Articles | Volume 3, issue 2
https://doi.org/10.5194/wcd-3-693-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-3-693-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The response of tropical cyclone intensity to changes in environmental temperature
James M. Done
CORRESPONDING AUTHOR
National Center for Atmospheric Research, 3090 Center Green Drive,
Boulder, Colorado 80301, USA
Willis Research Network, 51 Lime St, London, EC3M 7DQ, UK
Gary M. Lackmann
Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina 27607, USA
Andreas F. Prein
National Center for Atmospheric Research, 3090 Center Green Drive,
Boulder, Colorado 80301, USA
Related authors
No articles found.
Sofía Segovia, Pablo A. Mendoza, Miguel Lagos-Zúñiga, Lucía Scaff, and Andreas Prein
EGUsphere, https://doi.org/10.5194/egusphere-2025-3061, https://doi.org/10.5194/egusphere-2025-3061, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
High-resolution climate simulations can improve our understanding of precipitation and temperature patterns in regions with complex terrain. We evaluate a new climate dataset against in-situ observations, and its potencial for hydrological modeling. Results show that, despite some limitations in dry areas, high-resolution climate models can provide information of a quality comparable to that of observation-based products, supporting their use in water resources planning and decision-making.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Cited articles
Alland, J. J., Tang, B H., Corbosiero, K. L., and Bryan, G. H.: Synergistic
effects of midlevel dry air and vertical wind shear on tropical cyclone
development. Part I: Downdraft ventilation, J. Atmos. Sci., 78, 763–782,
https://doi.org/10.1175/JAS-D-20-0054.1, 2021a
Alland, J. J., Tang, B. H., Corbosiero, K. L., and Bryan, G. H.: Combined
effects of midlevel dry air and vertical wind shear on tropical cyclone
development. Part II: Radial ventilation, J. Atmos. Sci., 78, 783–796,
https://doi.org/10.1175/JAS-D-20-0055.1, 2021b.
Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate
and the hydrologic cycle, Nature, 419, 224–232, https://doi.org/10.1038/nature01092, 2002.
Alvey III, G. R., Zipser, E., and Zawislak, J.: How does Hurricane Edouard (2014) evolve toward symmetry before rapid intensification? A high-resolution
ensemble study, J. Atmos. Sci., 77, 1329–1351, https://doi.org/10.1175/JAS-D-18-0355.1, 2020.
Amrhein, V., Greenland, S., and McShane, B.: Scientists rise up against
statistical significance, Nature, 567, 305–307,
https://doi.org/10.1038/d41586-019-00857-9, 2019.
Bister, M. and Emanuel, K. A.: Dissipative heating and hurricane intensity,
Meteorol. Atmos. Phys., 65, 233–240, https://doi.org/10.1007/BF01030791, 1998.
Bryan, G. H.: Effects of surface exchange coefficients and turbulence length
scales on the intensity and structure of numerically simulated hurricanes,
Mon. Weather Rev., 140, 1125–1143, https://doi.org/10.1175/MWR-D-11-00231.1,
2012.
Bryan, G. H. and Fritsch, J. M.: A benchmark simulation for moist
nonhydrostatic numerical models, Mon. Weather Rev., 130, 2917–2928,
https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2, 2002 (code available at: https://www2.mmm.ucar.edu/people/bryan/cm1/, last access: 22 June 2022).
Bryan, G. H. and Rotunno, R.: The maximum intensity of tropical cyclones in
axisymmetric numerical model simulations, Mon. Weather Rev., 137, 1770–1789,
https://doi.org/10.1175/2008MWR2709.1, 2009a.
Bryan, G. H. and Rotunno, R.: Evaluation of an analytical model for the
maximum intensity of tropical cyclones, J. Atmos. Sci., 66, 3042–3060,
https://doi.org/10.1175/2009JAS3038.1, 2009b.
Butchart, N.: The Brewer-Dobson circulation, Rev. Geophys., 52, 157–184,
https://doi.org/10.1002/2013RG000448, 2014.
