Articles | Volume 1, issue 2
https://doi.org/10.5194/wcd-1-635-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-1-635-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The effect of seasonally and spatially varying chlorophyll on Bay of Bengal surface ocean properties and the South Asian monsoon
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Adrian J. Matthews
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences and School of Mathematics, University of East Anglia, Norwich, NR4
7TJ, UK
Nicholas P. Klingaman
National Centre for Atmospheric Science–Climate and Department of
Meteorology, University of Reading, Reading, RG6 6BB, UK
Karen J. Heywood
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Manoj Joshi
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Benjamin G. M. Webber
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Related authors
Jack Giddings, Karen J. Heywood, Adrian J. Matthews, Manoj M. Joshi, Benjamin G. M. Webber, Alejandra Sanchez-Franks, Brian A. King, and Puthenveettil N. Vinayachandran
Ocean Sci., 17, 871–890, https://doi.org/10.5194/os-17-871-2021, https://doi.org/10.5194/os-17-871-2021, 2021
Short summary
Short summary
Little is known about the impact of chlorophyll on SST in the Bay of Bengal (BoB). Solar irradiance measured by an ocean glider and three Argo floats is used to determine the effect of chlorophyll on BoB SST during the 2016 summer monsoon. The Southwest Monsoon Current has high chlorophyll concentrations (∼0.5 mg m−3) and shallow solar penetration depths (∼14 m). Ocean mixed layer model simulations show that SST increases by 0.35°C per month, with the potential to influence monsoon rainfall.
Peter M. F. Sheehan, Benjamin G. M. Webber, Alejandra Sanchez-Franks, and Bastien Y. Queste
Ocean Sci., 21, 1575–1588, https://doi.org/10.5194/os-21-1575-2025, https://doi.org/10.5194/os-21-1575-2025, 2025
Short summary
Short summary
Using measurements and computer models, we identify a large flux of oxygen within the Southwest Monsoon Current, which flows north into the Bay of Bengal between June and September each year. Oxygen levels in the bay are very low, but they are not quite low enough for key nutrient cycles to be as dramatically altered as in other low-oxygen regions. We suggest that the flux which we identify contributes to keeping oxygen levels in the bay above the threshold below which dramatic changes would occur.
Feifei Luo, Bjørn H. Samset, Camilla W. Stjern, Manoj Joshi, Laura J. Wilcox, Robert J. Allen, Wei Hua, and Shuanglin Li
Atmos. Chem. Phys., 25, 7647–7667, https://doi.org/10.5194/acp-25-7647-2025, https://doi.org/10.5194/acp-25-7647-2025, 2025
Short summary
Short summary
Black carbon (BC) aerosol is emitted from the incomplete combustion of biomass and fossil fuels. We found that Asian BC leads to strong local cooling and drying. Reductions in precipitation primarily depend on the thermodynamic effects due to solar radiation absorption by BC. The combined thermodynamic and dynamic effects shape the spatial pattern of precipitation responses to Asian BC. These results help us further understand the impact of emissions of anthropogenic aerosols on Asian climate.
Meredith G. Meyer, Esther Portela, Walker O. Smith Jr., and Karen J. Heywood
Ocean Sci., 21, 1223–1236, https://doi.org/10.5194/os-21-1223-2025, https://doi.org/10.5194/os-21-1223-2025, 2025
Short summary
Short summary
During the annual phytoplankton bloom, rates of primary production and carbon export in the Ross Sea, Antarctica, are uncoupled from each other and from oxygen and carbon stocks. These biogeochemical rates support the high-productivity, low-export classification of the region and suggest that environmental factors influence these stocks and rates differently and make projections under future climate change scenarios difficult.
Daisy Drew Pickup, Dorothee C. E. Bakker, Karen J. Heywood, Francis Glassup, Emily Hammermeister, Sharon E. Stammerjohn, Gareth A. Lee, Socratis Loucaides, Bastien Y. Queste, Benjamin G. M. Webber, and Patricia L. Yager
EGUsphere, https://doi.org/10.5194/egusphere-2025-2441, https://doi.org/10.5194/egusphere-2025-2441, 2025
Short summary
Short summary
Autonomous platforms in the Amundsen Sea have allowed for detection of isolated water masses that are colder, saltier and denser than overlying water. They are also associated with a higher dissolved inorganic carbon concentration and lower pH. The water masses, referred to as lenses, could have implications for the transfer of heat and storage of carbon in the region. We hypothesise that they form in surrounding areas that experience intense cooling and sea ice formation in autumn/winter.
Maren Elisabeth Richter, Karen J. Heywood, and Rob A. Hall
EGUsphere, https://doi.org/10.5194/egusphere-2025-1994, https://doi.org/10.5194/egusphere-2025-1994, 2025
Short summary
Short summary
Warm ocean water causes rapid melting of Antarctic glaciers. The circulation and mixing of warm water in ice shelf cavities is mostly unknown. We observed ocean currents and mixing under Dotson Ice Shelf. Mixing is low, with patches of higher mixing associated with stronger currents and vertical current shear. The levels of turbulent mixing will lead to negligible heat loss during the path of the warm water to the grounding line, leaving plenty of heat available to melt the ice shelf there.
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel M. Westervelt, Andrew I. L. Williams, and Bjørn H. Samset
Atmos. Chem. Phys., 25, 4443–4454, https://doi.org/10.5194/acp-25-4443-2025, https://doi.org/10.5194/acp-25-4443-2025, 2025
Short summary
Short summary
In 2020, regulations by the International Maritime Organization aimed to reduce aerosol emissions from ships. These aerosols previously had a cooling effect, which the regulations might reduce, revealing more greenhouse gas warming. Here we find that, while there is regional warming, the global 2020–2040 temperature rise is only +0.03 °C. This small change is difficult to distinguish from natural climate variability, indicating the regulations have had a limited effect on observed warming to date.
