Articles | Volume 1, issue 2
https://doi.org/10.5194/wcd-1-635-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-1-635-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The effect of seasonally and spatially varying chlorophyll on Bay of Bengal surface ocean properties and the South Asian monsoon
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Adrian J. Matthews
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences and School of Mathematics, University of East Anglia, Norwich, NR4
7TJ, UK
Nicholas P. Klingaman
National Centre for Atmospheric Science–Climate and Department of
Meteorology, University of Reading, Reading, RG6 6BB, UK
Karen J. Heywood
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Manoj Joshi
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Benjamin G. M. Webber
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Related authors
Jack Giddings, Karen J. Heywood, Adrian J. Matthews, Manoj M. Joshi, Benjamin G. M. Webber, Alejandra Sanchez-Franks, Brian A. King, and Puthenveettil N. Vinayachandran
Ocean Sci., 17, 871–890, https://doi.org/10.5194/os-17-871-2021, https://doi.org/10.5194/os-17-871-2021, 2021
Short summary
Short summary
Little is known about the impact of chlorophyll on SST in the Bay of Bengal (BoB). Solar irradiance measured by an ocean glider and three Argo floats is used to determine the effect of chlorophyll on BoB SST during the 2016 summer monsoon. The Southwest Monsoon Current has high chlorophyll concentrations (∼0.5 mg m−3) and shallow solar penetration depths (∼14 m). Ocean mixed layer model simulations show that SST increases by 0.35°C per month, with the potential to influence monsoon rainfall.
Meredith G. Meyer, Esther Portela, Walker O. Smith Jr., and Karen J. Heywood
EGUsphere, https://doi.org/10.5194/egusphere-2024-3830, https://doi.org/10.5194/egusphere-2024-3830, 2024
Short summary
Short summary
During the annual phytoplankton bloom, rates of primary production and carbon export in the Ross Sea, Antarctica are uncoupled from each other and from oxygen and carbon stocks. These biogeochemical rates support the high productivity, low export classification of the region and suggest that environmental factors influence these stocks and rates differently and make projections under future climate change scenarios difficult.
Peter M. F. Sheehan, Benjamin G. M. Webber, Alejandra Sanchez-Franks, and Bastien Y. Queste
EGUsphere, https://doi.org/10.5194/egusphere-2024-3681, https://doi.org/10.5194/egusphere-2024-3681, 2024
Short summary
Short summary
Using measurements and computer models, we identify a large flux of oxygen within the Southwest Monsoon Current, which flows north into the Bay of Bengal between June and September each year. Oxygen levels in the Bay are very low, but not quite low enough for key nutrient cycles to be as dramatically altered as in other low-oxygen regions. We suggest that the flux we identify contributes to keeping oxygen levels in the Bay above the threshold below which dramatic changes would occur.
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel Westervelt, Andrew Williams, and Bjørn H. Samset
EGUsphere, https://doi.org/10.5194/egusphere-2024-1946, https://doi.org/10.5194/egusphere-2024-1946, 2024
Short summary
Short summary
In 2020, regulations by the International Maritime Organization aimed to reduce aerosol emissions from ships. These aerosols previously had a cooling effect, which the regulations might reduce, revealing more greenhouse gas warming. Here we find that while there is regional warming, the global 2020–2040 temperature rise is only +0.03°C. This small change is difficult to distinguish from natural climate variability, indicating the regulations have had a limited effect on observed warming to date.
Emma Howard, Steven Woolnough, Nicholas Klingaman, Daniel Shipley, Claudio Sanchez, Simon C. Peatman, Cathryn E. Birch, and Adrian J. Matthews
Geosci. Model Dev., 17, 3815–3837, https://doi.org/10.5194/gmd-17-3815-2024, https://doi.org/10.5194/gmd-17-3815-2024, 2024
Short summary
Short summary
This paper describes a coupled atmosphere–mixed-layer ocean simulation setup that will be used to study weather processes in Southeast Asia. The set-up has been used to compare high-resolution simulations, which are able to partially resolve storms, to coarser simulations, which cannot. We compare the model performance at representing variability of rainfall and sea surface temperatures across length scales between the coarse and fine models.
William J. Dow, Christine M. McKenna, Manoj M. Joshi, Adam T. Blaker, Richard Rigby, and Amanda C. Maycock
Weather Clim. Dynam., 5, 357–367, https://doi.org/10.5194/wcd-5-357-2024, https://doi.org/10.5194/wcd-5-357-2024, 2024
Short summary
Short summary
Changes to sea surface temperatures in the extratropical North Pacific are driven partly by patterns of local atmospheric circulation, such as the Aleutian Low. We show that an intensification of the Aleutian Low could contribute to small changes in temperatures across the equatorial Pacific via the initiation of two mechanisms. The effect, although significant, is unlikely to explain fully the recently observed multi-year shift of a pattern of climate variability across the wider Pacific.
Thomas Wilder, Xiaoming Zhai, David Munday, and Manoj Joshi
Ocean Sci., 19, 1669–1686, https://doi.org/10.5194/os-19-1669-2023, https://doi.org/10.5194/os-19-1669-2023, 2023
Short summary
Short summary
The dissipation rate of eddy energy in current energy budget-based eddy parameterisations is still relatively unconstrained, leading to uncertainties in ocean transport and ocean heat uptake. Here, we derive a dissipation rate due to the interaction of surface winds and eddy currents, a process known to significantly damp ocean eddies. The dissipation rate is quantified using seasonal climatology and displays wide spatial variability, with some of the largest values found in the Southern Ocean.
Ria Oelerich, Karen J. Heywood, Gillian M. Damerell, Marcel du Plessis, Louise C. Biddle, and Sebastiaan Swart
Ocean Sci., 19, 1465–1482, https://doi.org/10.5194/os-19-1465-2023, https://doi.org/10.5194/os-19-1465-2023, 2023
Short summary
Short summary
At the southern boundary of the Antarctic Circumpolar Current, relatively warm waters encounter the colder waters surrounding Antarctica. Observations from underwater vehicles and altimetry show that medium-sized cold-core eddies influence the southern boundary's barrier properties by strengthening the slopes of constant density lines across it and amplifying its associated jet. As a result, the ability of exchanging properties, such as heat, across the southern boundary is reduced.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Manoj Joshi, Robert A. Hall, David P. Stevens, and Ed Hawkins
Earth Syst. Dynam., 14, 443–455, https://doi.org/10.5194/esd-14-443-2023, https://doi.org/10.5194/esd-14-443-2023, 2023
Short summary
Short summary
The 18.6-year lunar nodal cycle arises from variations in the angle of the Moon's orbital plane and affects ocean tides. In this work we use a climate model to examine the effect of this cycle on the ocean, surface, and atmosphere. The timing of anomalies is consistent with the so-called slowdown in global warming and has implications for when global temperatures will exceed 1.5 ℃ above pre-industrial levels. Regional anomalies have implications for seasonal climate areas such as Europe.
Peter M. F. Sheehan, Gillian M. Damerell, Philip J. Leadbitter, Karen J. Heywood, and Rob A. Hall
Ocean Sci., 19, 77–92, https://doi.org/10.5194/os-19-77-2023, https://doi.org/10.5194/os-19-77-2023, 2023
Short summary
Short summary
We calculate the rate of turbulent kinetic energy dissipation, i.e. the mixing driven by small-scale ocean turbulence, in the western tropical Atlantic Ocean via two methods. We find good agreement between the results of both. A region of elevated mixing is found between 200 and 500 m, and we calculate the associated heat and salt fluxes. We find that double-diffusive mixing in salt fingers, a common feature of the tropical oceans, drives larger heat and salt fluxes than the turbulent mixing.
Callum Rollo, Karen J. Heywood, and Rob A. Hall
Geosci. Instrum. Method. Data Syst., 11, 359–373, https://doi.org/10.5194/gi-11-359-2022, https://doi.org/10.5194/gi-11-359-2022, 2022
Short summary
Short summary
Using an underwater buoyancy-powered autonomous glider, we collected profiles of temperature and salinity from the ocean north-east of Barbados. Most of the temperature and salinity profiles contained staircase-like structures of alternating constant values and large gradients. We wrote an algorithm to identify these staircases. We hypothesise that these staircases are prevented from forming where background gradients in temperature and salinity are too great.
Michael P. Hemming, Jan Kaiser, Jacqueline Boutin, Liliane Merlivat, Karen J. Heywood, Dorothee C. E. Bakker, Gareth A. Lee, Marcos Cobas García, David Antoine, and Kiminori Shitashima
Ocean Sci., 18, 1245–1262, https://doi.org/10.5194/os-18-1245-2022, https://doi.org/10.5194/os-18-1245-2022, 2022
Short summary
Short summary
An underwater glider mission was carried out in spring 2016 near a mooring in the northwestern Mediterranean Sea. The glider deployment served as a test of a prototype ion-sensitive field-effect transistor pH sensor. Mean net community production rates were estimated from glider and buoy measurements of dissolved oxygen and inorganic carbon concentrations before and during the spring bloom. Incorporating advection is important for accurate mass budgets. Unexpected metabolic quotients were found.
Yixi Zheng, David P. Stevens, Karen J. Heywood, Benjamin G. M. Webber, and Bastien Y. Queste
The Cryosphere, 16, 3005–3019, https://doi.org/10.5194/tc-16-3005-2022, https://doi.org/10.5194/tc-16-3005-2022, 2022
Short summary
Short summary
New observations reveal the Thwaites gyre in a habitually ice-covered region in the Amundsen Sea for the first time. This gyre rotates anticlockwise, despite the wind here favouring clockwise gyres like the Pine Island Bay gyre – the only other ocean gyre reported in the Amundsen Sea. We use an ocean model to suggest that sea ice alters the wind stress felt by the ocean and hence determines the gyre direction and strength. These processes may also be applied to other gyres in polar oceans.
Yanxin Wang, Karen J. Heywood, David P. Stevens, and Gillian M. Damerell
Ocean Sci., 18, 839–855, https://doi.org/10.5194/os-18-839-2022, https://doi.org/10.5194/os-18-839-2022, 2022
Short summary
Short summary
It is important that climate models give accurate projections of future extremes in summer and winter sea surface temperature because these affect many features of the global climate system. Our results demonstrate that some models would give large errors if used for future projections of these features, and models with more detailed representation of vertical structure in the ocean tend to have a better representation of sea surface temperature, particularly in summer.
