Articles | Volume 6, issue 4
https://doi.org/10.5194/wcd-6-1857-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-6-1857-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Physical drivers of the November 2023 heatwave in Rio de Janeiro
Catherine C. Ivanovich
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States
Adam H. Sobel
Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, United States
Radley M. Horton
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
Columbia Climate School, Columbia University, New York, NY, United States
Ana M. B. Nunes
Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Rosmeri Porfírio da Rocha
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP, Brazil
Suzana J. Camargo
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
Columbia Climate School, Columbia University, New York, NY, United States
Related authors
No articles found.
Ziyu Chen, Philip M. Orton, James F. Booth, Thomas Wahl, Arthur DeGaetano, Joel Kaatz, and Radley M. Horton
Hydrol. Earth Syst. Sci., 29, 3101–3117, https://doi.org/10.5194/hess-29-3101-2025, https://doi.org/10.5194/hess-29-3101-2025, 2025
Short summary
Short summary
Urban flooding can be driven by rain and storm surge or the combination of the two, which is called compound flooding. In this study, we analyzed hourly historical rain and surge data for New York City to provide a more detailed statistical analysis than prior studies of this topic. The analyses reveal that tropical cyclones (e.g., hurricanes) have potential for causing more extreme compound floods than other storms, while extratropical cyclones cause less extreme, more frequent compound events.
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Cited articles
Alvares, C. A., Stape, J. L., Sentelhas, P. C., and De Moraes Gonçalves, J. L.: Modeling monthly mean air temperature for Brazil, Theor. Appl. Climatol., 113, 407–427, https://doi.org/10.1007/s00704-012-0796-6, 2013.
Arias, P. A., Fu, R., Vera, C., and Rojas, M.: A correlated shortening of the North and South American monsoon seasons in the past few decades, Clim. Dynam., 45, 3183–3203, https://doi.org/10.1007/s00382-015-2533-1, 2015
Baldwin, J. W., Dessy, J. B., Vecchi, G. A., and Oppenheimer, M.: Temporally Compound Heat Wave Events and Global Warming: An Emerging Hazard, Earth's Future, 7, 411–427, https://doi.org/10.1029/2018EF000989, 2019.
Becker, E., L'Heureux, M., Hu, Z.-Z., and Kumar, A.: ENSO and the tropical Pacific, in: State of the Climate in 2023, B. Am. Meteorol. Soc., 105, S221–S224, https://doi.org/10.1175/BAMS-D-24-0098.1, 2024.
Bitencourt, D. P., Fuentes, M. V., Franke, A. E., Silveira, R. B., and Alves, M. P. A.: The climatology of cold and heat waves in Brazil from 1961 to 2016, Int. J. Climatol., 40, 2464–2478, https://doi.org/10.1002/joc.6345, 2020.
Bitencourt, D. P., Muniz Alves, L., Shibuya, E. K., De Ângelo Da Cunha, I., and Estevam De Souza, J. P.: Climate change impacts on heat stress in Brazil – Past, present, and future implications for occupational heat exposure, Int. J. Climatol., 41, S1, https://doi.org/10.1002/joc.6877, 2021.
Boisier, J. P., Ciais, P., Ducharne, A., and Guimberteau, M.: Projected strengthening of Amazonian dry season by constrained climate model simulations, Nat. Clim. Change, 5, 656–660, https://doi.org/10.1038/nclimate2658, 2015.
Burgess, M. G., Ritchie, J., Shapland, J., and Pielke, R.: IPCC baseline scenarios have over-projected CO2 emissions and economic growth, Environ. Res. Lett., 16, 014016, https://doi.org/10.1088/1748-9326/abcdd2, 2020.
Cai, W., McPhaden, M. J., Grimm, A. M., Rodrigues, R. R., Taschetto, A. S., Garreaud, R. D., Dewitte, B., Poveda, G., Ham, Y., Santoso, A., Ng, B., Anderson, W., Wang, G., Geng, T., Jo, H., Marengo, J. A., Alves, L. M., Osman, M., Li, S., Wu, L., Karamperidou, C., Takahashi, K., and Vera, C.: Climate impacts of the El Niño–Southern Oscillation on South America, Nature Reviews Earth & Environment, 1, 215–231, https://doi.org/10.1038/s43017-020-0040-3, 2020.