Cordero, E. C. and Forster, P. M. D. F.: Stratospheric variability and trends in models used for the IPCC AR4, Atmos. Chem. Phys., 6, 5369–5380, https://doi.org/10.5194/acp-6-5369-2006, 2006.
Dai, A.: Recent climatology, variability, and trends in global surface
humidity, J. Climate, 19, 2589–3606, https://doi.org/10.1175/JCLI3816.1, 2006.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, D. P., and
Bechtold, P.: The ERA-Interim reanalysis: Configuration and performance of
the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Deser, C., Knutti, R., Solomon, S., and Phillips, A. S.: Communication of the
role of natural variability in future North American climate, Nat. Clim.
Change, 2, 775–779, https://doi.org/10.1038/nclimate1562, 2012.
Dunion, J. P.: Rewriting the climatology of the tropical North Atlantic and
Caribbean Sea atmosphere, J. Climate, 24, 893–908,
https://doi.org/10.1175/2010JCLI3496.1, 2011.
Durre, I., Vose, R. S., and Wuertz, D. B.: Overview of the integrated global
radiosonde archive, J. Climate, 19, 53–68, https://doi.org/10.1175/JCLI3594.1, 2006.
Elsner, J. B. and Jagger, T. H.: Hurricane climatology: a modern statistical
guide using R, Oxford University Press, https://doi.org/10.1093/oso/9780199827633.001.0001, 2013.
Elsner, J. B., Kossin, J. P., and Jagger, T. H.: The increasing intensity of
the strongest tropical cyclones, Nature, 455, 92–95, https://doi.org/10.1038/nature07234, 2008.
Emanuel, K. A.: An air-sea interaction theory for tropical cyclones. Part
I: Steady-state maintenance, J. Atmos. Sci., 43, 585–604,
https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2, 1986.
Emanuel, K. A.: The dependence of hurricane intensity on climate, Nature,
326, 483–485, https://doi.org/10.1038/326483a0, 1987.
Emanuel, K. A.: The maximum intensity of hurricanes, J. Atmos. Sci., 45,
1143–1155, https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2, 1988.
Emanuel, K. A.: The theory of hurricanes, Annu. Rev. Fluid Mech., 23,
179–196, https://doi.org/10.1146/annurev.fl.23.010191.001143, 1991.
Emanuel, K. A.: Hurricanes: Tempests in a greenhouse, Phys. Today, 59,
74–75, https://doi.org/10.1063/1.2349743, 2006.
Emanuel, K. A.: Atlantic tropical cyclones downscaled from climate
reanalyses show increasing activity over past 150 years, Nat. Commun., 12,
1–8, https://doi.org/10.1038/s41467-021-27364-8, 2021.
Emanuel, K. A., Solomon, S., Folini, D., Davis, S., and Cagnazzo, C.:
Influence of tropical tropopause layer cooling on Atlantic hurricane
activity, J. Climate, 26, 2288–2301, https://doi.org/10.1175/JCLI-D-12-00242.1, 2013.
European Centre for Medium-Range Weather Forecasts: ERA-Interim Project. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], Boulder, CO, https://doi.org/10.5065/D6CR5RD9, 2009 (data available at: https://apps.ecmwf.int/datasets/, last access: 22 June 2022).
European Centre for Medium-Range Weather Forecasts: ERA5 Reanalysis
(0.25 Degree Latitude-Longitude Grid). Research Data Archive at the National
Center for Atmospheric Research, Computational and Information Systems
Laboratory [data set], Boulder, CO, https://doi.org/10.5065/BH6N-5N20, 2019 (data available at: https://apps.ecmwf.int/datasets/, last access: 22 June 2022).
European Centre for Medium-Range Weather Forecasts: ERA5.1:
Corrections to ERA5 Stratospheric Temperature 2000-2006. Research Data
Archive at the National Center for Atmospheric Research, Computational and
Information Systems Laboratory [data set], Boulder, CO, https://doi.org/10.5065/CBTN-V814, 2020 (data available at: https://apps.ecmwf.int/datasets/, last access: 22 June 2022).