Helen E. Phillips, Amit Tandon, Ryo Furue, Raleigh Hood, Caroline C. Ummenhofer, Jessica A. Benthuysen, Viviane Menezes, Shijian Hu, Ben Webber, Alejandra Sanchez-Franks, Deepak Cherian, Emily Shroyer, Ming Feng, Hemantha Wijesekera, Abhisek Chatterjee, Lisan Yu, Juliet Hermes, Raghu Murtugudde, Tomoki Tozuka, Danielle Su, Arvind Singh, Luca Centurioni, Satya Prakash, and Jerry Wiggert
Ocean Sci., 17, 1677–1751, https://doi.org/10.5194/os-17-1677-2021, https://doi.org/10.5194/os-17-1677-2021, 2021
Short summary
Short summary
Over the past decade, understanding of the Indian Ocean has progressed through new observations and advances in theory and models of the oceanic and atmospheric circulation. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean, describing Indian Ocean circulation patterns, air–sea interactions, climate variability, and the critical role of the Indian Ocean as a clearing house for anthropogenic heat.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Jack Giddings, Karen J. Heywood, Adrian J. Matthews, Manoj M. Joshi, Benjamin G. M. Webber, Alejandra Sanchez-Franks, Brian A. King, and Puthenveettil N. Vinayachandran
Ocean Sci., 17, 871–890, https://doi.org/10.5194/os-17-871-2021, https://doi.org/10.5194/os-17-871-2021, 2021
Short summary
Short summary
Little is known about the impact of chlorophyll on SST in the Bay of Bengal (BoB). Solar irradiance measured by an ocean glider and three Argo floats is used to determine the effect of chlorophyll on BoB SST during the 2016 summer monsoon. The Southwest Monsoon Current has high chlorophyll concentrations (∼0.5 mg m−3) and shallow solar penetration depths (∼14 m). Ocean mixed layer model simulations show that SST increases by 0.35°C per month, with the potential to influence monsoon rainfall.
Gabriel M. P. Perez, Pier Luigi Vidale, Nicholas P. Klingaman, and Thomas C. M. Martin
Weather Clim. Dynam., 2, 475–488, https://doi.org/10.5194/wcd-2-475-2021, https://doi.org/10.5194/wcd-2-475-2021, 2021
Short summary
Short summary
Much of the rainfall in tropical regions comes from organised cloud bands called convergence zones (CZs). These bands have hundreds of kilometers. In South America (SA), they cause intense rain for long periods of time. To study these systems, we need to define and identify them with computer code. We propose a definition of CZs based on the the pathways of air, selecting regions where air masses originated in separated regions meet. This method identifies important mechanisms of rain in SA.
Clàudia Abancó, Georgina L. Bennett, Adrian J. Matthews, Mark Anthony M. Matera, and Fibor J. Tan
Nat. Hazards Earth Syst. Sci., 21, 1531–1550, https://doi.org/10.5194/nhess-21-1531-2021, https://doi.org/10.5194/nhess-21-1531-2021, 2021
Short summary
Short summary
In 2018 Typhoon Mangkhut triggered thousands of landslides in the Itogon region (Philippines). An inventory of 1101 landslides revealed that landslides mostly occurred in slopes covered by wooded grassland in clayey materials, predominantly facing E-SE. Satellite rainfall and soil moisture data associated with Typhoon Mangkhut and the previous months in 2018 were analyzed. Results showed that landslides occurred during high-intensity rainfall that coincided with the highest soil moisture values.
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Short summary
FORTE 2.0 is a flexible coupled atmosphere–ocean general circulation model that can be run on modest hardware. We present two 2000-year simulations which show that FORTE 2.0 is capable of producing a stable climate. Earlier versions of FORTE were used for a wide range of studies, ranging from aquaplanet configurations to investigating the cold European winters of 2009–2010. This paper introduces the updated model for which the code and configuration are now publicly available.
Liang Guo, Ruud J. van der Ent, Nicholas P. Klingaman, Marie-Estelle Demory, Pier Luigi Vidale, Andrew G. Turner, Claudia C. Stephan, and Amulya Chevuturi
Geosci. Model Dev., 13, 6011–6028, https://doi.org/10.5194/gmd-13-6011-2020, https://doi.org/10.5194/gmd-13-6011-2020, 2020
Short summary
Short summary
Precipitation over East Asia simulated in the Met Office Unified Model is compared with observations. Moisture sources of EA precipitation are traced using a moisture tracking model. Biases in moisture sources are linked to biases in precipitation. Using the tracking model, changes in moisture sources can be attributed to changes in SST, circulation and associated evaporation. This proves that the method used in this study is useful to identify the causes of biases in regional precipitation.
Yingxia Gao, Nicholas P. Klingaman, Charlotte A. DeMott, and Pang-Chi Hsu
Geosci. Model Dev., 13, 5191–5209, https://doi.org/10.5194/gmd-13-5191-2020, https://doi.org/10.5194/gmd-13-5191-2020, 2020
Short summary
Short summary
Both the air–sea coupling and ocean mean state affect the fidelity of simulated boreal summer intraseasonal oscillation (BSISO). To elucidate their relative effects on the simulated BSISO, a set of experiments was conducted using a superparameterized AGCM and its coupled version. Both air–sea coupling and cold ocean mean state improve the BSISO amplitude due to the suppression of the overestimated variance, while the former (latter) could further upgrade (degrade) the BSISO propagation.
Satyaban B. Ratna, Timothy J. Osborn, Manoj Joshi, Bao Yang, and Jianglin Wang
Clim. Past, 15, 1825–1844, https://doi.org/10.5194/cp-15-1825-2019, https://doi.org/10.5194/cp-15-1825-2019, 2019
Short summary
Short summary
We examine the relationships in models and reconstructions between multidecadal variability of East Asian temperature and two extratropical modes of variability. The relationship between East Asian temperature and Pacific multidecadal variability is largely driven by internal variability, whereas with Atlantic multidecadal variability it is more strongly influenced by the presence or absence of external forcing. We discuss the implications for diagnosing teleconnections from reconstructions.
Venugopal Thushara, Puthenveettil Narayana Menon Vinayachandran, Adrian J. Matthews, Benjamin G. M. Webber, and Bastien Y. Queste
Biogeosciences, 16, 1447–1468, https://doi.org/10.5194/bg-16-1447-2019, https://doi.org/10.5194/bg-16-1447-2019, 2019
Short summary
Short summary
Chlorophyll distribution in the ocean remains to be explored in detail, despite its climatic significance. Here, we document the vertical structure of chlorophyll in the Bay of Bengal using observations and a model. The shape of chlorophyll profiles, characterized by prominent deep chlorophyll maxima, varies in dynamically different regions, controlled by the monsoonal forcings. The present study provides new insights into the vertical distribution of chlorophyll, rarely observed by satellites.
Simon C. Peatman and Nicholas P. Klingaman
Geosci. Model Dev., 11, 4693–4709, https://doi.org/10.5194/gmd-11-4693-2018, https://doi.org/10.5194/gmd-11-4693-2018, 2018
Short summary
Short summary
We investigate the simulation of the Indian monsoon in the UK Met Office climate model. We simulate both the atmosphere and the ocean (which can interact with each other) and compare against simulating the atmosphere alone. Atmosphere–ocean interactions make the modelled average monsoon climate less realistic because the sea surface temperature is wrong in the model, but the interactions make individual rain events, in which storms propagate northwards over the Indian Ocean, more realistic.
Reiner Onken, Heinz-Volker Fiekas, Laurent Beguery, Ines Borrione, Andreas Funk, Michael Hemming, Jaime Hernandez-Lasheras, Karen J. Heywood, Jan Kaiser, Michaela Knoll, Baptiste Mourre, Paolo Oddo, Pierre-Marie Poulain, Bastien Y. Queste, Aniello Russo, Kiminori Shitashima, Martin Siderius, and Elizabeth Thorp Küsel
Ocean Sci., 14, 321–335, https://doi.org/10.5194/os-14-321-2018, https://doi.org/10.5194/os-14-321-2018, 2018
Short summary
Short summary
In June 2014, high-resolution oceanographic data were collected in the
western Mediterranean Sea by two research vessels, 11 gliders, moored
instruments, drifters, and one profiling float. The objective
of this article is to provide an overview of the data set which
is utilised by various ongoing studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads
for gliders.
Peter M. F. Sheehan, Barbara Berx, Alejandro Gallego, Rob A. Hall, Karen J. Heywood, Sarah L. Hughes, and Bastien Y. Queste
Ocean Sci., 14, 225–236, https://doi.org/10.5194/os-14-225-2018, https://doi.org/10.5194/os-14-225-2018, 2018
Short summary
Short summary
We calculate tidal velocities using observations of ocean currents collected by an underwater glider. We use these velocities to investigate the location of sharp boundaries between water masses in shallow seas. Narrow currents along these boundaries are important transport pathways around shallow seas for pollutants and organisms. Tides are an important control on boundary location in summer, but seawater salt concentration can also influence boundary location, especially in winter.
Michael P. Hemming, Jan Kaiser, Karen J. Heywood, Dorothee C.E. Bakker, Jacqueline Boutin, Kiminori Shitashima, Gareth Lee, Oliver Legge, and Reiner Onken
Ocean Sci., 13, 427–442, https://doi.org/10.5194/os-13-427-2017, https://doi.org/10.5194/os-13-427-2017, 2017
Short summary
Short summary
Underwater gliders are useful platforms for monitoring the world oceans at a high resolution. An experimental pH sensor was attached to an underwater glider in the Mediterranean Sea, which is an important carbon sink region. Comparing measurements from the glider with those obtained from a ship indicated that there were issues with the experimental pH sensor. Correcting for these issues enabled us to look at pH variability in the area related to biomass abundance and physical water properties.