Castelao, R. M. and Barth, J. A.: Upwelling around Cabo Frio, Brazil: The importance of wind stress curl, Geophys. Res. Lett., 33, 2005GL025182, https://doi.org/10.1029/2005GL025182, 2006.
Cattiaux, J., Ribes, A., and Cariou, E.: How Extreme Were Daily Global Temperatures in 2023 and Early 2024?, Geophys. Res. Lett., 51, e2024GL110531, https://doi.org/10.1029/2024GL110531, 2024.
Chakraborty, T., Venter, Z. S., Qian, Y., and Lee, X.: Lower Urban Humidity Moderates Outdoor Heat Stress, AGU Advances, 3, e2022AV000729, https://doi.org/10.1029/2022AV000729, 2022.
Cheng, Y.-T., Lung, S.-C. C., and Hwang, J.-S.: New approach to identifying proper thresholds for a heat warning system using health risk increments, Environ. Res., 170, 282–292, https://doi.org/10.1016/j.envres.2018.12.059, 2019.
Cirino, P. H., Féres, J. G., Braga, M. J., and Reis, E.: Assessing the Impacts of ENSO-related Weather Effects on the Brazilian Agriculture, Proc. Econ. Financ., 24, 146–155, https://doi.org/10.1016/S2212-5671(15)00635-8, 2015.
Coelho, C. A. S., De Souza, D. C., Kubota, P. Y., Cavalcanti, I. F. A., Baker, J. C. A., Figueroa, S. N., Firpo, M. A. F., Guimarães, B. S., Costa, S. M. S., Gonçalves, L. J. M., Bonatti, J. P., Sampaio, G., Klingaman, N. P., Chevuturi, A., and Andrews, M. B.: Assessing the representation of South American monsoon features in Brazil and U.K. climate model simulations, Climate Resilience and Sustainability, 1, e27, https://doi.org/10.1002/cli2.27, 2022.
Coffel, E. D., Horton, R. M., and de Sherbinin, A.: Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century, Environ. Res. Lett., 13, 014001, https://doi.org/10.1088/1748-9326/aaa00e, 2018.
Collazo, S., Barriopedro, D., García-Herrera, R., and Beguería, S.: Extreme heat and mortality in the state of Rio de Janeiro in November 2023: attribution to climate change and ENSO, Nat. Hazards Earth Syst. Sci., 25, 3221–3238, https://doi.org/10.5194/nhess-25-3221-2025, 2025.
Correio Braziliense: Rio bate recorde de calor do ano neste sábado (18/11) com 42,5 °C, https://www.correiobraziliense.
com.br/brasil/2023/11/6657444-rio-bate-recorde-de-calor-do-ano-neste-sabado-18-11-com-425-c.html (last access: 14 May 2024), 18 November 2023.
De Freitas, C. and Grigorieva, E.: Role of Acclimatization in Weather-Related Human Mortality During the Transition Seasons of Autumn and Spring in a Thermally Extreme Mid-Latitude Continental Climate, Int. J. Env. Res. Pub. He., 12, 14974–14987, https://doi.org/10.3390/ijerph121214962, 2015.
Dereczynski, C., Silva, W. L., and Marengo, J.: Detection and Projections of Climate Change in Rio de Janeiro, Brazil, American Journal of Climate Change, 2, 25–33, https://doi.org/10.4236/ajcc.2013.21003, 2013.
Diniz, F. R., Gonçalves, F. L. T., and Sheridan, S.: Heat Wave and Elderly Mortality: Historical Analysis and Future Projection for Metropolitan Region of São Paulo, Brazil, Atmosphere, 11, 933, https://doi.org/10.3390/atmos11090933, 2020.
Dunn, R. J. H., Willett, K. M., Parker, D. E., and Mitchell, L.: Expanding HadISD: quality-controlled, sub-daily station data from 1931, Geosci. Instrum. Method. Data Syst., 5, 473–491, [data set], https://doi.org/10.5194/gi-5-473-2016, 2016.
