joc.3820, 2014.
McPhaden, M. J.: Genesis and evolution of the 1997–98 El Niño, Science, 283, 950–954, https://doi.org/10.1126/science.283.5404.950, 1999.
McPhaden, M. J., Wang, Y., and Ravichandran, M.: Volume transports of the Wyrtki jets and their relationship to the Indian Ocean Dipole, J. Geophys. Res.-Oceans, 120, https://doi.org/10.1002/2015JC010901, 2015.
Moore, A. M. and Kleeman, R.: Stochastic forcing of ENSO by the intraseasonal oscillation, J. Climate, 12, https://doi.org/10.1175/1520-0442(1999)012<1199:SFOEBT>2.0.CO;2, 1999.
Murtugudde, R., McCreary, J. P., and Busalacchi, A. J.: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998, J. Geophys. Res., 105, 3295–3306, https://doi.org/10.1029/1999jc900294, 2000.
Nur'utami, M. N. and Hidayat, R.: Influences of IOD and ENSO to Indonesian Rainfall Variability: Role of Atmosphere-ocean Interaction in the Indo-pacific Sector, Procedia Environ. Sci., 33, https://doi.org/10.1016/j.proenv.2016.03.070, 2016.
Qiu, Y., Cai, W., Guo, X., and Ng, B.: The asymmetric influence of the positive and negative IOD events on China's rainfall, Sci. Rep., 4, https://doi.org/10.1038/srep04943, 2014.
Rao, S. A. and Yamagata, T.: Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances, Geophys. Res. Lett., 31, https://doi.org/10.1029/2004GL020842, 2004.
Rao, S. A., Luo, J.-J., Behera, S. K., and Yamagata, T.: Generation and termination of Indian Ocean dipole events in 2003, 2006 and 2007, Clim. Dynam., 33, 751–767, https://doi.org/10.1007/s00382-008-0498-z, 2009.
Rasmusson, E. M., Carpenter, T. H., Rasmusson, E. M., and Carpenter, T. H.: The Relationship Between Eastern Equatorial Pacific Sea Surface Temperatures and Rainfall over India and Sri Lanka, Mon. Weather Rev., 111, 517–528, https://doi.org/10.1175/1520-0493(1983)111<0517:TRBEEP>2.0.CO;2, 1983.
Ratna, S., Musale, M., Sharma, T., Sabeerali, C. T., Rohini, P., Bandgar, A., Sreejith, O. P., and Hosalikar, K. S.: Triple-dip La Niña (2020–2022) and its impact on Indian Summer Monsoon Rainfall: Insight from the Monsoon Mission Coupled Forecasting System, MAUSAM, 75, 759–768, https://doi.org/10.54302/mausam.v75i3.6283, 2024.
Ratna, S. B., Cherchi, A., Osborn, T. J., Joshi, M., and Uppara, U.: The Extreme Positive Indian Ocean Dipole of 2019 and Associated Indian Summer Monsoon Rainfall Response, Geophys. Res. Lett., 48, https://doi.org/10.1029/2020GL091497, 2021.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res.-Atmos., 108, 4407, https://doi.org/10.1029/2002jd002670, 2003.
Reverdin, G.: The Upper Equatorial Indian Ocean. The Climatological Seasonal Cycle, J. Phys. Oceanogr., 17, 903–927, https://doi.org/10.1175/1520-0485(1987)017<0903:tueiot>2.0.co;2, 1987.
Roundy, P. E. and Kiladis, G. N.: Observed relationships between oceanic Kelvin waves and atmospheric forcing, J. Climate, 19, https://doi.org/10.1175/JCLI3893.1, 2006.
Saji, N. H. and Yamagata, T.: Possible impacts of Indian Ocean Dipole mode events on global climate, Clim. Res., 25, 151–169, https://doi.org/10.3354/cr025151, 2003.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.: A dipole mode in the tropical Indian Ocean, Nature, 401, 360–363, https://doi.org/10.1038/43854, 1999.
Schott, F. A., Xie, S. P., and McCreary, J. P.: Indian ocean circulation and climate variability, Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245, 2009.