Ferrara, M., Groff, F., Moon, Z., Keshavamurthy, K., Robeson, S. M., and Kieu, C.: Large-scale control of the lower stratosphere on variability of tropical cyclone intensity, Geophys. Res. Lett., 44, 4313–4323,
https://doi.org/10.1002/2017GL073327, 2017.
Fujiwara, M., Hibino, T., Mehta, S. K., Gray, L., Mitchell, D., and Anstey, J.: Global temperature response to the major volcanic eruptions in multiple reanalysis data sets, Atmos. Chem. Phys., 15, 13507–13518, https://doi.org/10.5194/acp-15-13507-2015, 2015.
Gentry, M. S. and Lackmann, G. M.: Sensitivity of simulated tropical cyclone
structure and intensity to horizontal resolution, Mon. Weather Rev., 138,
688–704, https://doi.org/10.1175/2009MWR2976.1, 2010.
Gettelman, A., Hegglin, M. I., Son, S.-W., Kim, J., Fujiwara, M., Birner, T., Kremser, S., Rex, M., Añel, J. A., Akiyoshi, H., Austin, J., Bekki, S., Braesike, P., Brühl, C., Butchart, N., Chipperfield, M., Dameris, M., Dhomse, S., Garny, H., Hardiman, S. C., Jöckel, P., Kinnison, D. E., Lamarque, J. F., Mancini, E., Marchand, M., Michou, M., Morgenstern, O., Pawson, S., Pitari, G., Plummer, D., Pyle, J. A., Rozanov, E., Scinocca, J., Shepherd, T. G., Shibata, K., Smale, D., Teyssèdre, H., and Tian, W.: Multimodel assessment of the upper troposphere
and lower stratosphere: Tropics and global trends, J. Geophys. Res., 115,
D00M08, https://doi.org/10.1029/2009JD013638, 2010.
Gilford, D.: dgilford/pyPI: pyPI v1.3 (initial package release), Version v1.3, Zenodo [code], https://doi.org/10.5281/zenodo.3985975, 2020.
Gilford, D. M.: pyPI (v1.3): Tropical Cyclone Potential Intensity Calculations in Python, Geosci. Model Dev., 14, 2351–2369, https://doi.org/10.5194/gmd-14-2351-2021, 2021.
Gilford, E. M., Solomon, S., and Emanuel, K. A.: On the seasonal cycles of
tropical cyclone potential intensity, J. Climate, 30, 6085–6096, 2017.
Gutmann, E. D., Rasmussen, R. M., Liu, C., Ikeda, K., Bruyere, C. L., Done,
J. M., Garrè, L., Friis-Hansen, P., and Veldore, V.: Changes in
hurricanes from a 13-yr convection-permitting pseudo–global warming
simulation, J. Climate, 31, 3643–3657, https://doi.org/10.1175/JCLI-D-17-0391.1, 2018.
Haimberger, L.: Homogenization of radiosonde temperature time series using
innovation statistics, J. Climate, 20, 1377–1403, https://doi.org/10.1175/JCLI4050.1, 2007 (data available at: https://www.univie.ac.at/theoret-met/research/raobcore/, last access: 22 June 2022).
Haimberger, L., Tavolato, C., and Sperka, S.: Toward elimination of the warm
bias in historic radiosonde temperature records – Some new results from a
comprehensive intercomparison of upper-air data, J. Climate, 21, 4587–4606,
https://doi.org/10.1175/2008JCLI1929.1, 2008.
Haimberger, L., Tavolato, C., and Sperka, S.: Homogenization of the global
radiosonde temperature dataset through combined comparison with reanalysis
background series and neighboring stations, J. Climate, 25, 8108–8131,
https://doi.org/10.1175/JCLI-D-11-00668.1, 2012.
Hakim, G. J.: The mean state of axisymmetric hurricanes in statistical
equilibrium, J. Atmos. Sci., 68, 1364–1376, https://doi.org/10.1175/2010JAS3644.1, 2011.