Espinoza, J.-C., Jimenez, J. C., Marengo, J. A., Schongart, J., Ronchail, J., Lavado-Casimiro, W., and Ribeiro, J. V. M.: The new record of drought and warmth in the Amazon in 2023 related to regional and global climatic features, Scientific Reports, 14, 8107, https://doi.org/10.1038/s41598-024-58782-5, 2024.
Feron, S., Cordero, R. R., Damiani, A., Llanillo, P. J., Jorquera, J., Sepulveda, E., Asencio, V., Laroze, D., Labbe, F., Carrasco, J., and Torres, G.: Observations and Projections of Heat Waves in South America, Scientific Reports, 9, 8173, https://doi.org/10.1038/s41598-019-44614-4, 2019.
Fu, R., Yin, L., Li, W., Arias, P. A., Dickinson, R. E., Huang, L., Chakraborty, S., Fernandes, K., Liebmann, B., Fisher, R., Myneni, R. B.: Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection, P. Natl. Acad. Sci. USA, 110, 18110–18115, https://doi.org/10.1073/pnas.1302584110, 2013.
Geirinhas, J. L., Russo, A. C., Libonati, R., Miralles, D. G., Sousa, P. M., Wouters, H., and Trigo, R. M.: The influence of soil dry-out on the record-breaking hot 2013/2014 summer in Southeast Brazil, Scientific Reports, 12, 5836, https://doi.org/10.1038/s41598-022-09515-z, 2022.
Geirinhas, J. L., Trigo, R. M., Libonati, R., Coelho, C. A. S., and Palmeira, A. C.: Climatic and synoptic characterization of heat waves in Brazil, Int. J. Climatol., 38, 1760–1776, https://doi.org/10.1002/joc.5294, 2018.
Geirinhas, J. L., Trigo, R. M., Libonati, R., Castro, L. C. O., Sousa, P. M., Coelho, C. A. S., Peres, L. F., and Magalhães, M. A. F. M.: Characterizing the atmospheric conditions during the 2010 heatwave in Rio de Janeiro marked by excessive mortality rates, Sci. Total Environ., 650, 796–808, https://doi.org/10.1016/j.scitotenv.2018.09.060, 2019.
Geirinhas, J. L., Russo, A., Libonati, R., Trigo, R. M., Castro, L. C. O., Peres, L. F., Magalhães, M. A. F. M, and Nunes, B.: Heat-related mortality at the beginning of the twenty-first century in Rio de Janeiro, Brazil, Int. J. Biometeorol., 64, 1319–1332, https://doi.org/10.1007/s00484-020-01908-x, 2020.
Geirinhas, J. L., Russo, A., Libonati, R., Sousa, P. M., Miralles, D. G., and Trigo, R. M.: Recent increasing frequency of compound summer drought and heatwaves in Southeast Brazil, Environ. Res. Lett., 16, 034036, https://doi.org/10.1088/1748-9326/abe0eb, 2021.
Gomes, G. D., Nunes, A. M. B., Libonati, R., and Ambrizzi, T.: Projections of subcontinental changes in seasonal precipitation over the two major river basins in South America under an extreme climate scenario, Clim. Dynam., 58, 1147–1169, https://doi.org/10.1007/s00382-021-05955-x, 2022.
Hausfather, Z. and Peters, G. P.: Emissions – the “business as usual” story is misleading, Nature, 577, 618–620, https://doi.org/10.1038/d41586-020-00177-3, 2020.
He, Z., Dai, A., and Vuille, M.: The Joint Impacts of Atlantic and Pacific Multidecadal Variability on South American Precipitation and Temperature, J. Climate, 34, 7959–7981, https://doi.org/10.1175/JCLI-D-21-0081.1, 2021.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc. [data set], 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Horowitz, M.: Epigenetics and cytoprotection with heat acclimation, J. Appl. Physiol., 120, 702–710, https://doi.org/10.1152/japplphysiol.00552.2015, 2016.
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, B., and Zhang, H.: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1, J. Climate [data set], 34, 2923–2939, https://doi.org/10.1175/JCLI-D-20-0166.1, 2021.