Seiki, A. and Takayabu, Y. N.: Westerly wind burst and their relationship with intraseasonal variations and ENSO. Part I: Statistics, Mon. Weather Rev., 135, https://doi.org/10.1175/MWR3477.1, 2007.
Sharma, T., Ratna, S. B., Pai, D. S., Bandgar, A., Rajeevan, M., Mohapatra, M., Sreejith, O. P., and Hosalikar, K. S.: Indian summer monsoon rainfall response to two distinct evolutions of La Niña events, Int. J. Climatol., 44, 4405–4427, https://doi.org/10.1002/joc.8588, 2024.
Shinoda, T. and Han, W.: Influence of the Indian Ocean dipole on atmospheric subseasonal variability, J. Climate, 18, https://doi.org/10.1175/JCLI3510.1, 2005.
Sikka, D. R. and Gadgil, S.: On the Maximum Cloud Zone and the ITCZ over Indian, Longitudes during the Southwest Monsoon, Mon. Weather Rev., 108, 1840–1853, https://doi.org/10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2, 1980.
Van Oldenborgh, G. J., Hendon, H., Stockdale, T., L'Heureux, M., Coughlan De Perez, E., Singh, R., and Van Aalst, M.: Defining El Nio indices in a warming climate, Environ. Res. Lett., 16, https://doi.org/10.1088/1748-9326/abe9ed, 2021.
Vinayachandran, P. N., Saji, N. H., and Yamagata, T.: Response of the Equatorial Indian Ocean to an unusual wind event during 1994, Geophys. Res. Lett., 26, https://doi.org/10.1029/1999GL900179, 1999.
Vinayachandran, P. N., Kurian, J., and Neema, C. P.: Indian Ocean response to anomalous conditions in 2006, Geophys. Res. Lett., 34, https://doi.org/10.1029/2007GL030194, 2007.
3Wang, B., Sun, W., Jin, C., Luo, X., Yang, Y. M., Li, T., Xiang, B., McPhaden, M. J., Cane, M. A., Jin, F., Liu, F., and Liu, J.: Understanding the recent increase in multiyear La Niñas, Nat. Clim. Change, 13, https://doi.org/10.1038/s41558-023-01801-6, 2023.
Wyrtki, K.: An equatorial jet in the Indian Ocean, Science, 181, https://doi.org/10.1126/science.181.4096.262, 1973.
Xiao, H. M., Lo, M. H., and Yu, J. Y.: The increased frequency of combined El Niño and positive IOD events since 1965s and its impacts on maritime continent hydroclimates, Sci. Rep., 12, https://doi.org/10.1038/s41598-022-11663-1, 2022.
Xiao, Y., Tan, X., and Tang, Y.: Definition of springtime easterly wind bursts in the Indian Ocean and their roles in triggering positive IOD events, Environ. Res. Commun., 6, https://doi.org/10.1088/2515-7620/ad32db, 2024.
Yang, Y., Xie, S. P., Wu, L., Kosaka, Y., Lau, N. C., and Vecchi, G. A.: Seasonality and predictability of the Indian Ocean dipole mode: ENSO forcing and internal variability, J. Climate, 28, https://doi.org/10.1175/JCLI-D-15-0078.1, 2015.
Yu, N., Liu, H., Chen, G., Chen, W., Ray, J., Wen, H., and Chao, N.: Analysis of Relationships Between ENSO Events and Atmospheric Angular Momentum Variations, Earth Space Sci., 8, https://doi.org/10.1029/2021EA002030, 2021.
Zubair, L., Rao, S. A., and Yamagata, T.: Modulation of Sri Lankan Maha rainfall by the Indian Ocean Dipole, Geophys. Res. Lett., 30, https://doi.org/10.1029/2002GL015639, 2003.
Short summary
This study documents the dynamics behind the first occurrence of a multi-year negative Indian Ocean Dipole since the 1960s, which lasted for an unprecedented 19 months, and co-occurred with the triple-dip La Niña event of 2020–2022. The co-occurrence of such extremes is rare and can exacerbate the associated climate risk. We find that Indian Ocean conditions limited the impact of La Niña on the Indian Summer Monsoon, preventing excessive monsoonal rainfall.
This study documents the dynamics behind the first occurrence of a multi-year negative Indian...