Hardiman, S. C., Butchart, N., and Calvo, N.: The morphology of the
Brewer–Dobson circulation and its response to climate change in CMIP5
simulations, Q. J. Roy. Meteor. Soc., 140, 1958–1965, https://doi.org/10.1002/qj.2258, 2014.
Hartmann, D. L. and Larson, K.: An important constraint on tropical
cloud-climate feedback, Geophys. Res. Lett., 29, 1951,
https://doi.org/10.1029/2002GL015835, 2002.
Hazeleger, W., van den Hurk, B. J., Min, E., van Oldenborgh, G. J.,
Petersen, A. C., Stainforth, D. A., Vasileiadou, E., and Smith, L. A.: Tales of future weather, Nat. Clim. Change, 5, 107–113, 2015.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to
global warming, J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1, 2006.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., and
Simmons, A.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hill, K. A. and Lackmann, G. M.: The impact of future climate change on TC
intensity and structure: A downscaling approach, J. Climate, 24, 4644–4661,
https://doi.org/10.1175/2011JCLI3761.1, 2011.
Holland, G. and Bruyère, C. L.: Recent intense hurricane response to
global climate change, Clim. Dynam., 42, 617–627, https://doi.org/10.1007/s00382-013-1713-0, 2014.
Holland, G. J.: The maximum potential intensity of tropical cyclones, J.
Atmos. Sci., 54, 2519–2541,
https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2, 1997.
Jewson, S. and Lewis, N.: Statistical decomposition of the recent increase
in the intensity of tropical storms, Oceans, 1, 311–325,
https://doi.org/10.3390/oceans1040021, 2020.
Jung, C. and Lackmann, G. M.: Extratropical transition of Hurricane Irene
(2011) in a changing climate, J. Climate, 32, 4847–4871,
https://doi.org/10.1175/JCLI-D-18-0558.1, 2019.
Khairoutdinov, M. and Emanuel, K.: Rotating radiative-convective equilibrium
simulated by a cloud-resolving model, J. Adv. Model. Earth Sy., 5,
816–825, https://doi.org/10.1002/2013MS000253, 2013.
Kieu, C. and Zhang, D. L.: The control of environmental stratification on
the hurricane maximum potential intensity, Geophys. Res. Lett., 45,
6272–6280, https://doi.org/10.1029/2018GL078070, 2018.
Klotzbach, P. and Landsea, C.: Extremely intense hurricanes: Revisiting
Webster et al. (2005) after 10 years, J. Climate, 28, 7621–7629,
https://doi.org/10.1175/JCLI-D-15-0188.1, 2015.
Knapp, K. R. and Kruk, M. C.: Quantifying interagency differences in
tropical cyclone best-track wind speed estimates, Mon. Weather Rev., 138,
1459–1473, https://doi.org/10.1175/2009MWR3123.1, 2010.
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C.
J.: The international best track archive for climate stewardship (IBTrACS)
unifying tropical cyclone data, B. Am. Meteorol. Soc., 91, 363–376,
https://doi.org/10.1175/2009BAMS2755.1, 2010 (data available at: https://www.ncdc.noaa.gov/ibtracs/, last access: 22 June 2022).
Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C. H., Kossin, J.,
Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical cyclones
and climate change assessment: Part I: Detection and attribution, B. Am. Meteorol. Soc., 100, 1987–2007, https://doi.org/10.1175/BAMS-D-18-0189.1, 2019.
Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C. H., Kossin, J.,
Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical cyclones
and climate change assessment: Part II: Projected response to anthropogenic
warming, B. Am. Meteorol. Soc., 101, E303–E322,
https://doi.org/10.1175/BAMS-D-18-0194.1, 2020.
Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea,
C., Held, I., Kossin, J. P., Srivastava, A. K., and Sugi, M.: Tropical
cyclones and climate change, Nat. Geosci., 3, 157–163, https://doi.org/10.1038/ngeo779, 2010.