Hughs, E. and Jeantet, D.: It's not yet summer in Brazil, but a dangerous heat wave is sweeping the country, https://apnews.com/article/brazil-heat-wave-climate- environment-wildfires-1e4714fb2c6566120c13cf4e2b657f7d (last access: 14 May 2024), 15 November 2023.
Ivanovich, C. C., Horton, R. M., Sobel, A. H., and Singh, D.: Subseasonal Variability of Humid Heat During the South Asian Summer Monsoon, Geophys. Res. Lett., 51, e2023GL107382, https://doi.org/10.1029/2023GL107382, 2024.
Jones, C. and Carvalho, L. M. V.: Climate change in the South American Monsoon System: Present climate and CMIP5 projections, J. Climate, 26, 6660–6678, https://doi.org/10.1175/JCLI-D-12-00412.1, 2013.
Jornal Nacional: Taylor Swift: segundo show é adiado, por causa do calor extremo no Rio, https://g1.globo.com/jornal- nacional/noticia/2023/11/18/taylor-swift-show-e-adiado-apos-morte-de-fa.ghtml (last access: 16 April, 2024), 18 November 2023.
Krüger, E., Gobo, J. P. A., Tejas, G. T., da Silva de Souza, R. M., Neto, J. B. F., Pereira, G., Mendes, D., and Di Napoli, C.: The impact of urbanization on heat stress in Brazil: A multi-city study, Urban Climate, 53, 101827, https://doi.org/10.1016/j.uclim.2024.101827, 2024.
Latinović, D., Chou, S. C., Rančić, M., Medeiros, G. S., and Lyra, A. D. A.: Seasonal climate and the onset of the rainy season in western-central Brazil simulated by Global Eta Framework model, Int. J. Climatol., 39, 1429–1445, https://doi.org/10.1002/joc.5892, 2019.
Libonati, R., Geirinhas, J. L., Silva, P. S., Monteiro Dos Santos, D., Rodrigues, J. A., Russo, A., Peres, L. F., Narcizo, L., Gomes, M. E. R., Rodrigues, A. P., DaCamara, C. C., Pereira, J. M. C., and Trigo, R. M.: Drought–heatwave nexus in Brazil and related impacts on health and fires: A comprehensive review, Annals of the New York Academy of Sciences, 1517, 44–62, https://doi.org/10.1111/nyas.14887, 2022.
Liebmann, B. and Mechoso, C. R.: The South American Monsoon System, in: World Scientific Series on Asia-Pacific Weather and Climate, 2nd edn., edited by: Chang, C.-P., Ding, Y., Lau, N.-C., Johnson, R. H., Wang, B., and Yasunari, T., World Scientific, 5, 137–157, https://doi.org/10.1142/9789814343411_0009, 2011.
Lyra, G. B., Correia, T. P., de Oliveira-Júnior, J. F., and Zeri, M.: Evaluation of methods of spatial interpolation for monthly rainfall data over the state of Rio de Janeiro, Brazil, Theor. Appl. Climatol., 134, 955–965, https://doi.org/10.1007/s00704-017-2322-3, 2018.
Marengo, J. A., Costa, M. C., Cunha, A. P., Espinoza, J.-C., Jimenez, J. C., Libonati, R., Miranda, V., Trigo, I. F., Sierra, J. P., Geirinhas, J. L., Ramos, A. M., Skansi, M., Molina-Carpio, J., and Salinas, R.: Climatological patterns of heatwaves during winter and spring 2023 and trends for the period 1979–2023 in central South America, Frontiers in Climate, 7, 1529082, https://doi.org/10.3389/fclim.2025.1529082, 2025.
Marengo, J. A., Liebmann, B., Grimm, A. M., Misra, V., Silva Dias, P. L., Cavalcanti, I. F. A.,Carvalho, L. M. V., Berbery, E. H., Ambrizzi, T., Saulo, A. C., Nogues-Paegle, J., Zipser, E., Seth, A., and Alves, L. M.: Recent developments on the South American monsoon system, Int. J. Climatol., 32, 1–21, https://doi.org/10.1002/joc.2254, 2012.
Marengo, J. A., Soares, W. R., Saulo, C., and Nicolini, M.: Climatology of the Low-Level Jet East of the Andes as Derived from the NCEP–NCAR Reanalyses: Characteristics and Temporal Variability, J. Climate, 17, 2261–2280, https://doi.org/10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2, 2004.
