Articles | Volume 1, issue 2
Weather Clim. Dynam., 1, 617–634, 2020
Weather Clim. Dynam., 1, 617–634, 2020

Research article 20 Oct 2020

Research article | 20 Oct 2020

Organization of convective ascents in a warm conveyor belt

Nicolas Blanchard et al.

Related authors

Mid-level convection in a warm conveyor belt accelerates the jet stream
Nicolas Blanchard, Florian Pantillon, Jean-Pierre Chaboureau, and Julien Delanoë
Weather Clim. Dynam., 2, 37–53,,, 2021
Short summary

Related subject area

Dynamical processes in midlatitudes
Influence of ENSO on North American subseasonal surface air temperature variability
Patrick Martineau, Hisashi Nakamura, and Yu Kosaka
Weather Clim. Dynam., 2, 395–412,,, 2021
Short summary
A process-based anatomy of Mediterranean cyclones: from baroclinic lows to tropical-like systems
Emmanouil Flaounas, Suzanne L. Gray, and Franziska Teubler
Weather Clim. Dynam., 2, 255–279,,, 2021
Short summary
Representation by two climate models of the dynamical and diabatic processes involved in the development of an explosively deepening cyclone during NAWDEX
David L. A. Flack, Gwendal Rivière, Ionela Musat, Romain Roehrig, Sandrine Bony, Julien Delanoë, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam., 2, 233–253,,, 2021
Short summary
A regime view of future atmospheric circulation changes in northern mid-latitudes
Federico Fabiano, Virna L. Meccia, Paolo Davini, Paolo Ghinassi, and Susanna Corti
Weather Clim. Dynam., 2, 163–180,,, 2021
Short summary
A global climatological perspective on the importance of Rossby wave breaking and intense moisture transport for extreme precipitation events
Andries Jan de Vries
Weather Clim. Dynam., 2, 129–161,,, 2021
Short summary

Cited articles

Browning, K. A.: Conceptual Models of Precipitation Systems, Weather Forecast., 1, 23–41,<0023:CMOPS>2.0.CO;2, 1986. a
Browning, K. A.: Mesoscale Aspects of Extratropical Cyclones: An Observational Perspective, in: The Life Cycles of Extratropical Cyclones, edited by, Shapiro, M. A. and Grønås, S., American Meteorological Society, Boston, MA, 265–283,, 1999. a
Browning, K. A. and Pardoe, C. W.: Structure of low-level jet streams ahead of mid-latitude cold fronts, Q. J. Roy. Meteorol. Soc., 99, 619–638,, 1973. a
Chaboureau, J.-P., Söhne, N., Pinty, J.-P., Meirold-Mautner, I., Defer, E., Prigent, C., Pardo, J.-R., Mech, M., and Crewell, S.: A midlatitude cloud database validated with satellite observations, J. Appl. Meteor. Clim., 47, 1337–1353,, 2008. a
Chagnon, J. M., Gray, S. L., and Methven, J.: Diabatic processes modifying potential vorticity in a North Atlantic cyclone, Q. J. Roy. Meteorol. Soc., 139, 1270–1282,, 2013. a, b
Short summary
The study presents the first results from the airborne RASTA observations measured during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX). Our combined Eulerian–Lagrangian analysis found three types of organized convection (frontal, banded and mid-level) in the warm conveyor belt (WCB) of the Stalactite cyclone. The results emphasize that convection embedded in WCBs occurs in a coherent and organized manner rather than as isolated cells.