David Walters, Ian Boutle, Malcolm Brooks, Thomas Melvin, Rachel Stratton, Simon Vosper, Helen Wells, Keith Williams, Nigel Wood, Thomas Allen, Andrew Bushell, Dan Copsey, Paul Earnshaw, John Edwards, Markus Gross, Steven Hardiman, Chris Harris, Julian Heming, Nicholas Klingaman, Richard Levine, James Manners, Gill Martin, Sean Milton, Marion Mittermaier, Cyril Morcrette, Thomas Riddick, Malcolm Roberts, Claudio Sanchez, Paul Selwood, Alison Stirling, Chris Smith, Dan Suri, Warren Tennant, Pier Luigi Vidale, Jonathan Wilkinson, Martin Willett, Steve Woolnough, and Prince Xavier
Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017, https://doi.org/10.5194/gmd-10-1487-2017, 2017
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application.
We describe a recent iteration of these configurations: GA6/GL6. This includes ENDGame: a new dynamical core designed to improve the model's accuracy, stability and scalability. GA6 is now operational in a variety of Met Office and UM collaborators applications and hence its documentation is important.
We describe a recent iteration of these configurations: GA6/GL6. This includes ENDGame: a new dynamical core designed to improve the model's accuracy, stability and scalability. GA6 is now operational in a variety of Met Office and UM collaborators applications and hence its documentation is important.
Imke Grefe, Sophie Fielding, Karen J. Heywood, and Jan Kaiser
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-73, https://doi.org/10.5194/bg-2017-73, 2017
Revised manuscript not accepted
Daniel Mitchell, Krishna AchutaRao, Myles Allen, Ingo Bethke, Urs Beyerle, Andrew Ciavarella, Piers M. Forster, Jan Fuglestvedt, Nathan Gillett, Karsten Haustein, William Ingram, Trond Iversen, Viatcheslav Kharin, Nicholas Klingaman, Neil Massey, Erich Fischer, Carl-Friedrich Schleussner, John Scinocca, Øyvind Seland, Hideo Shiogama, Emily Shuckburgh, Sarah Sparrow, Dáithí Stone, Peter Uhe, David Wallom, Michael Wehner, and Rashyd Zaaboul
Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, https://doi.org/10.5194/gmd-10-571-2017, 2017
Short summary
Short summary
This paper provides an experimental design to assess impacts of a world that is 1.5 °C warmer than at pre-industrial levels. The design is a new way to approach impacts from the climate community, and aims to answer questions related to the recent Paris Agreement. In particular the paper provides a method for studying extreme events under relatively high mitigation scenarios.
Gill M. Martin, Nicholas P. Klingaman, and Aurel F. Moise
Geosci. Model Dev., 10, 105–126, https://doi.org/10.5194/gmd-10-105-2017, https://doi.org/10.5194/gmd-10-105-2017, 2017
Short summary
Short summary
We analyse and evaluate tropical rainfall variability in the MetUM-GA6 configuration at four different horizontal resolutions, plus one in which the convection parameterization has been switched off. Tropical deep convective rainfall in this model tends to be intermittent in space and time. This behaviour is largely independent of model resolution. Switching off the deep convection parameterization (at ~10 km resolution) results in isolated, but persistent, rainfall on the gridscale.
Nicholas P. Klingaman, Gill M. Martin, and Aurel Moise
Geosci. Model Dev., 10, 57–83, https://doi.org/10.5194/gmd-10-57-2017, https://doi.org/10.5194/gmd-10-57-2017, 2017
Short summary
Short summary
Weather and climate models show large errors in the frequency, intensity and persistence of daily rainfall, particularly in the tropics. We introduce a set of diagnostics to reveal the spatial and temporal scales of precipitation in models and compare them to satellite observations to inform development efforts. Although models show similar errors in 3 h precipitation, at the time step and gridpoint level some produce coherent precipitation and others exhibit worrying quasi-random behavior.
Bastien Y. Queste, Liam Fernand, Timothy D. Jickells, Karen J. Heywood, and Andrew J. Hind
Biogeosciences, 13, 1209–1222, https://doi.org/10.5194/bg-13-1209-2016, https://doi.org/10.5194/bg-13-1209-2016, 2016
Short summary
Short summary
In stratified shelf seas, physical and biological conditions can lead to seasonal oxygen depletion when consumption exceeds supply. An ocean glider obtained a high-resolution 3-day data set of biochemical and physical properties in the central North Sea. The data revealed very high oxygen consumption rates, far exceeding previously reported rates. A consumption–supply oxygen budget indicates a localized or short-lived resuspension event causing rapid remineralization of benthic organic matter.
C. Heuzé, J. K. Ridley, D. Calvert, D. P. Stevens, and K. J. Heywood
Geosci. Model Dev., 8, 3119–3130, https://doi.org/10.5194/gmd-8-3119-2015, https://doi.org/10.5194/gmd-8-3119-2015, 2015
Short summary
Short summary
Most ocean models, including NEMO, have unrealistic Southern Ocean deep convection. That is, through extensive areas of the Southern Ocean, they exhibit convection from the surface of the ocean to the sea floor. We find this convection to be an issue as it impacts the whole ocean circulation, notably strengthening the Antarctic Circumpolar Current. Using sensitivity experiments, we show that counter-intuitively the vertical mixing needs to be enhanced to reduce this spurious convection.
M. Joshi, M. Stringer, K. van der Wiel, A. O'Callaghan, and S. Fueglistaler
Geosci. Model Dev., 8, 1157–1167, https://doi.org/10.5194/gmd-8-1157-2015, https://doi.org/10.5194/gmd-8-1157-2015, 2015
Related subject area
Dynamical processes in the tropics, incl. tropical–extratropical interactions
Role of the quasi-biennial oscillation in alleviating biases in the semi-annual oscillation
A simple model linking radiative–convective instability, convective aggregation and large-scale dynamics
Spatial and temporal variability of the freezing level in Patagonia's atmosphere
PDO-driven interdecadal variability of snowfall over the Karakoram and Western Himalaya
Tropical cyclone asymmetric eyewall evolution and intensification in a two-layer model
Surrogate-based model parameter optimization in simulations of the West African monsoon
Changes in the tropical upper-tropospheric zonal momentum balance due to global warming
Using regional relaxation experiments to understand the development of errors in the Asian summer monsoon
WCD Ideas: Teleconnections through weather rather than stationary waves
Development of Indian summer monsoon precipitation biases in two seasonal forecasting systems and their response to large-scale drivers
Quantifying uncertainty in simulations of the West African monsoon with the use of surrogate models
Western disturbances and climate variability: a review of recent developments
Increasing frequency and lengthening season of western disturbances are linked to increasing strength and delayed northward migration of the subtropical jet
Sustained intensification of the Aleutian Low induces weak tropical Pacific sea surface warming
Multi-decadal pacemaker simulations with an intermediate-complexity climate model
Replicating the Hadley cell edge and subtropical jet latitude disconnect in idealized atmospheric models
Warm conveyor belt activity over the Pacific: modulation by the Madden–Julian Oscillation and impact on tropical–extratropical teleconnections
Understanding the dependence of mean precipitation on convective treatment and horizontal resolution in tropical aquachannel experiments
Identifying quasi-periodic variability using multivariate empirical mode decomposition: a case of the tropical Pacific
Examining the dynamics of a Borneo vortex using a balance approximation tool
Strengthening gradients in the tropical west Pacific connect to European summer temperatures on sub-seasonal timescales
Classification of large-scale environments that drive the formation of mesoscale convective systems over southern West Africa
Validation of boreal summer tropical–extratropical causal links in seasonal forecasts
Large uncertainty in observed estimates of tropical width from the meridional stream function
The impact of the Agulhas Current system on precipitation in southern Africa in regional climate simulations covering the recent past and future
Intensity fluctuations in Hurricane Irma (2017) during a period of rapid intensification
Investigation of links between dynamical scenarios and particularly high impact of Aeolus on numerical weather prediction (NWP) forecasts
Can low-resolution CMIP6 ScenarioMIP models provide insight into future European post-tropical-cyclone risk?
Non-linear intensification of monsoon low-pressure systems by the BSISO
Dynamics of gap winds in the Great Rift Valley, Ethiopia: emphasis on strong winds at Lake Abaya
Metrics of the Hadley circulation strength and associated circulation trends
Characterising the interaction of tropical and extratropical air masses controlling East Asian summer monsoon progression using a novel frontal detection approach
Extreme Atlantic hurricane seasons made twice as likely by ocean warming
Synoptic processes of winter precipitation in the Upper Indus Basin
Acceleration of tropical cyclones as a proxy for extratropical interactions: synoptic-scale patterns and long-term trends
Subtle influence of the Atlantic Meridional Overturning Circulation (AMOC) on seasonal sea surface temperature (SST) hindcast skill in the North Atlantic
Drivers of uncertainty in future projections of Madden–Julian Oscillation teleconnections
Zonal scale and temporal variability of the Asian monsoon anticyclone in an idealised numerical model
African easterly waves in an idealized general circulation model: instability and wave packet diagnostics
How Rossby wave breaking modulates the water cycle in the North Atlantic trade wind region
Dominant patterns of interaction between the tropics and mid-latitudes in boreal summer: causal relationships and the role of timescales
Abrupt transitions in an atmospheric single-column model with weak temperature gradient approximation
The American monsoon system in HadGEM3 and UKESM1
Aleena M. Jaison, Lesley J. Gray, Scott M. Osprey, Jeff R. Knight, and Martin B. Andrews
Weather Clim. Dynam., 5, 1489–1504, https://doi.org/10.5194/wcd-5-1489-2024, https://doi.org/10.5194/wcd-5-1489-2024, 2024
Short summary
Short summary
Models have biases in semi-annual oscillation (SAO) representation, mainly due to insufficient eastward wave forcing. We examined if the bias is from increased wave absorption due to circulation biases in the low–middle stratosphere. Alleviating biases at lower altitudes improves the SAO, but substantial bias remains. Alternative methods like gravity wave parameterization changes should be explored to enhance the modelled SAO, potentially improving sudden stratospheric warming predictability.
Matthew Davison and Peter Haynes
Weather Clim. Dynam., 5, 1153–1185, https://doi.org/10.5194/wcd-5-1153-2024, https://doi.org/10.5194/wcd-5-1153-2024, 2024
Short summary
Short summary
A simple model is used to study the relation between small-scale convection and large-scale variability in the tropics arising from the coupling between moisture and dynamics. In the model, moisture preferentially lies at either moist or dry states, which merge to form large-scale aggregated regions. On an equatorial β plane, these aggregated regions are localised at the Equator and propagate zonally. This forms an intermediate model between past simpler models and general circulation models.