Christian T. Wild, Tasha Snow, Tiago S. Dotto, Peter E. D. Davis, Scott Tyler, Ted A. Scambos, Erin C. Pettit, and Karen J. Heywood
EGUsphere, https://doi.org/10.5194/egusphere-2025-1675, https://doi.org/10.5194/egusphere-2025-1675, 2025
Short summary
Short summary
Thwaites Glacier is retreating due to warm ocean water melting it from below, but its thick ice shelf makes this heat hard to monitor. Using hot water drilling, we placed sensors beneath the floating ice, revealing how surface freezing in Pine Island Bay influences heat at depth. Alongside gradual warming, we found bursts of heat that could speed up melting at the grounding zone, which may become more common as sea ice declines.
Siyu Meng, Xun Gong, Benjamin Webber, Manoj Joshi, Xiaokun Ding, Xiang Gong, Mingliang Gu, and Huiwang Gao
EGUsphere, https://doi.org/10.5194/egusphere-2025-13, https://doi.org/10.5194/egusphere-2025-13, 2025
Short summary
Short summary
The North Pacific Ocean Desert (NPOD), with low phytoplankton biomass, covers about 40 % of the North Pacific. The variations in NPOD seasonal cycle, which have a greater impact than its annual mean changes, are influenced by the El Niño-Southern Oscillation from 1998 to 2021. However, from 2021 to 2100, a weakened NPOD seasonal cycle is expected due to climate change. These changes in NPOD seasonal cycle could affect fisheries and marine ecosystems.
Shenjie Zhou, Pierre Dutrieux, Claudia F. Giulivi, Adrian Jenkins, Alessandro Silvano, Christopher Auckland, E. Povl Abrahamsen, Michael P. Meredith, Irena Vaňková, Keith W. Nicholls, Peter E. D. Davis, Svein Østerhus, Arnold L. Gordon, Christopher J. Zappa, Tiago S. Dotto, Theodore A. Scambos, Kathyrn L. Gunn, Stephen R. Rintoul, Shigeru Aoki, Craig Stevens, Chengyan Liu, Sukyoung Yun, Tae-Wan Kim, Won Sang Lee, Markus Janout, Tore Hattermann, Julius Lauber, Elin Darelius, Anna Wåhlin, Leo Middleton, Pasquale Castagno, Giorgio Budillon, Karen J. Heywood, Jennifer Graham, Stephen Dye, Daisuke Hirano, and Una Kim Miller
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-54, https://doi.org/10.5194/essd-2025-54, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We created the first standardised dataset of in-situ ocean measurements time series from around Antarctica collected since 1970s. This includes temperature, salinity, pressure, and currents recorded by instruments deployed in icy, challenging conditions. Our analysis highlights the dominance of tidal currents and separates these from other patterns to study regional energy distribution. This unique dataset offers a foundation for future research on Antarctic ocean dynamics and ice interactions.
Emma Howard, Steven Woolnough, Nicholas Klingaman, Daniel Shipley, Claudio Sanchez, Simon C. Peatman, Cathryn E. Birch, and Adrian J. Matthews
Geosci. Model Dev., 17, 3815–3837, https://doi.org/10.5194/gmd-17-3815-2024, https://doi.org/10.5194/gmd-17-3815-2024, 2024
Short summary
Short summary
This paper describes a coupled atmosphere–mixed-layer ocean simulation setup that will be used to study weather processes in Southeast Asia. The set-up has been used to compare high-resolution simulations, which are able to partially resolve storms, to coarser simulations, which cannot. We compare the model performance at representing variability of rainfall and sea surface temperatures across length scales between the coarse and fine models.
William J. Dow, Christine M. McKenna, Manoj M. Joshi, Adam T. Blaker, Richard Rigby, and Amanda C. Maycock
Weather Clim. Dynam., 5, 357–367, https://doi.org/10.5194/wcd-5-357-2024, https://doi.org/10.5194/wcd-5-357-2024, 2024
Short summary
Short summary
Changes to sea surface temperatures in the extratropical North Pacific are driven partly by patterns of local atmospheric circulation, such as the Aleutian Low. We show that an intensification of the Aleutian Low could contribute to small changes in temperatures across the equatorial Pacific via the initiation of two mechanisms. The effect, although significant, is unlikely to explain fully the recently observed multi-year shift of a pattern of climate variability across the wider Pacific.
Thomas Wilder, Xiaoming Zhai, David Munday, and Manoj Joshi
Ocean Sci., 19, 1669–1686, https://doi.org/10.5194/os-19-1669-2023, https://doi.org/10.5194/os-19-1669-2023, 2023
Short summary
Short summary
The dissipation rate of eddy energy in current energy budget-based eddy parameterisations is still relatively unconstrained, leading to uncertainties in ocean transport and ocean heat uptake. Here, we derive a dissipation rate due to the interaction of surface winds and eddy currents, a process known to significantly damp ocean eddies. The dissipation rate is quantified using seasonal climatology and displays wide spatial variability, with some of the largest values found in the Southern Ocean.