Kossin, J. P.: Validating atmospheric reanalysis data using tropical
cyclones as thermometers, B. Am. Meteoro. Soc, 96, 1089-1096,
https://doi.org/10.1175/BAMS-D-14-00180.1, 2015.
Kossin, J. P., Olander, T. L., and Knapp, K. R.: Trend analysis with a new
global record of tropical cyclone intensity, J. Climate, 26, 9960–9976,
https://doi.org/10.1175/JCLI-D-13-00262.1, 2013.
Kossin, J. P., Knapp, K. R., Olander, T. L., and Velden, C. S.: Global
increase in major tropical cyclone exceedance probability over the past four
decades, P. Natl. Acad. Sci. USA, 117, 11975–11980, https://doi.org/10.1073/pnas.1920849117, 2020.
Kuang, Z. and Hartmann, D. L.: Testing the fixed anvil temperature
hypothesis in a cloud-resolving model, J. Climate, 20, 2051–2057,
https://doi.org/10.1175/JCLI4124.1, 2007.
Lackmann, G. M.: Hurricane Sandy before 1900 and after 2100, B. Am. Meteorol. Soc., 96, 547–560, https://doi.org/10.1175/BAMS-D-14-00123.1, 2015.
Landsea, C. W., Harper, B. A., Hoarau, K., and Knaff, J. A.: Can we detect
trends in extreme tropical cyclones?, Science, 313, 452–454,
https://doi.org/10.1126/science.1128448, 2006.
Lee, C. Y., Tippett, M., Sobel, A., and Camargo, S. J.: Rapid intensification and the bimodal distribution of tropical cyclone intensity, Nat. Commun., 7, 10625, https://doi.org/10.1038/ncomms10625, 2016.
Meehl, G. A., Washington, W. M., Ammann, C. M., Arblaster, J. M., Wigley, T.
M. L., and Tebaldi, C.: Combinations of natural and anthropogenic forcings in
twentieth-century climate, J. Climate, 17, 3721–3727,
https://doi.org/10.1175/1520-0442(2004)017<3721:CONAAF>2.0.CO;2, 2004.
Meehl, G. A., Washington, W. M., Arblaster, J. M., Hu A., Teng, H., Tebaldi, C., Sanderson, B., Lamarque, J. F., Conley, A., Strand, W. G., and White III, J. B.: Climate system response to external forcings and climate change projections in CCSM4, J. Climate, 25, 3661–3683.
https://doi.org/10.1175/JCLI-D-11-00240.1, 2012.
Mitchell, D. M., Thorne, P. W., Stott, P. A., and Gray, L. J.: Revisiting the
controversial issue of tropical tropospheric temperature trends, Geophys.
Res. Lett., 40, 2801–2806, https://doi.org/10.1002/grl.50465, 2013.
O'Gorman, P. A. and Singh, M. S.: Vertical structure of warming consistent
with an upward shift in the middle and upper troposphere, Geophys. Res.
Lett., 40, 1838–1842, https://doi.org/10.1002/grl.50328, 2013.
Pall, P., Allen, M. R., and Stone, D. A.: Testing the Clausius–Clapeyron
constraint on changes in extreme precipitation under CO2 warming, Clim. Dynam., 28, 351–363, https://doi.org/10.1007/s00382-006-0180-2, 2007.
Pauluis, O. M. and Zhang, F.: Reconstruction of thermodynamic cycles in a
high-resolution simulation of a hurricane, J. Atmos. Sci., 74, 3367–3381,
https://doi.org/10.1175/JAS-D-16-0353.1, 2017.
Persing, J., Montgomery, M. T., McWilliams, J. C., and Smith, R. K.: Asymmetric and axisymmetric dynamics of tropical cyclones, Atmos. Chem. Phys., 13, 12299–12341, https://doi.org/10.5194/acp-13-12299-2013, 2013.