Nicolás García-Lee, Claudio Bravo, Álvaro Gónzalez-Reyes, and Piero Mardones
Weather Clim. Dynam., 5, 1137–1151, https://doi.org/10.5194/wcd-5-1137-2024, https://doi.org/10.5194/wcd-5-1137-2024, 2024
Short summary
Short summary
This study analyses the 0 °C isotherm in Patagonia from 1959 to 2021, using observational and fifth-generation European Centre for Medium-Range Weather Forecasts atmospheric reanalysis data. The model aligns well with observations, highlighting significant altitude variations between the western and eastern sides of the austral Andes, a correlation between isotherm fluctuations and the Southern Annular Mode index, and an upward trend in the study area (especially in northwestern Patagonia).
Priya Bharati, Pranab Deb, and Kieran M. R. Hunt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2845, https://doi.org/10.5194/egusphere-2024-2845, 2024
Short summary
Short summary
Snowfall in the Karakoram and Western Himalayas (KH) correlates negatively with the Pacific Decadal Oscillation (PDO) during the winter (DJF). A wave-like pattern in the upper atmosphere, accompanied with a northward moving subtropical jet over KH, is associated with warm SST in the northwest Pacific Ocean. More frequent western disturbances (WDs) migrated north of KH region during the negative phase of PDO, resulting in increased moisture transport to the KH.
Ting-Yu Cha and Michael M. Bell
Weather Clim. Dynam., 5, 1013–1029, https://doi.org/10.5194/wcd-5-1013-2024, https://doi.org/10.5194/wcd-5-1013-2024, 2024
Short summary
Short summary
Our study investigates the dynamics of polygonal eyewall structures observed in intensifying hurricanes like Michael (2018) by using a simplified modeling approach. We develop a two-layer model to simulate the interactions between the free atmosphere and boundary layer to demonstrate the importance of different physical mechanisms in the intensification process. This simplified model offers insights into the interactions between dynamics and convection during hurricane intensification.
Matthias Fischer, Peter Knippertz, and Carsten Proppe
EGUsphere, https://doi.org/10.5194/egusphere-2024-1984, https://doi.org/10.5194/egusphere-2024-1984, 2024
Short summary
Short summary
The West African monsoon is vital for millions, but difficult to represent with numerical models. Our research aims at improving monsoon simulations by optimizing three model parameters—entrainment rate, ice fall speed, and soil moisture evaporation—using an advanced surrogate-based multi-objective optimization framework. Results show that tuning these parameters can improve certain monsoon characteristics, sometimes, however, at the expense of others, yet highlighting the power of our approach.
Abu Bakar Siddiqui Thakur and Jai Sukhatme
Weather Clim. Dynam., 5, 839–862, https://doi.org/10.5194/wcd-5-839-2024, https://doi.org/10.5194/wcd-5-839-2024, 2024
Short summary
Short summary
We analyze the present and future states of the tropical upper troposphere. Observations and climate model simulations suggest that interactions between disparate families of waves and the mean flow maintain present-day upper-level winds, and each component undergoes complex changes due to global warming. While the net east–west flow of the atmosphere may remain unaltered, this study indicates robust changes to local circulations that may influence tropical precipitation and regional climate.
Gill M. Martin and José M. Rodríguez
Weather Clim. Dynam., 5, 711–731, https://doi.org/10.5194/wcd-5-711-2024, https://doi.org/10.5194/wcd-5-711-2024, 2024
Short summary
Short summary
Using sensitivity experiments, we show that model errors developing in the Maritime Continent region contribute substantially to the Asian summer monsoon (ASM) circulation and rainfall errors through their effects on the western North Pacific subtropical high-pressure region and the winds and sea surface temperatures in the equatorial Indian Ocean, exacerbated by local coupled feedback. Such information will inform future model developments aimed at improving model predictions for the ASM.
Clemens Spensberger
Weather Clim. Dynam., 5, 659–669, https://doi.org/10.5194/wcd-5-659-2024, https://doi.org/10.5194/wcd-5-659-2024, 2024
Short summary
Short summary
It is well-established that variations in convection in the tropical Indo-Pacific can influence weather in far-away regions. In this idea, I argue that the main theory used to explain this influence over large distances is incomplete. I propose hypotheses that could lead the way towards a more fundamental explanation and outline a novel approach that could be used to test the hypotheses I raise. The suggested approach might be useful to address also other long-standing questions.
Richard J. Keane, Ankur Srivastava, and Gill M. Martin
Weather Clim. Dynam., 5, 671–702, https://doi.org/10.5194/wcd-5-671-2024, https://doi.org/10.5194/wcd-5-671-2024, 2024
Short summary
Short summary
We evaluate the performance of two widely used models in forecasting the Indian summer monsoon, which is one of the most challenging meteorological phenomena to simulate. The work links previous studies evaluating the use of the models in weather forecasting and climate simulation, as the focus here is on seasonal forecasting, which involves intermediate timescales. As well as being important in itself, this evaluation provides insights into how errors develop in the two modelling systems.
Matthias Fischer, Peter Knippertz, Roderick van der Linden, Alexander Lemburg, Gregor Pante, Carsten Proppe, and John H. Marsham
Weather Clim. Dynam., 5, 511–536, https://doi.org/10.5194/wcd-5-511-2024, https://doi.org/10.5194/wcd-5-511-2024, 2024
Short summary
Short summary
Our research enhances the understanding of the complex dynamics within the West African monsoon system by analyzing the impact of specific model parameters on its characteristics. Employing surrogate models, we identified critical factors such as the entrainment rate and the fall velocity of ice. Precise definition of these parameters in weather models could improve forecast accuracy, thus enabling better strategies to manage and reduce the impact of weather events.
Kieran M. R. Hunt, Jean-Philippe Baudouin, Andrew G. Turner, A. P. Dimri, Ghulam Jeelani, Pooja, Rajib Chattopadhyay, Forest Cannon, T. Arulalan, M. S. Shekhar, T. P. Sabin, and Eliza Palazzi
EGUsphere, https://doi.org/10.5194/egusphere-2024-820, https://doi.org/10.5194/egusphere-2024-820, 2024
Short summary
Short summary
Western disturbances (WDs) are storms that predominantly affect north India and Pakistan during the winter months, where they play an important role in regional water security, but can also bring a range of natural hazards. In this review, we summarise recent literature across a range of topics: their structure and lifecycle, precipitation and impacts, interactions with large-scale weather patterns, representation in models, how well they are forecast, and their response to changes in climate.
Kieran M. R. Hunt
Weather Clim. Dynam., 5, 345–356, https://doi.org/10.5194/wcd-5-345-2024, https://doi.org/10.5194/wcd-5-345-2024, 2024
Short summary
Short summary
This study investigates changes in weather systems that bring winter precipitation to south Asia. We find that these systems, known as western disturbances, are occurring more frequently and lasting longer into the summer months. This shift is leading to devastating floods, as happened recently in north India. By analysing 70 years of weather data, we trace this change to shifts in major air currents known as the subtropical jet. Due to climate change, such events are becoming more frequent.
William J. Dow, Christine M. McKenna, Manoj M. Joshi, Adam T. Blaker, Richard Rigby, and Amanda C. Maycock
Weather Clim. Dynam., 5, 357–367, https://doi.org/10.5194/wcd-5-357-2024, https://doi.org/10.5194/wcd-5-357-2024, 2024
Short summary
Short summary
Changes to sea surface temperatures in the extratropical North Pacific are driven partly by patterns of local atmospheric circulation, such as the Aleutian Low. We show that an intensification of the Aleutian Low could contribute to small changes in temperatures across the equatorial Pacific via the initiation of two mechanisms. The effect, although significant, is unlikely to explain fully the recently observed multi-year shift of a pattern of climate variability across the wider Pacific.
Franco Molteni, Fred Kucharski, and Riccardo Farneti
Weather Clim. Dynam., 5, 293–322, https://doi.org/10.5194/wcd-5-293-2024, https://doi.org/10.5194/wcd-5-293-2024, 2024
Short summary
Short summary
We describe some new features of an intermediate-complexity coupled model, including a three-layer thermodynamic ocean model suitable to explore the extratropical response to tropical ocean variability. We present results on the model climatology and show that important features of interdecadal and interannual variability are realistically simulated in a
pacemakercoupled ensemble of 70-year runs, where portions of the tropical Indo-Pacific are constrained to follow the observed variability.
Molly E. Menzel, Darryn W. Waugh, Zheng Wu, and Thomas Reichler
Weather Clim. Dynam., 5, 251–261, https://doi.org/10.5194/wcd-5-251-2024, https://doi.org/10.5194/wcd-5-251-2024, 2024
Short summary
Short summary
Recent work exploring the tropical atmospheric circulation response to climate change has revealed a disconnect in the latitudinal location of two features, the subtropical jet and the Hadley cell edge. Here, we investigate if the surprising result from coupled climate model and meteorological reanalysis output is consistent across model complexity.
Julian F. Quinting, Christian M. Grams, Edmund Kar-Man Chang, Stephan Pfahl, and Heini Wernli
Weather Clim. Dynam., 5, 65–85, https://doi.org/10.5194/wcd-5-65-2024, https://doi.org/10.5194/wcd-5-65-2024, 2024
Short summary
Short summary
Research in the last few decades has revealed that rapidly ascending airstreams in extratropical cyclones have an important effect on the evolution of downstream weather and predictability. In this study, we show that the occurrence of these airstreams over the North Pacific is modulated by tropical convection. Depending on the modulation, known atmospheric circulation patterns evolve quite differently, which may affect extended-range predictions in the Atlantic–European region.
Hyunju Jung, Peter Knippertz, Yvonne Ruckstuhl, Robert Redl, Tijana Janjic, and Corinna Hoose
Weather Clim. Dynam., 4, 1111–1134, https://doi.org/10.5194/wcd-4-1111-2023, https://doi.org/10.5194/wcd-4-1111-2023, 2023
Short summary
Short summary
A narrow rainfall belt in the tropics is an important feature for large-scale circulations and the global water cycle. The accurate simulation of this rainfall feature has been a long-standing problem, with the reasons behind that unclear. We present a novel diagnostic tool that allows us to disentangle processes important for rainfall, which changes due to modifications in model. Using our diagnostic tool, one can potentially identify sources of uncertainty in weather and climate models.