Ria Oelerich, Karen J. Heywood, Gillian M. Damerell, Marcel du Plessis, Louise C. Biddle, and Sebastiaan Swart
Ocean Sci., 19, 1465–1482, https://doi.org/10.5194/os-19-1465-2023, https://doi.org/10.5194/os-19-1465-2023, 2023
Short summary
Short summary
At the southern boundary of the Antarctic Circumpolar Current, relatively warm waters encounter the colder waters surrounding Antarctica. Observations from underwater vehicles and altimetry show that medium-sized cold-core eddies influence the southern boundary's barrier properties by strengthening the slopes of constant density lines across it and amplifying its associated jet. As a result, the ability of exchanging properties, such as heat, across the southern boundary is reduced.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Manoj Joshi, Robert A. Hall, David P. Stevens, and Ed Hawkins
Earth Syst. Dynam., 14, 443–455, https://doi.org/10.5194/esd-14-443-2023, https://doi.org/10.5194/esd-14-443-2023, 2023
Short summary
Short summary
The 18.6-year lunar nodal cycle arises from variations in the angle of the Moon's orbital plane and affects ocean tides. In this work we use a climate model to examine the effect of this cycle on the ocean, surface, and atmosphere. The timing of anomalies is consistent with the so-called slowdown in global warming and has implications for when global temperatures will exceed 1.5 ℃ above pre-industrial levels. Regional anomalies have implications for seasonal climate areas such as Europe.
Peter M. F. Sheehan, Gillian M. Damerell, Philip J. Leadbitter, Karen J. Heywood, and Rob A. Hall
Ocean Sci., 19, 77–92, https://doi.org/10.5194/os-19-77-2023, https://doi.org/10.5194/os-19-77-2023, 2023
Short summary
Short summary
We calculate the rate of turbulent kinetic energy dissipation, i.e. the mixing driven by small-scale ocean turbulence, in the western tropical Atlantic Ocean via two methods. We find good agreement between the results of both. A region of elevated mixing is found between 200 and 500 m, and we calculate the associated heat and salt fluxes. We find that double-diffusive mixing in salt fingers, a common feature of the tropical oceans, drives larger heat and salt fluxes than the turbulent mixing.
Callum Rollo, Karen J. Heywood, and Rob A. Hall
Geosci. Instrum. Method. Data Syst., 11, 359–373, https://doi.org/10.5194/gi-11-359-2022, https://doi.org/10.5194/gi-11-359-2022, 2022
Short summary
Short summary
Using an underwater buoyancy-powered autonomous glider, we collected profiles of temperature and salinity from the ocean north-east of Barbados. Most of the temperature and salinity profiles contained staircase-like structures of alternating constant values and large gradients. We wrote an algorithm to identify these staircases. We hypothesise that these staircases are prevented from forming where background gradients in temperature and salinity are too great.
Michael P. Hemming, Jan Kaiser, Jacqueline Boutin, Liliane Merlivat, Karen J. Heywood, Dorothee C. E. Bakker, Gareth A. Lee, Marcos Cobas García, David Antoine, and Kiminori Shitashima
Ocean Sci., 18, 1245–1262, https://doi.org/10.5194/os-18-1245-2022, https://doi.org/10.5194/os-18-1245-2022, 2022
Short summary
Short summary
An underwater glider mission was carried out in spring 2016 near a mooring in the northwestern Mediterranean Sea. The glider deployment served as a test of a prototype ion-sensitive field-effect transistor pH sensor. Mean net community production rates were estimated from glider and buoy measurements of dissolved oxygen and inorganic carbon concentrations before and during the spring bloom. Incorporating advection is important for accurate mass budgets. Unexpected metabolic quotients were found.
Yixi Zheng, David P. Stevens, Karen J. Heywood, Benjamin G. M. Webber, and Bastien Y. Queste
The Cryosphere, 16, 3005–3019, https://doi.org/10.5194/tc-16-3005-2022, https://doi.org/10.5194/tc-16-3005-2022, 2022
Short summary
Short summary
New observations reveal the Thwaites gyre in a habitually ice-covered region in the Amundsen Sea for the first time. This gyre rotates anticlockwise, despite the wind here favouring clockwise gyres like the Pine Island Bay gyre – the only other ocean gyre reported in the Amundsen Sea. We use an ocean model to suggest that sea ice alters the wind stress felt by the ocean and hence determines the gyre direction and strength. These processes may also be applied to other gyres in polar oceans.
Yanxin Wang, Karen J. Heywood, David P. Stevens, and Gillian M. Damerell
Ocean Sci., 18, 839–855, https://doi.org/10.5194/os-18-839-2022, https://doi.org/10.5194/os-18-839-2022, 2022
Short summary
Short summary
It is important that climate models give accurate projections of future extremes in summer and winter sea surface temperature because these affect many features of the global climate system. Our results demonstrate that some models would give large errors if used for future projections of these features, and models with more detailed representation of vertical structure in the ocean tend to have a better representation of sea surface temperature, particularly in summer.
Helen E. Phillips, Amit Tandon, Ryo Furue, Raleigh Hood, Caroline C. Ummenhofer, Jessica A. Benthuysen, Viviane Menezes, Shijian Hu, Ben Webber, Alejandra Sanchez-Franks, Deepak Cherian, Emily Shroyer, Ming Feng, Hemantha Wijesekera, Abhisek Chatterjee, Lisan Yu, Juliet Hermes, Raghu Murtugudde, Tomoki Tozuka, Danielle Su, Arvind Singh, Luca Centurioni, Satya Prakash, and Jerry Wiggert
Ocean Sci., 17, 1677–1751, https://doi.org/10.5194/os-17-1677-2021, https://doi.org/10.5194/os-17-1677-2021, 2021
Short summary
Short summary
Over the past decade, understanding of the Indian Ocean has progressed through new observations and advances in theory and models of the oceanic and atmospheric circulation. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean, describing Indian Ocean circulation patterns, air–sea interactions, climate variability, and the critical role of the Indian Ocean as a clearing house for anthropogenic heat.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Jack Giddings, Karen J. Heywood, Adrian J. Matthews, Manoj M. Joshi, Benjamin G. M. Webber, Alejandra Sanchez-Franks, Brian A. King, and Puthenveettil N. Vinayachandran
Ocean Sci., 17, 871–890, https://doi.org/10.5194/os-17-871-2021, https://doi.org/10.5194/os-17-871-2021, 2021
Short summary
Short summary
Little is known about the impact of chlorophyll on SST in the Bay of Bengal (BoB). Solar irradiance measured by an ocean glider and three Argo floats is used to determine the effect of chlorophyll on BoB SST during the 2016 summer monsoon. The Southwest Monsoon Current has high chlorophyll concentrations (∼0.5 mg m−3) and shallow solar penetration depths (∼14 m). Ocean mixed layer model simulations show that SST increases by 0.35°C per month, with the potential to influence monsoon rainfall.
