Articles | Volume 3, issue 1
Weather Clim. Dynam., 3, 305–336, 2022
https://doi.org/10.5194/wcd-3-305-2022
Weather Clim. Dynam., 3, 305–336, 2022
https://doi.org/10.5194/wcd-3-305-2022
Review article
29 Mar 2022
Review article | 29 Mar 2022

Atmospheric blocking and weather extremes over the Euro-Atlantic sector – a review

Lisa-Ann Kautz et al.

Data sets

ERA5 monthly averaged data on single levels from 1979 to present H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J.-N. Thépaut https://doi.org/10.24381/cds.f17050d7

ERA5 monthly averaged data on pressure levels from 1979 to present H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J.-N. Thépaut https://doi.org/10.24381/cds.6860a573

Download
Short summary
Atmospheric blocking is associated with stationary, self-sustaining and long-lasting high-pressure systems. They can cause or at least influence surface weather extremes, such as heat waves, cold spells, heavy precipitation events, droughts or wind extremes. The location of the blocking determines where and what type of extreme event will occur. These relationships are also important for weather prediction and may change due to global warming.