Philipona, R., Mears, C., Fujiwara, M., Jeannet, P., Thorne, P., Bodeker,
G., Haimberger, L., Hervo, M., Popp, C., Romanens, G., and Steinbrecht, W.:
Radiosondes show that after decades of cooling, the lower stratosphere is
now warming, J. Geophys. Res.-Atmos., 123, 12509–12522, https://doi.org/10.1029/2018JD028901, 2018.
Po-Chedley, S. and Fu, Q.: Discrepancies in tropical upper tropospheric
warming between atmospheric circulation models and satellites, Environ. Res.
Lett., 7, 044018, https://doi.org/10.1088/1748-9326/7/4/044018, 2012.
Prein, A. F. and Heymsfield, A. J.: Increased melting level height impacts
surface precipitation phase and intensity, Nat. Clim. Change, 10, 771–776,
https://doi.org/10.1038/s41558-020-0825-x, 2020.
Prein, A. F., Liu, C., Ikeda, K., Trier, S. B., Rasmussen, R. M., Holland,
G. J., and Clark, M. P.: Increased rainfall volume from future convective
storms in the US, Nat. Clim. Change, 7, 880–884, https://doi.org/10.1038/s41558-017-0007-7, 2017.
Rahmstorf, S., Foster, G., and Cahill, N.: Global temperature analysis:
Recent trends and some pitfalls, Environ Res. Lett., 12, 054001,
https://doi.org/10.1088/1748-9326/aa6825, 2017.
Ramaswamy, V., Schwarzkopf, M. D., Randel, W. J., Santer, B. D., Soden, B.
J., and Stenchikov, G. L.: Anthropogenic and natural influences in the
evolution of lower stratospheric cooling, Science, 311, 1138–1141,
https://doi.org/10.1126/science.1122587, 2006.
Ramsay, H. A.: The effects of imposed stratospheric cooling on the maximum
intensity of tropical cyclones in axisymmetric radiative–convective
equilibrium, J. Climate, 26, 9977–9985, https://doi.org/10.1175/JCLI-D-13-00195.1, 2013.
Riemer, M., Montgomery, M. T., and Nicholls, M. E.: A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer, Atmos. Chem. Phys., 10, 3163–3188, https://doi.org/10.5194/acp-10-3163-2010, 2010.
Rogers, R. F., Reasor, P. D., and Lorsolo, S.: Airborne Doppler observations
of the inner-core structural differences between intensifying and
steady-state tropical cyclones, Mon. Weather Rev., 141, 2970–2991,
https://doi.org/10.1175/MWR-D-12-00357.1, 2013.
Rotunno, R. and Emanuel, K. A.: An air–sea interaction theory for tropical
cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric
numerical model, J. Atmos. Sci., 44, 542–561,
https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2, 1987.
Rousseau-Rizzi, R. and Emanuel, K.: An evaluation of hurricane
superintensity in axisymmetric numerical models, J. Atmos. Sci., 76,
1697–1708, https://doi.org/10.1175/JAS-D-18-0238.1, 2019.
Rousseau-Rizzi, R. and Emanuel, K.: A weak temperature gradient framework to
quantify the causes of potential intensity variability in the tropics, J.
Climate, 34, 8669–8682, https://doi.org/10.1175/JCLI-D-21-0139.1, 2021.
Rousseau-Rizzi, R., Rotunno, R., and Bryan, G.: A Thermodynamic Perspective
on Steady-State Tropical Cyclones, J. Atmos. Sci., 78, 583–593,
https://doi.org/10.1175/JAS-D-20-0140.1, 2021.
Rousseau-Rizzi, R., Merlis, T. M., and Jeevanjee, N.: The connection between
Carnot and CAPE formulations of TC potential intensity, J. Climate, 35,
941–954, https://doi.org/10.1175/JCLI-D-21-0360.1, 2022.
Santer, B. D., Wigley, T. M., Mears, C., Wentz, F. J., Klein, S. A., Seidel,
D. J., Taylor, K. E., Thorne, P. W., Wehner, M. F., Gleckler, P. J., and
Boyle, J. S.: Amplification of surface temperature trends and variability in
the tropical atmosphere, Science, 309, 1551–1556, https://doi.org/10.1126/science.1114867, 2005.