Lina Boljka, Nour-Eddine Omrani, and Noel S. Keenlyside
Weather Clim. Dynam., 4, 1087–1109, https://doi.org/10.5194/wcd-4-1087-2023, https://doi.org/10.5194/wcd-4-1087-2023, 2023
Short summary
Short summary
This study examines quasi-periodic variability in the tropical Pacific on interannual timescales and related physics using a recently developed time series analysis tool. We find that wind stress in the west Pacific and recharge–discharge of ocean heat content are likely related to each other on ~1.5–4.5-year timescales (but not on others) and dominate variability in sea surface temperatures on those timescales. This may have further implications for climate models and long-term prediction.
Sam Hardy, John Methven, Juliane Schwendike, Ben Harvey, and Mike Cullen
Weather Clim. Dynam., 4, 1019–1043, https://doi.org/10.5194/wcd-4-1019-2023, https://doi.org/10.5194/wcd-4-1019-2023, 2023
Short summary
Short summary
We examine a Borneo vortex case using computer simulations and satellite observations. The vortex is identified with high humidity through the atmosphere and has heaviest rainfall on its northern flank. Simulations represent circulation and rainfall accumulation well. The low-level Borneo vortex is coupled with a higher-level wave, which moves westwards along a layer with a sharp vertical gradient in moisture. Vortex growth occurs through mechanisms usually considered outside the tropics.
Chiem van Straaten, Dim Coumou, Kirien Whan, Bart van den Hurk, and Maurice Schmeits
Weather Clim. Dynam., 4, 887–903, https://doi.org/10.5194/wcd-4-887-2023, https://doi.org/10.5194/wcd-4-887-2023, 2023
Short summary
Short summary
Variability in the tropics can influence weather over Europe. This study evaluates a summertime connection between the two. It shows that strongly opposing west Pacific sea surface temperature anomalies have occurred more frequently since 1980, likely due to a combination of long-term warming in the west Pacific and the El Niño Southern Oscillation. Three to six weeks later, the distribution of hot and cold airmasses over Europe is affected.
Francis Nkrumah, Cornelia Klein, Kwesi Akumenyi Quagraine, Rebecca Berkoh-Oforiwaa, Nana Ama Browne Klutse, Patrick Essien, Gandomè Mayeul Leger Davy Quenum, and Hubert Azoda Koffi
Weather Clim. Dynam., 4, 773–788, https://doi.org/10.5194/wcd-4-773-2023, https://doi.org/10.5194/wcd-4-773-2023, 2023
Short summary
Short summary
It is not yet clear which variations in broader atmospheric conditions of the West African monsoon may lead to mesoscale convective system (MCS) occurrences in southern West Africa (SWA). In this study, we identified nine different weather patterns and categorized them as dry-, transition-, or monsoon-season types using a method called self-organizing maps (SOMs). It was revealed that a warmer Sahel region can create favourable conditions for MCS formation in SWA.
Giorgia Di Capua, Dim Coumou, Bart van den Hurk, Antje Weisheimer, Andrew G. Turner, and Reik V. Donner
Weather Clim. Dynam., 4, 701–723, https://doi.org/10.5194/wcd-4-701-2023, https://doi.org/10.5194/wcd-4-701-2023, 2023
Short summary
Short summary
Heavy rainfall in tropical regions interacts with mid-latitude circulation patterns, and this interaction can explain weather patterns in the Northern Hemisphere during summer. In this analysis we detect these tropical–extratropical interaction pattern both in observational datasets and data obtained by atmospheric models and assess how well atmospheric models can reproduce the observed patterns. We find a good agreement although these relationships are weaker in model data.
Daniel Baldassare, Thomas Reichler, Piret Plink-Björklund, and Jacob Slawson
Weather Clim. Dynam., 4, 531–541, https://doi.org/10.5194/wcd-4-531-2023, https://doi.org/10.5194/wcd-4-531-2023, 2023
Short summary
Short summary
Using ensemble members from the ERA5 reanalysis, the most widely used method for estimating tropical-width trends, the meridional stream function, was found to have large error, particularly in the Northern Hemisphere and in the summer, because of weak gradients at the tropical edge and poor data quality. Another method, using the latitude where the surface wind switches from westerly to easterly, was found to have lower error due to better-observed data.
Nele Tim, Eduardo Zorita, Birgit Hünicke, and Ioana Ivanciu
Weather Clim. Dynam., 4, 381–397, https://doi.org/10.5194/wcd-4-381-2023, https://doi.org/10.5194/wcd-4-381-2023, 2023
Short summary
Short summary
As stated by the IPCC, southern Africa is one of the two land regions that are projected to suffer from the strongest precipitation reductions in the future. Simulated drying in this region is linked to the adjacent oceans, and prevailing winds as warm and moist air masses are transported towards the continent. Precipitation trends in past and future climate can be partly attributed to the strength of the Agulhas Current system, the current along the east and south coasts of southern Africa.
William Torgerson, Juliane Schwendike, Andrew Ross, and Chris J. Short
Weather Clim. Dynam., 4, 331–359, https://doi.org/10.5194/wcd-4-331-2023, https://doi.org/10.5194/wcd-4-331-2023, 2023
Short summary
Short summary
We investigated intensity fluctuations that occurred during the rapid intensification of Hurricane Irma (2017) to understand their effects on the storm structure. Using high-resolution model simulations, we found that the fluctuations were caused by local regions of strong ascent just outside the eyewall that disrupted the storm, leading to a larger and more symmetrical storm eye. This alters the location and intensity of the strongest winds in the storm and hence the storm's impact.
Anne Martin, Martin Weissmann, and Alexander Cress
Weather Clim. Dynam., 4, 249–264, https://doi.org/10.5194/wcd-4-249-2023, https://doi.org/10.5194/wcd-4-249-2023, 2023
Short summary
Short summary
Global wind profiles from the Aeolus satellite mission are an important recent substitute for the Global Observing System, showing an overall positive impact on numerical weather prediction forecasts. This study highlights atmospheric dynamic phenomena constituting pathways for significant improvement of Aeolus for future studies, including large-scale tropical circulation systems and the interaction of tropical cyclones undergoing an extratropical transition with the midlatitude waveguide.
Elliott Michael Sainsbury, Reinhard K. H. Schiemann, Kevin I. Hodges, Alexander J. Baker, Len C. Shaffrey, Kieran T. Bhatia, and Stella Bourdin
Weather Clim. Dynam., 3, 1359–1379, https://doi.org/10.5194/wcd-3-1359-2022, https://doi.org/10.5194/wcd-3-1359-2022, 2022
Short summary
Short summary
Post-tropical cyclones (PTCs) can bring severe weather to Europe. By tracking and identifying PTCs in five global climate models, we investigate how the frequency and intensity of PTCs may change across Europe by 2100. We find no robust change in the frequency or intensity of Europe-impacting PTCs in the future. This study indicates that large uncertainties surround future Europe-impacting PTCs and provides a framework for evaluating PTCs in future generations of climate models.
Kieran M. R. Hunt and Andrew G. Turner
Weather Clim. Dynam., 3, 1341–1358, https://doi.org/10.5194/wcd-3-1341-2022, https://doi.org/10.5194/wcd-3-1341-2022, 2022
Short summary
Short summary
More than half of India's summer monsoon rainfall arises from low-pressure systems: storms originating over the Bay of Bengal. In observation-based data, we examine how the generation and pathway of these storms are changed by the
boreal summer intraseasonal oscillation– the chief means of large-scale control on the monsoon at timescales of a few weeks. Our study offers new insights for useful prediction of these storms, important for both water resources planning and disaster early warning.
Cornelius Immanuel Weiß, Alexander Gohm, Mathias Walter Rotach, and Thomas Torora Minda
Weather Clim. Dynam., 3, 1003–1019, https://doi.org/10.5194/wcd-3-1003-2022, https://doi.org/10.5194/wcd-3-1003-2022, 2022
Short summary
Short summary
Two gap flow events in the Great Rift Valley in Ethiopia were investigated based on observations, ERA5 reanalysis data, and simulations with the numerical weather prediction model WRF. The main focus was on strong winds in the area around Lake Abaya since the winds may generate waves on the lake which help to sustain the lake's ecology. That is important in terms of food supply for the local population. The gap winds exhibit a diurnal cycle and a seasonal dependence.
Matic Pikovnik, Žiga Zaplotnik, Lina Boljka, and Nedjeljka Žagar
Weather Clim. Dynam., 3, 625–644, https://doi.org/10.5194/wcd-3-625-2022, https://doi.org/10.5194/wcd-3-625-2022, 2022
Short summary
Short summary
Potential future changes in the Hadley cells (HCs), either to their strength or their meridional extent, will profoundly impact the global distribution of precipitation. Therefore, to objectively evaluate and inter-compare past and future changes in the overall HC strength between different studies, a unified metric is required. The study proposes two new metrics, which alleviate the spatial inhomogeneities of the HC strength trend.
Ambrogio Volonté, Andrew G. Turner, Reinhard Schiemann, Pier Luigi Vidale, and Nicholas P. Klingaman
Weather Clim. Dynam., 3, 575–599, https://doi.org/10.5194/wcd-3-575-2022, https://doi.org/10.5194/wcd-3-575-2022, 2022
Short summary
Short summary
In this study we analyse the complex seasonal evolution of the East Asian summer monsoon. Using reanalysis data, we show the importance of the interaction between tropical and extratropical air masses converging at the monsoon front, particularly during its northward progression. The upper-level flow pattern (e.g. the westerly jet) controls the balance between the airstreams and thus the associated rainfall. This framework provides a basis for studies of extreme events and climate variability.
Peter Pfleiderer, Shruti Nath, and Carl-Friedrich Schleussner
Weather Clim. Dynam., 3, 471–482, https://doi.org/10.5194/wcd-3-471-2022, https://doi.org/10.5194/wcd-3-471-2022, 2022
Short summary
Short summary
Tropical cyclones are amongst the most dangerous weather events. Here we develop an empirical model that allows us to estimate the number and strengths of tropical cyclones for given atmospheric conditions and sea surface temperatures. An application of the model shows that atmospheric circulation is the dominant factor for seasonal tropical cyclone activity. However, warming sea surface temperatures have doubled the likelihood of extremely active hurricane seasons in the past decades.