Gabriel M. P. Perez, Pier Luigi Vidale, Nicholas P. Klingaman, and Thomas C. M. Martin
Weather Clim. Dynam., 2, 475–488, https://doi.org/10.5194/wcd-2-475-2021, https://doi.org/10.5194/wcd-2-475-2021, 2021
Short summary
Short summary
Much of the rainfall in tropical regions comes from organised cloud bands called convergence zones (CZs). These bands have hundreds of kilometers. In South America (SA), they cause intense rain for long periods of time. To study these systems, we need to define and identify them with computer code. We propose a definition of CZs based on the the pathways of air, selecting regions where air masses originated in separated regions meet. This method identifies important mechanisms of rain in SA.
Clàudia Abancó, Georgina L. Bennett, Adrian J. Matthews, Mark Anthony M. Matera, and Fibor J. Tan
Nat. Hazards Earth Syst. Sci., 21, 1531–1550, https://doi.org/10.5194/nhess-21-1531-2021, https://doi.org/10.5194/nhess-21-1531-2021, 2021
Short summary
Short summary
In 2018 Typhoon Mangkhut triggered thousands of landslides in the Itogon region (Philippines). An inventory of 1101 landslides revealed that landslides mostly occurred in slopes covered by wooded grassland in clayey materials, predominantly facing E-SE. Satellite rainfall and soil moisture data associated with Typhoon Mangkhut and the previous months in 2018 were analyzed. Results showed that landslides occurred during high-intensity rainfall that coincided with the highest soil moisture values.
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Short summary
FORTE 2.0 is a flexible coupled atmosphere–ocean general circulation model that can be run on modest hardware. We present two 2000-year simulations which show that FORTE 2.0 is capable of producing a stable climate. Earlier versions of FORTE were used for a wide range of studies, ranging from aquaplanet configurations to investigating the cold European winters of 2009–2010. This paper introduces the updated model for which the code and configuration are now publicly available.
Liang Guo, Ruud J. van der Ent, Nicholas P. Klingaman, Marie-Estelle Demory, Pier Luigi Vidale, Andrew G. Turner, Claudia C. Stephan, and Amulya Chevuturi
Geosci. Model Dev., 13, 6011–6028, https://doi.org/10.5194/gmd-13-6011-2020, https://doi.org/10.5194/gmd-13-6011-2020, 2020
Short summary
Short summary
Precipitation over East Asia simulated in the Met Office Unified Model is compared with observations. Moisture sources of EA precipitation are traced using a moisture tracking model. Biases in moisture sources are linked to biases in precipitation. Using the tracking model, changes in moisture sources can be attributed to changes in SST, circulation and associated evaporation. This proves that the method used in this study is useful to identify the causes of biases in regional precipitation.
Yingxia Gao, Nicholas P. Klingaman, Charlotte A. DeMott, and Pang-Chi Hsu
Geosci. Model Dev., 13, 5191–5209, https://doi.org/10.5194/gmd-13-5191-2020, https://doi.org/10.5194/gmd-13-5191-2020, 2020
Short summary
Short summary
Both the air–sea coupling and ocean mean state affect the fidelity of simulated boreal summer intraseasonal oscillation (BSISO). To elucidate their relative effects on the simulated BSISO, a set of experiments was conducted using a superparameterized AGCM and its coupled version. Both air–sea coupling and cold ocean mean state improve the BSISO amplitude due to the suppression of the overestimated variance, while the former (latter) could further upgrade (degrade) the BSISO propagation.
Cited articles
Amol, P., Vinayachandran, P. N., Shankar, D., Thushara, V., Vijith, V.,
Chatterjee, A., and Kankonkar, A.: Effect of freshwater advection and winds
on the vertical structure of chlorophyll in the northern Bay of
Bengal, Deep-Sea Res. Pt. II,
https://doi.org/10.1016/j.dsr2.2019.07.010, 2019.
Bernie, D. J., Woolnough, S. J., Slingo, J. M., and Guilyardi, E.: Modeling
diurnal and intraseasonal variability of the ocean mixed layer, J.
Climate, 18, 1190–1202, https://doi.org/10.1175/JCLI3319.1, 2005.
Bernie, D. J., Guilyardi, E., Madec, G., Slingo, J. M., Woolnough, S. J.,
and Cole, J.: Impact of resolving the diurnal cycle in an ocean–atmosphere
GCM. Part 2: A diurnally coupled CGCM, Clim. Dynam., 31, 909–925,
https://doi.org/10.1007/s00382-008-0429-z, 2008.
Blondeau-Patissier, D., Gower, J. F., Dekker, A. G., Phinn, S. R., and
Brando, V. E.: A review of ocean color remote sensing methods and
statistical techniques for the detection, mapping and analysis of
phytoplankton blooms in coastal and open oceans, Prog.
Oceanogr., 123, 123–144, https://linkinghub.elsevier.com/retrieve/pii/
S0079661114000020, 2014.