Santer, B. D., Thorne, P. W., Haimberger, L., Taylor, K. E., Wigley, T. M. L., Lanzante, J. R., Solomon, S., Free, M., Gleckler, P. J., Jones, P. D., Karl, T. R., Klein, S. A., Mears, C., Nychka, D., Schmidt, G. A., Sherwood, S. C., and Wentz, F. J.: Consistency of modelled and observed temperature trends in the tropical troposphere, Int. J. Climatol., 28, 1703–1722, https://doi.org/10.1002/joc.1756, 2008.
Schreck III, C. J., Knapp, K. R., and Kossin, J. P.: The impact of best track
discrepancies on global tropical cyclone climatologies using IBTrACS, Mon.
Weather Rev. 142, 3881–3899, https://doi.org/10.1175/MWR-D-14-00021.1, 2014.
Shen, W., Tuleya, R. E., and Ginis, I.: A sensitivity study of the
thermodynamic environment on GFDL model hurricane intensity: Implications
for global warming, J. Climate, 13, 109–121,
https://doi.org/10.1175/1520-0442(2000)013<0109:ASSOTT>2.0.CO;2, 2000.
Shepherd, T. G.: Storyline approach to the construction of regional climate
change information, P. Roy. Soc. A-Math. Phy., 475, 20190013, https://doi.org/10.1098/rspa.2019.0013, 2019.
Sherwood, S. C., Lanzante, J. R., and Meyer, C. L.: Radiosonde daytime biases
and late-20th century warming, Science, 309, 1556–1559, https://doi.org/10.1126/science.1115640, 2005.
Simmons, A. J., Poli, P., Dee, D. P., Berrisford, P., Hersbach, H.,
Kobayashi, S., and Peubey, C.: Estimating low-frequency variability and
trends in atmospheric temperature using ERA-Interim, Q. J. Roy. Meteor. Soc., 140, 329–353, https://doi.org/10.1002/qj.2317, 2014.
Simmons, A. J., Soci, C., Nicolas, J., Bell, B., Berrisford, P., Dragani,
R., Flemming, J., Haimberger, L., Healey, S. B., Hersbach, H., Horányi,
A., Inness, A., Muñoz-Sabater, J., Radu, R., and Schepers, D.: Global
stratospheric temperature bias and other stratospheric aspects of ERA5 and
ERA5.1, Technical Memorandum 859, ECMWF, Reading, UK, https://doi.org/10.21957/rcxqfmg0, 2020.
Smith, R. K., Montgomery, M. T., and Nguyen, S. V.: Axisymmetric dynamics of
tropical cyclone intensification in a three dimensional model, Q. J. Roy. Meteor. Soc., 134, 337–351, https://doi.org/10.1175/JAS-D-17-0179.1, 2008.
Sobel, A. H., Camargo, S. J., Hall, T. M., Lee, C. Y., Tippett, M. K., and Wing, A. A.: Human influence on tropical cyclone intensity, Science, 353, 242–246, https://doi.org/10.1126/science.aaf6574, 2016.
Strazzo, S. E., Elsner, J. B. and LaRow, T. E.: Quantifying the sensitivity
of maximum, limiting, and potential tropical cyclone intensity to SST:
Observations versus the FSU/COAPS global climate model, J. Adv. Model. Earth
Sy., 7, 586–599, https://doi.org/10.1002/2015MS000432, 2015.
Tao, D., Rotunno, R., and Bell, M.: Lilly's Model for Steady-State Tropical
Cyclone Intensity and Structure, J. Atmos. Sci., 77, 3701–3720,
https://doi.org/10.1175/JAS-D-20-0057.1, 2020.
Thompson, D. W. J., Seidel, D. J., Randel, W. J., Zou, C. Z., Butler, A. H.,
Mears, C., Osso, A., Long, C., and Lin, R.: The mystery of recent
stratospheric temperature trends, Nature, 491, 692–697,
https://doi.org/10.1038/nature11579, 2012.