Jean-Philippe Baudouin, Michael Herzog, and Cameron A. Petrie
Weather Clim. Dynam., 2, 1187–1207, https://doi.org/10.5194/wcd-2-1187-2021, https://doi.org/10.5194/wcd-2-1187-2021, 2021
Short summary
Short summary
Western disturbances are mid-latitude, high-altitude, low-pressure areas that bring orographic precipitation into the Upper Indus Basin. Using statistical tools, we show that the interaction between western disturbances and relief explains the near-surface, cross-barrier wind activity. We also reveal the existence of a moisture pathway from the nearby seas. Overall, we offer a conceptual framework for western-disturbance activity, particularly in terms of precipitation.
Anantha Aiyyer and Terrell Wade
Weather Clim. Dynam., 2, 1051–1072, https://doi.org/10.5194/wcd-2-1051-2021, https://doi.org/10.5194/wcd-2-1051-2021, 2021
Short summary
Short summary
We diagnose the mean circulations in the extratropics that are associated with rapid changes in the tropical storm storm speeds in the Atlantic. We show that rapid acceleration and deceleration are associated with distinct phasing between the tropical cyclone and weather waves of the extratropics. Over the past 5 decades, rapid acceleration and deceleration of tropical cyclones have reduced in magnitude. This might be related to the poleward shift and weakening of these extratropical waves.
Julianna Carvalho-Oliveira, Leonard Friedrich Borchert, Aurélie Duchez, Mikhail Dobrynin, and Johanna Baehr
Weather Clim. Dynam., 2, 739–757, https://doi.org/10.5194/wcd-2-739-2021, https://doi.org/10.5194/wcd-2-739-2021, 2021
Short summary
Short summary
This work questions the influence of the Atlantic Meridional Overturning Circulation, an important component of the climate system, on the variability in North Atlantic sea surface temperature (SST) a season ahead, particularly how this influence affects SST prediction credibility 2–4 months into the future. While we find this relationship is relevant for assessing SST predictions, it strongly depends on the time period and season we analyse and is more subtle than what is found in observations.
Andrea M. Jenney, David A. Randall, and Elizabeth A. Barnes
Weather Clim. Dynam., 2, 653–673, https://doi.org/10.5194/wcd-2-653-2021, https://doi.org/10.5194/wcd-2-653-2021, 2021
Short summary
Short summary
Storm activity in the tropics is one of the key phenomena that provide weather predictability on an extended timescale of about 10–40 d. The influence of tropical storminess on places like North America is sensitive to the overall average state of the climate system. In this study, we try to unpack the reasons why climate models do not agree on how the influence of these storms on weather over the North Pacific and North America will change in the future.
Philip Rupp and Peter Haynes
Weather Clim. Dynam., 2, 413–431, https://doi.org/10.5194/wcd-2-413-2021, https://doi.org/10.5194/wcd-2-413-2021, 2021
Short summary
Short summary
We study a range of dynamical aspects of the Asian monsoon anticyclone as the response of a simple numerical model to a steady imposed heating distribution with different background flow configurations. Particular focus is given on interactions between the monsoon anticyclone and active mid-latitude dynamics, which we find to have a zonally localising effect on the time-mean circulation and to be able to qualitatively alter the temporal variability of the bulk anticyclone.
Joshua White and Anantha Aiyyer
Weather Clim. Dynam., 2, 311–329, https://doi.org/10.5194/wcd-2-311-2021, https://doi.org/10.5194/wcd-2-311-2021, 2021
Short summary
Short summary
Using a simple general circulation model, we examine the structure of waves in the mid-tropospheric jet over North Africa. We show that waves occur in near-stationary groups or wave packets. As they are not swept out of the jet, this may provide the opportunity for the packets to amplify via feedback from other energy sources like rain-producing cloud complexes and mineral dust that are known to operate here. Our results address the criticism that the easterly jet is too short to sustain waves.
Franziska Aemisegger, Raphaela Vogel, Pascal Graf, Fabienne Dahinden, Leonie Villiger, Friedhelm Jansen, Sandrine Bony, Bjorn Stevens, and Heini Wernli
Weather Clim. Dynam., 2, 281–309, https://doi.org/10.5194/wcd-2-281-2021, https://doi.org/10.5194/wcd-2-281-2021, 2021
Short summary
Short summary
The interaction of clouds in the trade wind region with the atmospheric flow is complex and at the heart of uncertainties associated with climate projections. In this study, a natural tracer of atmospheric circulation is used to establish a link between air originating from dry regions of the midlatitudes and the occurrence of specific cloud patterns. Two pathways involving transport within midlatitude weather systems are identified, by which air is brought into the trades within 5–10 d.
Giorgia Di Capua, Jakob Runge, Reik V. Donner, Bart van den Hurk, Andrew G. Turner, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Weather Clim. Dynam., 1, 519–539, https://doi.org/10.5194/wcd-1-519-2020, https://doi.org/10.5194/wcd-1-519-2020, 2020
Short summary
Short summary
We study the interactions between the tropical convective activity and the mid-latitude circulation in the Northern Hemisphere during boreal summer. We identify two circumglobal wave patterns with phase shifts corresponding to the South Asian and the western North Pacific monsoon systems at an intra-seasonal timescale. These patterns show two-way interactions in a causal framework at a weekly timescale and assess how El Niño affects these interactions.
Benjamin A. Stephens and Charles S. Jackson
Weather Clim. Dynam., 1, 389–404, https://doi.org/10.5194/wcd-1-389-2020, https://doi.org/10.5194/wcd-1-389-2020, 2020
Short summary
Short summary
We analyze abrupt transitions between tropical rainfall regimes in a single-column model (SCM) of the tropical atmosphere. Multiple equilibria have been observed before in SCMs, but here we analyze actual bifurcations. We attribute the transitions to a sudden loss of evaporative cooling in the lower column due to nonlinearities in microphysics. This study may have implications for atmospheric dynamics more broadly but also for understanding abrupt transitions in paleoclimate.
Jorge L. García-Franco, Lesley J. Gray, and Scott Osprey
Weather Clim. Dynam., 1, 349–371, https://doi.org/10.5194/wcd-1-349-2020, https://doi.org/10.5194/wcd-1-349-2020, 2020
Short summary
Short summary
The American monsoon system is the main source of rainfall for the subtropical Americas and an important element of Latin American agriculture. Here we use state-of-the-art climate models from the UK Met Office in different configurations to analyse the performance of these models in the American monsoon. Resolution is found to be a key factor to improve monsoon representation, whereas integrated chemistry does not improve the simulated monsoon rainfall.
Cited articles
Amol, P., Vinayachandran, P. N., Shankar, D., Thushara, V., Vijith, V.,
Chatterjee, A., and Kankonkar, A.: Effect of freshwater advection and winds
on the vertical structure of chlorophyll in the northern Bay of
Bengal, Deep-Sea Res. Pt. II,
https://doi.org/10.1016/j.dsr2.2019.07.010, 2019.
Bernie, D. J., Woolnough, S. J., Slingo, J. M., and Guilyardi, E.: Modeling
diurnal and intraseasonal variability of the ocean mixed layer, J.
Climate, 18, 1190–1202, https://doi.org/10.1175/JCLI3319.1, 2005.
Bernie, D. J., Guilyardi, E., Madec, G., Slingo, J. M., Woolnough, S. J.,
and Cole, J.: Impact of resolving the diurnal cycle in an ocean–atmosphere
GCM. Part 2: A diurnally coupled CGCM, Clim. Dynam., 31, 909–925,
https://doi.org/10.1007/s00382-008-0429-z, 2008.
Blondeau-Patissier, D., Gower, J. F., Dekker, A. G., Phinn, S. R., and
Brando, V. E.: A review of ocean color remote sensing methods and
statistical techniques for the detection, mapping and analysis of
phytoplankton blooms in coastal and open oceans, Prog.
Oceanogr., 123, 123–144, https://linkinghub.elsevier.com/retrieve/pii/
S0079661114000020, 2014.
Boss, E., Slade, W., and Hill, P.: Effect of particulate aggregation in
aquatic environments on the beam attenuation and its utility as a proxy for
particulate mass, Opt. Express, 17, 9408–9420,
https://doi.org/10.1364/OE.17.009408, 2009.
Chang, G. C. and Dickey, T. D.: Coastal ocean optical influences on solar
transmission and radiant heating rate, J. Geophys. Res., 109, C01020,
https://https://doi.org/10.1029/2003JC001821, 2004.
Ding, Q. and Wang, B.: Circumglobal teleconnection in the Northern
Hemisphere summer, J. Climate, 18, 3483–3505,
https://doi.org/10.1175/JCLI3473.1, 2005.
Duncan, B. and Han, W.: Indian Ocean intraseasonal sea surface temperature
variability during boreal summer: Madden-Julian Oscillation versus
submonthly forcing and processes, J. Geophys. Res.-Oceans, 114, C05002,
https://doi.org/10.1029/2008JC004958, 2009.
Franz, B. A., Bailey, S. W., Werdell, P. J., and McClain, C. R.: Sensor-independent approach to the
vicarious calibration of satellite ocean color radiometry, Appl. Opt., 46, 5068–5082,
https://doi.org/10.1364/ao.46.005068, 2007 (data available at: https://oceancolor.gsfc.nasa.gov, last
access: 9 August 2020).
Franz, B. A., Kwiatowska, E. J., Meister, G., and McClain, C. R.: Moderate
Resolution Imaging Spectroradiometer on Terra: limitations for ocean color
applications, J. Appl. Remote Sens., 2, 023525,
https://doi.org/10.1117/1.2957964, 2008.
Giddings, J.: MetUM-GOML3.0 Chlorophyll Perturbation Datasets, figshare,
https://doi.org/10.6084/m9.figshare.13084052, 2020.
Girishkumar, M. S., Ravichandran, M., McPhaden, M. J., and Rao, R. R.:
Intraseasonal variability in barrier layer thickness in the south central
Bay of Bengal, J. Geophys. Res.-Oceans, 116, C03009,
https://doi.org/10.1029/2010JC006657, 2011.