Matthews, T., Raymond, C., Foster, J., Baldwin, J. W., Ivanovich, C., Kong, Q., Kinney, P., and Horton, R.: Mortality impacts of the most extreme heat events, Nature Reviews Earth and Environment, 1–18, https://doi.org/10.1038/s43017-024-00635-w, 2025.
Montini, T. L., Jones, C., and Carvalho, L. M. V.: The South American Low-Level Jet: A New Climatology, Variability, and Changes, J. Geophys. Res.-Atmos., 124, 1200–1218, https://doi.org/10.1029/2018JD029634, 2019.
Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R. C., Bielecki, C. R., Counsell, C. W. W., Dietrich, B. S., Johnston, E. T., Louis, L. V., Lucas, M. P., McKenzie, M. M., Shea, A. G., Tseng, H., Giambelluca, T. W., Leon, L. R., Hawkins, E., and Trauernicht, C.: Global risk of deadly heat, Nat. Clim. Change, 7, 501–506, https://doi.org/10.1038/nclimate3322, 2017.
Nahlik, M. J., Chester, M. V., Pincetl, S. S., Eisenman, D., Sivaraman, D., and English, P.: Building Thermal Performance, Extreme Heat, and Climate Change, J. Infrastruct. Syst., 23, 04016043, https://doi.org/10.1061/(asce)is.1943-555x.0000349, 2017.
Nguyen, B.: Brazilian Taylor Swift Fan Died of Heat Exhaustion At Rio Concert, https://www.forbes.com/sites/
britneynguyen/2023/12/27/brazilian-taylor-swift-fan-died-of-heat-exhaustion-at-rio-concert/ (last access: 16 April 2024), 27 December 2023.
Palma, E. D. and Matano, R. P.: Disentangling the upwelling mechanisms of the South Brazil Bight, Cont. Shelf Res., 29, 1525–1534, https://doi.org/10.1016/j.csr.2009.04.002, 2009.
Pampuch, L. A., Bueno, P. G., Reboita, M. S., Tomaziello, A. C. N., Nunes, A. M. P., Cardoso, A. A., Coelho, C. A. S., Carpenedo, C. B., das Chagas Vasconcelos Jr, F., Gomes, H. B., Pinheiro, H. R., Braga, H. A., Borges, I. V. G., de Souza Custodio, M., da Silva, M. L., Llopart, M., da Rocha, R. P., Ambrizzi, T., and da Silva, G. A. M.: Brazil climate highlights 2023, Annals of the New York Academy of Sciences, 1549, 120–138, https://doi.org/10.1111/nyas.15394, 2025.
Pascale, S., Carvalho, L. M. V., Adams, D. K., Castro, C. L., and Cavalcanti, I. F. A.: Current and Future Variations of the Monsoons of the Americas in a Warming Climate, Current Climate Change Reports, 5, 125–144, https://doi.org/10.1007/s40641-019-00135-w, 2019.
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., Williamson, S., N., and Yang, D. Q.: Elevation-dependent warming in mountain regions of the world, Nat. Clim. Change, 5, 424–430, https://doi.org/10.1038/nclimate2563, 2015.
Périard, J. D., Racinais, S., and Sawka, M. N.: Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports, Scand. J. Med. Sci. Spor., 25, 20–38, https://doi.org/10.1111/sms.12408, 2015.
Powis, C. M., Byrne, D., Zobel, Z., Gassert, K. N., Lute, A. C., and Schwalm, C. R.: Observational and model evidence together support wide-spread exposure to noncompensable heat under continued global warming, Science Advances, 9, 36, eadg9297, https://doi.org/10.1126/sciadv.adg9297, 2023.
Perkins-Kirkpatrick, S., Barriopedro, D., Jha, R., Wang, L., Mondal, A., Libonati, R., and Kornhuber, K.: Extreme terrestrial heat in 2023, Nature Reviews Earth & Environment, 5, 244–246, https://doi.org/10.1038/s43017-024-00536-y, 2024.