Thorne, P. W., Lanzante, J. R., Peterson, T. C., Seidel, D. J., and Shine, K.
P.: Tropospheric temperature trends: History of an ongoing controversy,
WIREs Clim. Change, 2, 66–88, https://doi.org/10.1002/wcc.80, 2011.
Ting, M., Kossin, J. P., Camargo, S. J., and Li, C.: Past and future
hurricane intensity change along the US east coast, Scientific Reports, 9,
7765, https://doi.org/10.1038/s41598-019-44252-w, 2019.
Tuleya, R. E., Bender, M. A., Knutson, T. R., Sirutis, J. J., Thomas, B.,
and Ginis, I.: Impact of upper tropospheric temperature anomalies and
vertical wind shear on tropical cyclone evolution using an idealized version
of the operational GFDL hurricane model, J. Atmos. Sci., 73, 3803–3820,
https://doi.org/10.1175/JAS-D-16-0045.1, 2016.
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V.
D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A.,
and Li, X.: The ERA-40 re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961–3012, https://doi.org/10.1256/qj.04.176, 2005.
Vecchi, G. A., Fueglistaler, S., Held, I. M., Knutson, T. R., and Zhao, M.:
Impacts of atmospheric temperature changes on tropical cyclone activity, J.
Climate, 26, 3877–3891, https://doi.org/10.1175/JCLI-D-12-00503.1, 2013.
Wadler, J. B., Zhang, J. A., Jaimes, B. and Shay, L. K.: The Rapid
Intensification of Hurricane Michael (2018): Storm Structure and the
Relationship to Environmental and Air-Sea Interactions. Mon. Weather Rev., 149, 245–267, https://doi.org/10.1175/MWR-D-20-0145.1, 2021.
Wang, Y.: Vortex Rossby waves in a numerically simulated tropical cyclone.
Part I: Overall structure, potential vorticity, and kinetic energy budgets,
J. Atmos. Sci., 59, 1213–1238,
https://doi.org/10.1175/1520-0469(2002)059<1213:VRWIAN>2.0.CO;2, 2002.
Wasserstein, R. L., Schirm, A. L., and Lazar, N. A.: Moving to a world
beyond “p<0.05”, Am. Stat., 73, 1537–2731, https://doi.org/10.1080/00031305.2019.1583913, 2019.
Wilcoxon, F.: Individual comparisons by ranking methods, Biometrics Bull., 1,
80–83, https://doi.org/10.2307/3001968, 1945.
Willett, K. M., Gillett, N. P, Jones, P. D., and Thorne, P. W.: Attribution
of observed surface humidity changes to human influence, Nature, 449,
710–712, https://doi.org/10.1038/nature06207, 2007.
Xu, K. M., Wong, T., Wielicki, B. A., Parker, L., Lin, B., Eitzen, Z. A. and
Branson, M.: Statistical analyses of satellite cloud object data from CERES.
Part II: Tropical convective cloud objects during 1998 El Niño and
evidence for supporting the fixed anvil temperature hypothesis, J. Climate,
20, 819–842, https://doi.org/10.1175/JCLI4069.1, 2007.
Zawislak, J., Jiang, H., Alvey III, G. R., Zipser, E. J., Rogers, R. F.,
Zhang, J. A., and Stevenson, S. N.: Observations of the structure and
evolution of Hurricane Edouard (2014) during intensity change. Part I:
Relationship between the thermodynamic structure and precipitation, Mon. Weather Rev., 144, 3333–3354, https://doi.org/10.1175/MWR-D-16-0018.1, 2016.
Short summary
We know that warm oceans generally favour tropical cyclones (TCs). Less is known about the role of air temperature above the oceans extending into the lower stratosphere. Our global analysis of historical records and computer simulations suggests that TCs strengthen in response to historical temperature change while also being influenced by other environmental factors. Ocean warming drives much of the strengthening, with relatively small contributions from temperature changes aloft.
We know that warm oceans generally favour tropical cyclones (TCs). Less is known about the role...