Gnanadesikan, A. and Anderson, W. G.: Ocean water clarity and the ocean
general circulation in a coupled climate model, J. Phys. Oceanogr., 39,
314–332, https://doi.org/10.1175/2008JPO3935.1, 2009.
Gomes, H. R., Goes, J. I., and Saino, T.: Influence of physical processes
and freshwater discharge on the seasonality of phytoplankton regime in the
Bay of Bengal, Cont. Shelf Res., 20, 313–330,
https://doi.org/10.1016/S0278-4343(99)00072-2, 2000.
Hill, V. J.: Impacts of chromophoric dissolved organic material on surface
ocean heating in the Chukchi Sea, J. Geophys. Res., 113, C07024,
https://https://doi.org/10.1029/2007JC004119, 2008.
Hirons, L. C., Klingaman, N. P., and Woolnough, S. J.: MetUM-GOML1: a near-globally coupled atmosphere–ocean-mixed-layer model, Geosci. Model Dev., 8, 363–379, https://doi.org/10.5194/gmd-8-363-2015, 2015.
Hu, K., Huang, G., Qu, X., and Huang, R.: The impact of Indian Ocean
variability on high temperature extremes across the southern Yangtze River
valley in late summer, Adv. Atmos. Sci., 29, 91–100,
https://doi.org/10.1007/s00376-011-0209-2, 2012a.
Hu, C., Lee, Z., and Bryan, F.: Chlorophyll a algorithms for oligotrophic
oceans: A novel approach based on three-band reflectance difference, J.
Geophys. Res.-Oceans, 117, C01011, https://doi.org/10.1029/2011JC007395,
2012b.
Hu, C., Feng, L., Lee, Z., Franz, B. A., Bailey, S. W., Werdell, P. J., and
Proctor, C. W.: Improving satellite global chlorophyll a data products
through algorithm refinement and data recovery, J. Geophys. Res.-Oceans,
124, 1524–1543, https://doi.org/10.1029/2019JC014941, 2019.
Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G. J., Nelkin E. J.,
Bowman, K. P., Hoong, Y., Stocker, E. F., and Wolff, D. B.: The TRMM
multisatellite precipitation analysis (TMPA): Quasi-global, multiyear,
combined-sensor precipitation estimates at fine scales, J. Hydrometeorol.,
8, 38–55, https://doi.org/10.1175/JHM560.1, 2007 (data available at: https://disc.gsfc.nasa.gov/datasets?keywords=precipitation, last access: 31 July 2019).
Huisman, J., Pham Thi, N. N., Karl, D. M., and Sommeijer, B.: Reduced mixing
generates oscillations and chaos in the oceanic deep chlorophyll maximum,
Nature, 439, 322–325, 2006.
Jana, S., Gangopadhyay, A., and Chakraborty, A.: Impact of seasonal river
input on the Bay of Bengal simulation, Cont. Shelf Res., 104, 45–62,
https://doi.org/10.1016/j.csr.2015.05.001, 2015.
Jerlov, N. G.: Optical oceanography, Oceanography Series 5, Elsevier
Publishing Company, Amsterdam, the Netherlands, 1968.
Ju, J. and Slingo, J.: The Asian summer monsoon and ENSO, Q. J. Roy.
Meteor. Soc., 121, 1133–1168, https://doi.org/10.1002/qj.49712152509, 1995.
Kim, G. E., Gnanadesikan, A., DelCastillo, C. E., and Pradal, M.-A.: Upper
ocean cooling in a coupled climate model due to light attenuation by
yellowing materials, Geophys. Res. Lett., 45, 6134–6140,
https://doi.org/10.1029/2018GL077297, 2018.
Klingaman, N. P., Woolnough, S. J., Weller, H., and Slingo, J. M.: The
impact of finer-resolution air–sea coupling on the intraseasonal
oscillation of the Indian monsoon, J. Climate, 24, 2451–2468,
https://doi.org/10.1175/2010JCLI3868.1, 2011.
Kuehl, S. A., Levy, B. M., Moore, W. S., and Allison, M. A.: Subaqueous
delta of the Ganges-Brahmaputra river system, Mar. Geol., 144, 81–96,
https://doi.org/10.1016/S0025-3227(97)00075-3, 1997.
Kumar, S. P., Muraleedharan, P. M., Prasad, T. G., Gauns, M., Ramaiah, N.,
de Souza, S. N., Sardesai, S., and Madhupratap, M.: Why is the Bay of Bengal
less productive during summer monsoon compared to the Arabian Sea?, Geophys.
Res. Lett., 29, 2235, https://doi.org/10.1029/2002GL016013, 2002.
Kumar, S. P., Nuncio, M., Ramaiah, N., Sardesai, S., Narvekar, J.,
Fernandes, V., and Paul, J. T.: Eddy-mediated biological productivity in the
Bay of Bengal during fall and spring intermonsoons, Deep-Sea Res. Pt. I, 54, 1619–1640,
https://doi.org/10.1016/j.dsr.2007.06.002, 2007.
Kumar, S. P., Narvekar, J., Nuncio, M., Kumar, A., Ramaiah, N., Sardesai,
S., Gauns, M., Fernandes, V., and Paul, J.: Is the biological productivity
in the Bay of Bengal light limited?, Curr. Sci., 98, 1331–1339,
2010.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing:
A review and a model with a nonlocal boundary layer parameterization, Rev.
Geophys., 32, 363, https://doi.org/10.1029/94RG01872, 1994.
Lévy, M., Shankar, D., André, J.-M., Shenoi, S. S. C., Durand, F.,
and de Boyer Montégut, C.: Basin-wide seasonal evolution of the Indian
Ocean's phytoplankton blooms, J. Geophys. Res.-Oceans, 112, C12014,
https://doi.org/10.1029/2007JC004090, 2007.
Lewis, M. R., Carr, M.-E., Feldman, G. C., Esaias, W., and McClain, C.:
Influence of penetrating solar radiation on the heat budget of the
equatorial Pacific Ocean, Nature, 347, 543–545,
https://doi.org/10.1038/347543a0, 1990.
Li, C. and Yanai, M.: The onset and interannual variability of the Asian
summer monsoon in relation to land-sea thermal contrast, J. Climate, 9,
358–375, https://doi.org/10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2, 1996.
Lin, J.-L., Weickman, K. M., Kiladis, G. N., Mapes, B. E., Schubert, S. D.,
Suarez, M. J., Bacmeister, J. T., and Lee, M.-I.: Subseasonal variability
associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled
GCMs, J. Climate, 21, 4541–4567, https://doi.org/10.1175/2008JCLI1816.1,
2008.
Lotliker, A. A., Omand, M. M., Lucas, A. J., Laney, S. R., Mahadevan, A.,
and Ravichandran, M.: Penetrative radiative flux in the Bay of
Bengal, Oceanogr., 29, 214–221, https://doi.org/10.5670/oceanog.2016.53,
2016.
Manizza, M., Quéré, C. L., Watson, A. J., and Buitenhuis, E. T.:
Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice
in a global model, Geophys. Res. Lett., 32, L05603,
https://doi.org/10.1029/2004GL020778, 2005.
McCreary, J. P., Murtugudde, R., Vialard, J., Vinayachandran, P. N.,
Wiggert, J. D., Hood, R. R., Shankar, D., and Shetye, S.: Biophysical
processes in the Indian Ocean, Indian Ocean biogeochemical processes and
ecological variability, 185, 9–32, https://doi.org/10.1029/2008GM000768,
2009.
Meister, G. and Franz, B. A.: Corrections to the MODIS aqua calibration
derived from MODIS aqua ocean color products, IEEE T.
Geosci. Remote, 52, 6534–6541,
https://doi.org/10.1109/TGRS.2013.2297233, 2014.
Morel, A.: Optical modeling of the upper ocean in relation to its biogenous
matter content (case I waters), J. Geophys. Res.-Oceans, 93, 10749–10768,
https://doi.org/10.1029/JC093iC09p10749, 1988.
Morel, A. and Antoine, D.: Heating Rate within the Upper Ocean in Relation
to its Bio-optical State, J. Phys. Oceanogr., 24, 1652–1665,
1994.
Morel, A., Huot, Y., Gentili, B., Werdell, P. J., Hooker, S. B., and Franz,
B. A.: Examining the consistency of products derived from various ocean
color sensors in open ocean (Case 1) waters in the perspective of a
multi-sensor approach, Remote Sens. Environ., 111, 69–88,
https://doi.org/10.1016/j.rse.2007.03.012, 2007.
Murtugudde, R., Beauchamp, J., McClain, C. R., Lewis, M., and Busalacchi, A.
J.: Effects of penetrative radiation on the upper tropical ocean
circulation, J. Climate, 15, 470–486,
2002.
Nakamoto, S., Kumar, S. P., Oberhuber, J. M., Muneyama, K., and Frouin, R.:
Chlorophyll modulation of sea surface temperature in the Arabian Sea in a
mixed-layer isopycnal general circulation model, Geophys. Res. Lett., 27,
747–750, https://doi.org/10.1029/1999GL002371, 2000.
Nakamoto, S., Kumar, S. P., Oberhuber, J. M., Ishizaka, J., Muneyama, K.,
and Frouin, R.: Response of the equatorial Pacific to chlorophyll pigment in
a mixed layer isopycnal ocean general circulation model, Geophys. Res.
Lett., 28, 2021–2024, https://doi.org/10.1029/2000GL012494, 2001.
Narvekar, J., and Kumar, S. P.: Seasonal variability of the mixed layer in
the central Bay of Bengal and associated changes in nutrients and
chlorophyll. Deep-Sea Res. Pt. I, 53, 820–835,
https://doi.org/10.1016/j.dsr.2006.01.012, 2006.
O'Reilly, J. E., Maritorena, S., O'brien, M. C., Siegel, D. A., Toole, D.,
Menzies, D., Smith, R. C., Mueller, J. L., Mitchell, B. G., Kahru, M., and
Chavez, F. P.: SeaWiFS postlaunch calibration and validation analyses, part
3, NASA tech. memo., 11, 2000–206892, available at:
https://oceancolor.gsfc.nasa.gov/docs/technical/seawifs_reports/postlaunch/post_vol11_abs/ (last access: 9 June 2020), 2000.