Boss, E., Slade, W., and Hill, P.: Effect of particulate aggregation in
aquatic environments on the beam attenuation and its utility as a proxy for
particulate mass, Opt. Express, 17, 9408–9420,
https://doi.org/10.1364/OE.17.009408, 2009.
Chang, G. C. and Dickey, T. D.: Coastal ocean optical influences on solar
transmission and radiant heating rate, J. Geophys. Res., 109, C01020,
https://https://doi.org/10.1029/2003JC001821, 2004.
Ding, Q. and Wang, B.: Circumglobal teleconnection in the Northern
Hemisphere summer, J. Climate, 18, 3483–3505,
https://doi.org/10.1175/JCLI3473.1, 2005.
Duncan, B. and Han, W.: Indian Ocean intraseasonal sea surface temperature
variability during boreal summer: Madden-Julian Oscillation versus
submonthly forcing and processes, J. Geophys. Res.-Oceans, 114, C05002,
https://doi.org/10.1029/2008JC004958, 2009.
Franz, B. A., Bailey, S. W., Werdell, P. J., and McClain, C. R.: Sensor-independent approach to the
vicarious calibration of satellite ocean color radiometry, Appl. Opt., 46, 5068–5082,
https://doi.org/10.1364/ao.46.005068, 2007 (data available at: https://oceancolor.gsfc.nasa.gov, last
access: 9 August 2020).
Franz, B. A., Kwiatowska, E. J., Meister, G., and McClain, C. R.: Moderate
Resolution Imaging Spectroradiometer on Terra: limitations for ocean color
applications, J. Appl. Remote Sens., 2, 023525,
https://doi.org/10.1117/1.2957964, 2008.
Giddings, J.: MetUM-GOML3.0 Chlorophyll Perturbation Datasets, figshare,
https://doi.org/10.6084/m9.figshare.13084052, 2020.
Girishkumar, M. S., Ravichandran, M., McPhaden, M. J., and Rao, R. R.:
Intraseasonal variability in barrier layer thickness in the south central
Bay of Bengal, J. Geophys. Res.-Oceans, 116, C03009,
https://doi.org/10.1029/2010JC006657, 2011.
Gnanadesikan, A. and Anderson, W. G.: Ocean water clarity and the ocean
general circulation in a coupled climate model, J. Phys. Oceanogr., 39,
314–332, https://doi.org/10.1175/2008JPO3935.1, 2009.
Gomes, H. R., Goes, J. I., and Saino, T.: Influence of physical processes
and freshwater discharge on the seasonality of phytoplankton regime in the
Bay of Bengal, Cont. Shelf Res., 20, 313–330,
https://doi.org/10.1016/S0278-4343(99)00072-2, 2000.
Hill, V. J.: Impacts of chromophoric dissolved organic material on surface
ocean heating in the Chukchi Sea, J. Geophys. Res., 113, C07024,
https://https://doi.org/10.1029/2007JC004119, 2008.
Hirons, L. C., Klingaman, N. P., and Woolnough, S. J.: MetUM-GOML1: a near-globally coupled atmosphere–ocean-mixed-layer model, Geosci. Model Dev., 8, 363–379, https://doi.org/10.5194/gmd-8-363-2015, 2015.
Hu, K., Huang, G., Qu, X., and Huang, R.: The impact of Indian Ocean
variability on high temperature extremes across the southern Yangtze River
valley in late summer, Adv. Atmos. Sci., 29, 91–100,
https://doi.org/10.1007/s00376-011-0209-2, 2012a.
Hu, C., Lee, Z., and Bryan, F.: Chlorophyll a algorithms for oligotrophic
oceans: A novel approach based on three-band reflectance difference, J.
Geophys. Res.-Oceans, 117, C01011, https://doi.org/10.1029/2011JC007395,
2012b.
Hu, C., Feng, L., Lee, Z., Franz, B. A., Bailey, S. W., Werdell, P. J., and
Proctor, C. W.: Improving satellite global chlorophyll a data products
through algorithm refinement and data recovery, J. Geophys. Res.-Oceans,
124, 1524–1543, https://doi.org/10.1029/2019JC014941, 2019.
Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G. J., Nelkin E. J.,
Bowman, K. P., Hoong, Y., Stocker, E. F., and Wolff, D. B.: The TRMM
multisatellite precipitation analysis (TMPA): Quasi-global, multiyear,
combined-sensor precipitation estimates at fine scales, J. Hydrometeorol.,
8, 38–55, https://doi.org/10.1175/JHM560.1, 2007 (data available at: https://disc.gsfc.nasa.gov/datasets?keywords=precipitation, last access: 31 July 2019).
Huisman, J., Pham Thi, N. N., Karl, D. M., and Sommeijer, B.: Reduced mixing
generates oscillations and chaos in the oceanic deep chlorophyll maximum,
Nature, 439, 322–325, 2006.
Jana, S., Gangopadhyay, A., and Chakraborty, A.: Impact of seasonal river
input on the Bay of Bengal simulation, Cont. Shelf Res., 104, 45–62,
https://doi.org/10.1016/j.csr.2015.05.001, 2015.
Jerlov, N. G.: Optical oceanography, Oceanography Series 5, Elsevier
Publishing Company, Amsterdam, the Netherlands, 1968.
Ju, J. and Slingo, J.: The Asian summer monsoon and ENSO, Q. J. Roy.
Meteor. Soc., 121, 1133–1168, https://doi.org/10.1002/qj.49712152509, 1995.
Kim, G. E., Gnanadesikan, A., DelCastillo, C. E., and Pradal, M.-A.: Upper
ocean cooling in a coupled climate model due to light attenuation by
yellowing materials, Geophys. Res. Lett., 45, 6134–6140,
https://doi.org/10.1029/2018GL077297, 2018.