Perkins, S. E., Pitman, A. J., Holbrook, N. J., and McAneney, J.: Evaluation of the AR4 Climate Models' Simulated Daily Maximum Temperature, Minimum Temperature, and Precipitation over Australia Using Probability Density Functions, J. Climate, 20, 17, 4356–4376, https://doi.org/10.1175/JCLI4253.1, 2007.
Raia, A. and Cavalcanti, I. F. A.: The Life Cycle of the South American Monsoon System, J. Climate, 21, 6227–6246, https://doi.org/10.1175/2008JCLI2249.1, 2008.
Raymond, C. and Mankin, J. S.: Assessing present and future coastal moderation of extreme heat in the Eastern United States, Environ. Res. Lett., 14, 114002, https://doi.org/10.1088/1748-9326/ab495d, 2019.
Raymond, C., Matthews, T., and Horton, R. M.: The emergence of heat and humidity too severe for human tolerance, Science Advances, 6, eaaw1838, https://doi.org/10.1126/sciadv.aaw1838, 2020.
Raymond, C., Waliser, D., Guan, B., Lee, H., Loikith, P., Massoud, E., Sengupta, A., Singh, D., and Wootten, A.: Regional and Elevational Patterns of Extreme Heat Stress Change in the US, Environ. Res. Lett., 17, 064046, https://doi.org/10.1088/1748-9326/ac7343, 2022.
Regoto, P., Dereczynski, C., Chou, S. C., and Bazzanela, A. C.: Observed changes in air temperature and precipitation extremes over Brazil, Int. J. Climatol., 41, 5125–5142, https://doi.org/10.1002/joc.7119, 2021.
Rehbein, A. and Ambrizzi, T.: ENSO teleconnections pathways in South America, Clim. Dynam., 61, 1277–1292, https://doi.org/10.1007/s00382-022-06624-3, 2023.
Ritchie, J. and Dowlatabadi, H.: Why do climate change scenarios return to coal?, Energy, 140, 1276–1291, https://doi.org/10.1016/j.energy.2017.08.083, 2017.
Rogero, T.: Brazil counts cost of worst-ever floods with little hope of waters receding soon, The Guardian, https://www.theguardian.com/world/article/2024/may/19/brazil-floods-toll (last access: 5 December 2025), 19 May 2024.
Rogers, C. D. W., Ting, M., Li, C., Kornhuber, K., Coffel, E. D., Horton, R. M., Raymond, C., and Singh, D.: Recent Increases in Exposure to Extreme Humid-Heat Events Disproportionately Affect Populated Regions, Geophys. Res. Lett., 48, e2021GL094183, https://doi.org/10.1029/2021GL094183, 2021.
Seth, A., Fernandes, K., and Camargo, S. J.: Two summers of São Paulo drought: Origins in the western tropical Pacific, Geophysical Research Letters, 42, 24, https://doi.org/10.1002/2015GL066314, 2015.
Shimizu, M. H. and Ambrizzi, T.: MJO influence on ENSO effects in precipitation and temperature over South America, Theor. Appl. Climatol., 124, 291–301, https://doi.org/10.1007/s00704-015-1421-2, 2016.
Sistema Alerta Rio da Prefeitura do Rio de Janeiro: Meteorological Data [data set], https://github.com/ccivanovich/November2023_Rio_Heatwave/ (last access: 1 June 2024), 2024.
Sistema Alerta Rio da Prefeitura do Rio de Janeiro: Rio Alert System Station Data – November 2023, Zenodo [data set], https://doi.org/10.5281/zenodo.17882803, 2025.
Sistema IBGE de Recuperação Automática – SIDRA [data set], https://sidra.ibge.gov.br/pesquisa/censo-demografico/demografico-2022/primeiros-resultados-populacao-e-domicilios (last access: 21 April 2024), 2022.
Stefanello, M., Ewerling da Rosa, C., Bresciani, C., Cordero Simões dos Reis, N., Stefanello Facco, D., Teleginski Ferraz, S. E., Boiaski, N. T., Herdies, D. L., Acevedo, O., Tirabassi, T., Roberti, D. R., and Degrazia, G. A.: Spatial–temporal analysis of a summer heat wave associated with downslope flows in southern Brazil: implications in the atmospheric boundary layer, Atmosphere, 14, 64, https://doi.org/10.3390/atmos14010064, 2022.