Pandi, S. R., Kiran, R., Sarma, N. S., Srikanth, A. S., Sarma, V. V. S. S.,
Krishna, M. S., Bandyopadhyay, D., Prasad, V. R., Acharyya, T., and Reddy,
K. G.: Contrasting phytoplankton community structure and associated light
absorption characteristics of the western Bay of Bengal, Ocean Dynam., 64,
89–101, https://doi.org/10.1007/s10236-013-0678-1, 2014.
Park, J.-Y. and Kug, J.-S.: Marine biological feedback associated with
Indian Ocean Dipole in a coupled ocean/biogeochemical model, Clim. Dynam., 42,
329–343, https://doi.org/10.1007/s00382-012-1640-5, 2014.
Patra, P. K., Kumar, M. D., Mahowald, N., and Sarma, V. V. S. S.:
Atmospheric deposition and surface stratification as controls of contrasting
chlorophyll abundance in the North Indian Ocean, J. Geophys.
Res.-Oceans, 112, C05029, https://doi.org/10.1029/2006JC003885, 2007.
Patara, L., Vichi, M., Masina, S., Fogli, P. G., and Manzini, E.: Global
response to solar radiation absorbed by phytoplankton in a coupled climate
model, Clim. Dynam., 39, 1951–1968,
https://doi.org/10.1007/s00382-012-1300-9, 2012.
Paulson, C. A. and Simpson, J. J.: Irradiance measurements in the upper
ocean, J. Phys. Oceanogr., 7, 952–956,
1977.
Peatman, S. C. and Klingaman, N. P.: The Indian summer monsoon in MetUM-GOML2.0: effects of air–sea coupling and resolution, Geosci. Model Dev., 11, 4693–4709, https://doi.org/10.5194/gmd-11-4693-2018, 2018.
Pramanik, S., Sil, S., Gangopadhyay, A., Singh, M. K., and Behera, N.:
Interannual variability of the chlorophyll-a concentration over Sri Lankan
Dome in the Bay of Bengal, Int. J. Remote Sens., 41,
1–18, https://doi.org/10.1080/01431161.2020.1727057,
2020.
Rao, R. R. and Sivakumar, R.: Seasonal variability of sea surface salinity
and salt budget of the mixed layer of the north Indian Ocean, J. Geophys.
Res.-Oceans, 108, 3009, https://doi.org/10.1029/2001JC000907, 2003.
Sengupta, D., Bharath Raj, G. N., Ravichandran, M., Sree Lekha, J., and
Papa, F.: Near-surface salinity and stratification in the north Bay of
Bengal from moored observations, Geophys. Res. Lett., 43, 4448–4456,
https://doi.org/10.1002/2016GL068339, 2016.
Shee, A., Sil, S., Gangopadhyay, A., Gawarkiewicz, G., and Ravichandran, M.:
Seasonal evolution of oceanic upper layer processes in the northern Bay of
Bengal following a single Argo float, Geophys. Res. Lett., 46, 5369–5377,
https://doi.org/10.1029/2019GL082078, 2019.
Shell, K. M., Frouin, R., Nakamoto, S., and Somerville, R. C. J.:
Atmospheric response to solar radiation absorbed by phytoplankton, J.
Geophys. Res.-Atmos., 108, 4445, https://doi.org/10.1029/2003JD003440,
2003.
Shenoi, S. S. C., Shankar, D., and Shetye, S. R.: Differences in heat
budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for
the summer monsoon, J. Geophys. Res.-Oceans, 107, 3052,
https://doi.org/10.1029/2000JC000679, 2002.
Smith, D. M. and Murphy, J. M.: An objective ocean temperature and salinity
analysis using covariances from a global climate model, J. Geophys
Res.-Oceans, 112, C02022, https://doi.org/10.1029/2005JC003172, 2007.
Sperber, K. R., Annamalai, H., Kang, I.-S., Kitoh, A., Moise, A., Turner,
A., Wang, B., and Zhou, T.: The Asian summer monsoon: an intercomparison of
CMIP5 vs. CMIP3 simulations of the late 20th century, Clim. Dynam., 41,
2711–2744, https://doi.org/10.1007/s00382-012-1607-6, 2013.
Sprintall, J. and Tomczak, M.: Evidence of the barrier layer in the surface
layer of the tropics, J. Geophys. Res.-Oceans, 97, 7305–7316,
https://doi.org/10.1029/92JC00407, 1992.
Stephan, C. C., Klingaman, N. P., and Turner, A. G.: A mechanism for the
recently increased interdecadal variability of the silk road pattern, J.
Climate, 32, 717–736, https://doi.org/10.1175/JCLI-D-18-0405.1, 2019.
Thompson, V., Dunstone, N. J., Scaife, A. A., Smith, D. M., Hardiman, S. C.,
Ren, H. L., Lu, B., and Belcher, S. E.: Risk and dynamics of unprecedented
hot months in South East China, Clim. Dynam., 52, 2585–2596,
https://doi.org/10.1007/s00382-018-4281-5, 2019.
Thushara, V., Vinayachandran, P. N. M., Matthews, A. J., Webber, B. G. M., and Queste, B. Y.: Vertical distribution of chlorophyll in dynamically distinct regions of the southern Bay of Bengal, Biogeosciences, 16, 1447–1468, https://doi.org/10.5194/bg-16-1447-2019, 2019.
Tilstone, G. H., Angel-Benavides, I. M., Pradhan, Y., Shutler, J. D., Groom,
S., and Sathyendranath, S.: An assessment of chlorophyll-a algorithms
available for SeaWiFS in coastal and open areas of the Bay of Bengal and
Arabian Sea, Remote Sens. Environ., 115, 2277–2291,
https://doi.org/10.1016/j.rse.2011.04.028, 2011.
Tilstone, G. H., Lotliker, A. A., Miller, P. I., Ashraf, P. M., Kumar, T.
S., Suresh, T., Ragavan, B. R., and Menon, H. B.: Assessment of MODIS-Aqua
chlorophyll-a algorithms in coastal and shelf waters of the eastern Arabian
Sea, Cont. Shelf Res., 65, 14–26, https://doi.org/10.1016/j.csr.2013.06.003, 2013.
Turner, A. G., Joshi, M., Robertson, E. S., and Woolnough, S. J.: The effect
of Arabian Sea optical properties on SST biases and the South Asian summer
monsoon in a coupled GCM, Clim. Dynam., 39, 811–826,
https://doi.org/10.1007/s00382-011-1254-3, 2012.
Valcke, S.: The OASIS3 coupler: a European climate modelling community software, Geosci. Model Dev., 6, 373–388, https://doi.org/10.5194/gmd-6-373-2013, 2013.
Vecchi, G. A. and Harrison, D. E.: Monsoon breaks and subseasonal sea
surface temperature variability in the Bay of Bengal, J. Climate, 15,
1485–1493,
2002.
Vinayachandran, P. N. and Yamagata, T.: Monsoon response of the sea around
Sri Lanka: generation of thermal domes and anticyclonic vortices, J. Phys.
Oceanogr., 28, 1946–1960,
1998.
Vinayachandran, P. N., Murty, V. S. N., and Ramesh Babu, V.: Observations of
barrier layer formation in the Bay of Bengal during summer monsoon, J.
Geophys. Res.-Oceans, 107, 8018, https://doi.org/10.1029/2001JC000831, 2002.
Vinayachandran, P. N. and Mathew, S.: Phytoplankton bloom in the Bay of
Bengal during the northeast monsoon and its intensification by
cyclones, Geophys. Res. Lett., 30, 1572,
https://doi.org/10.1029/2002GL016717, 2003.
Vinayachandran, P. N., Chauhan, P., Mohan, M., and Nayak, S.: Biological
response of the sea around Sri Lanka to summer monsoon, Geophys. Res.
Lett., 31, L01302, https://doi.org/10.1029/2003GL018533, 2004.
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019.
Wang, M., Knobelspiesse, K. D., and McClain, C. R.: Study of the Sea-Viewing
Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean
in combination with the ocean color products, J. Geophys.
Res.-Atmos., 110, D10S06, https://doi.org/10.1029/2004JD004950, 2005.
Wang, M. and Son, S.: VIIRS-derived chlorophyll-a using the ocean color
index method, Remote Sens. Environ., 182, 141–149,
https://doi.org/10.1016/j.rse.2016.05.001, 2016.
Webber, B. G. M., Matthews, A. J., Vinayachandran, P. N., Neema, C. P.,
Sanchez-Franks, A., Vijith, V., Amol, P., and Baranowski, D. B.: The
dynamics of the Southwest Monsoon current in 2016 from high-resolution in
situ observations and model, J. Phys. Oceanogr., 48, 2259–2282,
https://doi.org/10.1175/JPO-D-17-0215.1, 2018.
Webster, P. J., Magaña, V. O., Palmer, T. N., Shukla, J., Tomas, R. A.,
Yanai, M., and Yasunari, T.: Monsoons: Processes, predictability, and the
prospects for prediction, J. Geophys. Res.-Ocean, 103, 14451–14510,
https://doi.org/10.1029/97JC02719, 1998.
Wetzel, P., Maier-Reimer, E., Botzet, M., Jungclaus, J., Keenlyside, N., and
Latif, M.: Effects of ocean biology on the penetrative radiation in a
coupled climate model, J. Climate, 19, 3973–3987,
https://doi.org/10.1175/JCLI3828.1, 2006.
Zaneveld, J. R. V., Kitchen, J. C., and Pak, H.: The influence of optical
water type on the heating rate of a constant depth mixed layer, J. Geophys.
Res.-Oceans, 86, 6426–6428, https://doi.org/10.1029/JC086iC07p06426, 1981.
Short summary
The impact of chlorophyll on the southwest monsoon is unknown. Here, seasonally varying chlorophyll in the Bay of Bengal was imposed in a general circulation model coupled to an ocean mixed layer model. The SST increases by 0.5 °C in response to chlorophyll forcing and shallow mixed layer depths in coastal regions during the inter-monsoon. Precipitation increases significantly to 3 mm d-1 across Myanmar during June and over northeast India and Bangladesh during October, decreasing model bias.
The impact of chlorophyll on the southwest monsoon is unknown. Here, seasonally varying...