Klingaman, N. P., Woolnough, S. J., Weller, H., and Slingo, J. M.: The
impact of finer-resolution air–sea coupling on the intraseasonal
oscillation of the Indian monsoon, J. Climate, 24, 2451–2468,
https://doi.org/10.1175/2010JCLI3868.1, 2011.
Kuehl, S. A., Levy, B. M., Moore, W. S., and Allison, M. A.: Subaqueous
delta of the Ganges-Brahmaputra river system, Mar. Geol., 144, 81–96,
https://doi.org/10.1016/S0025-3227(97)00075-3, 1997.
Kumar, S. P., Muraleedharan, P. M., Prasad, T. G., Gauns, M., Ramaiah, N.,
de Souza, S. N., Sardesai, S., and Madhupratap, M.: Why is the Bay of Bengal
less productive during summer monsoon compared to the Arabian Sea?, Geophys.
Res. Lett., 29, 2235, https://doi.org/10.1029/2002GL016013, 2002.
Kumar, S. P., Nuncio, M., Ramaiah, N., Sardesai, S., Narvekar, J.,
Fernandes, V., and Paul, J. T.: Eddy-mediated biological productivity in the
Bay of Bengal during fall and spring intermonsoons, Deep-Sea Res. Pt. I, 54, 1619–1640,
https://doi.org/10.1016/j.dsr.2007.06.002, 2007.
Kumar, S. P., Narvekar, J., Nuncio, M., Kumar, A., Ramaiah, N., Sardesai,
S., Gauns, M., Fernandes, V., and Paul, J.: Is the biological productivity
in the Bay of Bengal light limited?, Curr. Sci., 98, 1331–1339,
2010.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing:
A review and a model with a nonlocal boundary layer parameterization, Rev.
Geophys., 32, 363, https://doi.org/10.1029/94RG01872, 1994.
Lévy, M., Shankar, D., André, J.-M., Shenoi, S. S. C., Durand, F.,
and de Boyer Montégut, C.: Basin-wide seasonal evolution of the Indian
Ocean's phytoplankton blooms, J. Geophys. Res.-Oceans, 112, C12014,
https://doi.org/10.1029/2007JC004090, 2007.
Lewis, M. R., Carr, M.-E., Feldman, G. C., Esaias, W., and McClain, C.:
Influence of penetrating solar radiation on the heat budget of the
equatorial Pacific Ocean, Nature, 347, 543–545,
https://doi.org/10.1038/347543a0, 1990.
Li, C. and Yanai, M.: The onset and interannual variability of the Asian
summer monsoon in relation to land-sea thermal contrast, J. Climate, 9,
358–375, https://doi.org/10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2, 1996.
Lin, J.-L., Weickman, K. M., Kiladis, G. N., Mapes, B. E., Schubert, S. D.,
Suarez, M. J., Bacmeister, J. T., and Lee, M.-I.: Subseasonal variability
associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled
GCMs, J. Climate, 21, 4541–4567, https://doi.org/10.1175/2008JCLI1816.1,
2008.
Lotliker, A. A., Omand, M. M., Lucas, A. J., Laney, S. R., Mahadevan, A.,
and Ravichandran, M.: Penetrative radiative flux in the Bay of
Bengal, Oceanogr., 29, 214–221, https://doi.org/10.5670/oceanog.2016.53,
2016.
Manizza, M., Quéré, C. L., Watson, A. J., and Buitenhuis, E. T.:
Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice
in a global model, Geophys. Res. Lett., 32, L05603,
https://doi.org/10.1029/2004GL020778, 2005.
McCreary, J. P., Murtugudde, R., Vialard, J., Vinayachandran, P. N.,
Wiggert, J. D., Hood, R. R., Shankar, D., and Shetye, S.: Biophysical
processes in the Indian Ocean, Indian Ocean biogeochemical processes and
ecological variability, 185, 9–32, https://doi.org/10.1029/2008GM000768,
2009.
Meister, G. and Franz, B. A.: Corrections to the MODIS aqua calibration
derived from MODIS aqua ocean color products, IEEE T.
Geosci. Remote, 52, 6534–6541,
https://doi.org/10.1109/TGRS.2013.2297233, 2014.
Morel, A.: Optical modeling of the upper ocean in relation to its biogenous
matter content (case I waters), J. Geophys. Res.-Oceans, 93, 10749–10768,
https://doi.org/10.1029/JC093iC09p10749, 1988.
Morel, A. and Antoine, D.: Heating Rate within the Upper Ocean in Relation
to its Bio-optical State, J. Phys. Oceanogr., 24, 1652–1665,
1994.
Morel, A., Huot, Y., Gentili, B., Werdell, P. J., Hooker, S. B., and Franz,
B. A.: Examining the consistency of products derived from various ocean
color sensors in open ocean (Case 1) waters in the perspective of a
multi-sensor approach, Remote Sens. Environ., 111, 69–88,
https://doi.org/10.1016/j.rse.2007.03.012, 2007.
Murtugudde, R., Beauchamp, J., McClain, C. R., Lewis, M., and Busalacchi, A.
J.: Effects of penetrative radiation on the upper tropical ocean
circulation, J. Climate, 15, 470–486,
2002.
Nakamoto, S., Kumar, S. P., Oberhuber, J. M., Muneyama, K., and Frouin, R.:
Chlorophyll modulation of sea surface temperature in the Arabian Sea in a
mixed-layer isopycnal general circulation model, Geophys. Res. Lett., 27,
747–750, https://doi.org/10.1029/1999GL002371, 2000.
Nakamoto, S., Kumar, S. P., Oberhuber, J. M., Ishizaka, J., Muneyama, K.,
and Frouin, R.: Response of the equatorial Pacific to chlorophyll pigment in
a mixed layer isopycnal ocean general circulation model, Geophys. Res.
