Articles | Volume 6, issue 3
https://doi.org/10.5194/wcd-6-879-2025
https://doi.org/10.5194/wcd-6-879-2025
Research article
 | 
01 Sep 2025
Research article |  | 01 Sep 2025

Physical processes leading to extreme day-to-day temperature change – Part 1: Present-day climate

Kalpana Hamal and Stephan Pfahl

Related authors

Environments and lifting mechanisms of cold-frontal convective cells during the warm season in Germany
George Pacey, Stephan Pfahl, and Lisa Schielicke
Weather Clim. Dynam., 6, 695–713, https://doi.org/10.5194/wcd-6-695-2025,https://doi.org/10.5194/wcd-6-695-2025, 2025
Short summary
Assessing Lagrangian coherence in atmospheric blocking
Henry Schoeller, Robin Chemnitz, Péter Koltai, Maximilian Engel, and Stephan Pfahl
Nonlin. Processes Geophys., 32, 51–73, https://doi.org/10.5194/npg-32-51-2025,https://doi.org/10.5194/npg-32-51-2025, 2025
Short summary
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024,https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Future changes in North Atlantic winter cyclones in CESM-LE – Part 2: A Lagrangian analysis
Edgar Dolores-Tesillos and Stephan Pfahl
Weather Clim. Dynam., 5, 163–179, https://doi.org/10.5194/wcd-5-163-2024,https://doi.org/10.5194/wcd-5-163-2024, 2024
Short summary
Warm conveyor belt activity over the Pacific: modulation by the Madden–Julian Oscillation and impact on tropical–extratropical teleconnections
Julian F. Quinting, Christian M. Grams, Edmund Kar-Man Chang, Stephan Pfahl, and Heini Wernli
Weather Clim. Dynam., 5, 65–85, https://doi.org/10.5194/wcd-5-65-2024,https://doi.org/10.5194/wcd-5-65-2024, 2024
Short summary

Cited articles

Adams, R. E., Lee, C. C., Smith, E. T., and Sheridan, S. C.: The relationship between atmospheric circulation patterns and extreme temperature events in North America, Int. J. Climatol., 41, 92–103, 2021. 
Bennett, L., Melchers, B., and Proppe, B.: Curta: a general-purpose high-performance computer at ZEDAT, Freie Universität Berlin, https://doi.org/10.17169/refubium-26754, 2020. 
Berkeley Earth: Land and Ocean Temperature Record – gridded monthly and annual temperature dataset (land and ocean surface temperatures), Berkeley Earth [data set], https://berkeleyearth.org/data, last access: 20 March 2024. 
Betts, A. K., Desjardins, R., and Worth, D.: Cloud radiative forcing of the diurnal cycle climate of the Canadian Prairies, J. Geophys. Res.-Atmos., 118, 8935–8953, 2013. 
Bieli, M., Pfahl, S., and Wernli, H.: A Lagrangian investigation of hot and cold temperature extremes in Europe, Q. J. Roy. Meteor. Soc., 141, 98–108, 2015. 
Download
Short summary
This study investigates the global drivers of sudden temperature changes from one day to the next using observational data and trajectory analysis. In extratropical regions, these shifts are mainly driven by air mass movements linked to circulation patterns. In tropical areas, local factors like cloud cover play a key role. Understanding these mechanisms improves predictions of extreme-temperature events, aiding in better preparation and mitigation strategies.
Share