Swann, A. L. S., Longo, M., Knox, R. G., Lee, E., and Moorcroft, P. R.: Future deforestation in the Amazon and consequences for South American climate, Agr. Forest Meteorol., 214–215, 12–24, https://doi.org/10.1016/j.agrformet.2015.07.006, 2015.
Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A. J., Li, F., and Chen, H.: The urban heat island and its impact on heat waves and human health in Shanghai, Int. J. Biometeorol., 54, 75–84, https://doi.org/10.1007/s00484-009-0256-x, 2010.
Thrasher, B., Wang, W., Michaelis, A., Melton, F., Lee, T., and Nemani, R.: NASA Global Daily Downscaled Projections, CMIP6, Scientific Data [data set], 9, 262, https://doi.org/10.1038/s41597-022-01393-4, 2022.
United Nations Department of Economic and Social Affairs Population Division: World Urbanization Prospects – The 2018 Revision, https://population.un.org/wup/assets/WUP2018-Report.pdf (last access: 1 May 2025), 2022.
US EPA: Climate Change Indicators: Heat Waves [Reports and Assessments], https://archive.ph/rZZ4z (last access: 23 April 2024), 4 February 2021.
Van Oldenborgh, G. J., Wehner, M. F., Vautard, R., Otto, F. E. L., Seneviratne, S. I., Stott, P. A., Hegerl, G. C., Philip, S. Y., and Kew, S. F.: Attributing and Projecting Heatwaves Is Hard: We Can Do Better, Earth’s Future, 10, 6, e2021EF00227, https://doi.org/10.1029/2021EF002271, 2022.
Vecellio, D. J., Wolf, S. T., Cottle, R. M., and Kenney, W. L.: Evaluating the 35 °C wet-bulb temperature adaptability threshold for young, healthy subjects (PSU HEAT Project), J. Appl. Physiol., 132, 340–345, https://doi.org/10.1152/japplphysiol.00738.2021, 2022.
Vera, C., Baez, J., Douglas, M., Emmanuel, C. B., Marengo, J., Meitin, J.,Nicolini, M., Nogues-Paegle, J., Penalba, O., Salio, P., Saulo, C., Silva Dias, M. A., Silva Dias, P., and Zipser, E.: The South American Low-Level Jet Experiment, B. Am. Meteorol. Soc., 87, 63–78, https://doi.org/10.1175/BAMS-87-1-63, 2006.
Wilby, R. L., Kasei, R., Gough, K. V., Amankwaa, E. F., Abarike, M., Anderson, N. J., Codjoe, S. N. A., Griffiths, P., Kaba, C., Abdullah, K., Kayaga, S., Matthews, T., Mensah, P., Murphy, C., and Yankson, P. W. K.: Monitoring and moderating extreme indoor temperatures in low-income urban communities, Environ. Res. Lett., 16, 024033, https://doi.org/10.1088/1748-9326/abdbf2, 2021.
Zhang, Y., Held, I., and Fueglistaler, S.: Projections of tropical heat stress constrained by atmospheric dynamics, Nature Geoscience, 14(3), 133–137, https://doi.org/10.1038/s41561-021-00695-3, 2021.
Zhao, Q., Li, S., Coelho, M. S. Z. S., Saldiva, P. H. N., Hu, K., Huxley, R. R., Abramson, M. J., and Guo, Y.: The association between heatwaves and risk of hospitalization in Brazil: A nationwide time series study between 2000 and 2015, PLoS Med., 16, e1002753, https://doi.org/10.1371/journal.pmed.1002753, 2019.
Short summary
Here we identify the drivers of Rio de Janeiro’s record-breaking November 2023 heatwave. We find that springtime extreme heat in the city is becoming more frequent and heat events of the magnitude experienced in November 2023 may become significantly more likely with continued climate change. These results characterizing the evolving risk for extreme heat in Rio de Janeiro are essential for the city’s development of targeted hazard management plans.
Here we identify the drivers of Rio de Janeiro’s record-breaking November 2023 heatwave. We find...