Lett., 28, 2021–2024, https://doi.org/10.1029/2000GL012494, 2001.
Narvekar, J., and Kumar, S. P.: Seasonal variability of the mixed layer in
the central Bay of Bengal and associated changes in nutrients and
chlorophyll. Deep-Sea Res. Pt. I, 53, 820–835,
https://doi.org/10.1016/j.dsr.2006.01.012, 2006.
O'Reilly, J. E., Maritorena, S., O'brien, M. C., Siegel, D. A., Toole, D.,
Menzies, D., Smith, R. C., Mueller, J. L., Mitchell, B. G., Kahru, M., and
Chavez, F. P.: SeaWiFS postlaunch calibration and validation analyses, part
3, NASA tech. memo., 11, 2000–206892, available at:
https://oceancolor.gsfc.nasa.gov/docs/technical/seawifs_reports/postlaunch/post_vol11_abs/ (last access: 9 June 2020), 2000.
Pandi, S. R., Kiran, R., Sarma, N. S., Srikanth, A. S., Sarma, V. V. S. S.,
Krishna, M. S., Bandyopadhyay, D., Prasad, V. R., Acharyya, T., and Reddy,
K. G.: Contrasting phytoplankton community structure and associated light
absorption characteristics of the western Bay of Bengal, Ocean Dynam., 64,
89–101, https://doi.org/10.1007/s10236-013-0678-1, 2014.
Park, J.-Y. and Kug, J.-S.: Marine biological feedback associated with
Indian Ocean Dipole in a coupled ocean/biogeochemical model, Clim. Dynam., 42,
329–343, https://doi.org/10.1007/s00382-012-1640-5, 2014.
Patra, P. K., Kumar, M. D., Mahowald, N., and Sarma, V. V. S. S.:
Atmospheric deposition and surface stratification as controls of contrasting
chlorophyll abundance in the North Indian Ocean, J. Geophys.
Res.-Oceans, 112, C05029, https://doi.org/10.1029/2006JC003885, 2007.
Patara, L., Vichi, M., Masina, S., Fogli, P. G., and Manzini, E.: Global
response to solar radiation absorbed by phytoplankton in a coupled climate
model, Clim. Dynam., 39, 1951–1968,
https://doi.org/10.1007/s00382-012-1300-9, 2012.
Paulson, C. A. and Simpson, J. J.: Irradiance measurements in the upper
ocean, J. Phys. Oceanogr., 7, 952–956,
1977.
Peatman, S. C. and Klingaman, N. P.: The Indian summer monsoon in MetUM-GOML2.0: effects of air–sea coupling and resolution, Geosci. Model Dev., 11, 4693–4709, https://doi.org/10.5194/gmd-11-4693-2018, 2018.
Pramanik, S., Sil, S., Gangopadhyay, A., Singh, M. K., and Behera, N.:
Interannual variability of the chlorophyll-a concentration over Sri Lankan
Dome in the Bay of Bengal, Int. J. Remote Sens., 41,
1–18, https://doi.org/10.1080/01431161.2020.1727057,
2020.
Rao, R. R. and Sivakumar, R.: Seasonal variability of sea surface salinity
and salt budget of the mixed layer of the north Indian Ocean, J. Geophys.
Res.-Oceans, 108, 3009, https://doi.org/10.1029/2001JC000907, 2003.
Sengupta, D., Bharath Raj, G. N., Ravichandran, M., Sree Lekha, J., and
Papa, F.: Near-surface salinity and stratification in the north Bay of
Bengal from moored observations, Geophys. Res. Lett., 43, 4448–4456,
https://doi.org/10.1002/2016GL068339, 2016.
Shee, A., Sil, S., Gangopadhyay, A., Gawarkiewicz, G., and Ravichandran, M.:
Seasonal evolution of oceanic upper layer processes in the northern Bay of
Bengal following a single Argo float, Geophys. Res. Lett., 46, 5369–5377,
https://doi.org/10.1029/2019GL082078, 2019.
Shell, K. M., Frouin, R., Nakamoto, S., and Somerville, R. C. J.:
Atmospheric response to solar radiation absorbed by phytoplankton, J.
Geophys. Res.-Atmos., 108, 4445, https://doi.org/10.1029/2003JD003440,
2003.
Shenoi, S. S. C., Shankar, D., and Shetye, S. R.: Differences in heat
budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for
the summer monsoon, J. Geophys. Res.-Oceans, 107, 3052,
https://doi.org/10.1029/2000JC000679, 2002.
Smith, D. M. and Murphy, J. M.: An objective ocean temperature and salinity
analysis using covariances from a global climate model, J. Geophys
Res.-Oceans, 112, C02022, https://doi.org/10.1029/2005JC003172, 2007.
Sperber, K. R., Annamalai, H., Kang, I.-S., Kitoh, A., Moise, A., Turner,
A., Wang, B., and Zhou, T.: The Asian summer monsoon: an intercomparison of
CMIP5 vs. CMIP3 simulations of the late 20th century, Clim. Dynam., 41,
2711–2744, https://doi.org/10.1007/s00382-012-1607-6, 2013.
Sprintall, J. and Tomczak, M.: Evidence of the barrier layer in the surface
layer of the tropics, J. Geophys. Res.-Oceans, 97, 7305–7316,
https://doi.org/10.1029/92JC00407, 1992.
Stephan, C. C., Klingaman, N. P., and Turner, A. G.: A mechanism for the
recently increased interdecadal variability of the silk road pattern, J.
Climate, 32, 717–736, https://doi.org/10.1175/JCLI-D-18-0405.1, 2019.
Thompson, V., Dunstone, N. J., Scaife, A. A., Smith, D. M., Hardiman, S. C.,
Ren, H. L., Lu, B., and Belcher, S. E.: Risk and dynamics of unprecedented
hot months in South East China, Clim. Dynam., 52, 2585–2596,
https://doi.org/10.1007/s00382-018-4281-5, 2019.
Thushara, V., Vinayachandran, P. N. M., Matthews, A. J., Webber, B. G. M., and Queste, B. Y.: Vertical distribution of chlorophyll in dynamically distinct regions of the southern Bay of Bengal, Biogeosciences, 16, 1447–1468, https://doi.org/10.5194/bg-16-1447-2019, 2019.
Tilstone, G. H., Angel-Benavides, I. M., Pradhan, Y., Shutler, J. D., Groom,
S., and Sathyendranath, S.: An assessment of chlorophyll-a algorithms
available for SeaWiFS in coastal and open areas of the Bay of Bengal and
Arabian Sea, Remote Sens. Environ., 115, 2277–2291,
https://doi.org/10.1016/j.rse.2011.04.028, 2011.
Tilstone, G. H., Lotliker, A. A., Miller, P. I., Ashraf, P. M., Kumar, T.
S., Suresh, T., Ragavan, B. R., and Menon, H. B.: Assessment of MODIS-Aqua
chlorophyll-a algorithms in coastal and shelf waters of the eastern Arabian
Sea, Cont. Shelf Res., 65, 14–26, https://doi.org/10.1016/j.csr.2013.06.003, 2013.
Turner, A. G., Joshi, M., Robertson, E. S., and Woolnough, S. J.: The effect
of Arabian Sea optical properties on SST biases and the South Asian summer
monsoon in a coupled GCM, Clim. Dynam., 39, 811–826,
https://doi.org/10.1007/s00382-011-1254-3, 2012.
Valcke, S.: The OASIS3 coupler: a European climate modelling community software, Geosci. Model Dev., 6, 373–388, https://doi.org/10.5194/gmd-6-373-2013, 2013.
Vecchi, G. A. and Harrison, D. E.: Monsoon breaks and subseasonal sea
surface temperature variability in the Bay of Bengal, J. Climate, 15,
1485–1493,
2002.
Vinayachandran, P. N. and Yamagata, T.: Monsoon response of the sea around
Sri Lanka: generation of thermal domes and anticyclonic vortices, J. Phys.
Oceanogr., 28, 1946–1960,
1998.
Vinayachandran, P. N., Murty, V. S. N., and Ramesh Babu, V.: Observations of
barrier layer formation in the Bay of Bengal during summer monsoon, J.
Geophys. Res.-Oceans, 107, 8018, https://doi.org/10.1029/2001JC000831, 2002.
Vinayachandran, P. N. and Mathew, S.: Phytoplankton bloom in the Bay of
Bengal during the northeast monsoon and its intensification by
cyclones, Geophys. Res. Lett., 30, 1572,
https://doi.org/10.1029/2002GL016717, 2003.
Vinayachandran, P. N., Chauhan, P., Mohan, M., and Nayak, S.: Biological
response of the sea around Sri Lanka to summer monsoon, Geophys. Res.
Lett., 31, L01302, https://doi.org/10.1029/2003GL018533, 2004.
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019.
Wang, M., Knobelspiesse, K. D., and McClain, C. R.: Study of the Sea-Viewing
Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean
in combination with the ocean color products, J. Geophys.
Res.-Atmos., 110, D10S06, https://doi.org/10.1029/2004JD004950, 2005.
Wang, M. and Son, S.: VIIRS-derived chlorophyll-a using the ocean color
index method, Remote Sens. Environ., 182, 141–149,
https://doi.org/10.1016/j.rse.2016.05.001, 2016.
Webber, B. G. M., Matthews, A. J., Vinayachandran, P. N., Neema, C. P.,
Sanchez-Franks, A., Vijith, V., Amol, P., and Baranowski, D. B.: The
dynamics of the Southwest Monsoon current in 2016 from high-resolution in
situ observations and model, J. Phys. Oceanogr., 48, 2259–2282,
https://doi.org/10.1175/JPO-D-17-0215.1, 2018.
Webster, P. J., Magaña, V. O., Palmer, T. N., Shukla, J., Tomas, R. A.,
Yanai, M., and Yasunari, T.: Monsoons: Processes, predictability, and the
prospects for prediction, J. Geophys. Res.-Ocean, 103, 14451–14510,
https://doi.org/10.1029/97JC02719, 1998.
Wetzel, P., Maier-Reimer, E., Botzet, M., Jungclaus, J., Keenlyside, N., and
Latif, M.: Effects of ocean biology on the penetrative radiation in a
coupled climate model, J. Climate, 19, 3973–3987,
https://doi.org/10.1175/JCLI3828.1, 2006.
Zaneveld, J. R. V., Kitchen, J. C., and Pak, H.: The influence of optical
water type on the heating rate of a constant depth mixed layer, J. Geophys.
Res.-Oceans, 86, 6426–6428, https://doi.org/10.1029/JC086iC07p06426, 1981.
Short summary
The impact of chlorophyll on the southwest monsoon is unknown. Here, seasonally varying chlorophyll in the Bay of Bengal was imposed in a general circulation model coupled to an ocean mixed layer model. The SST increases by 0.5 °C in response to chlorophyll forcing and shallow mixed layer depths in coastal regions during the inter-monsoon. Precipitation increases significantly to 3 mm d-1 across Myanmar during June and over northeast India and Bangladesh during October, decreasing model bias.
The impact of chlorophyll on the southwest monsoon is unknown. Here, seasonally varying...