Articles | Volume 4, issue 3
https://doi.org/10.5194/wcd-4-789-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-4-789-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A critical evaluation of decadal solar cycle imprints in the MiKlip historical ensemble simulations
Tobias C. Spiegl
CORRESPONDING AUTHOR
Institute of Meteorology, Freie Universität Berlin, Berlin,
Germany
Ulrike Langematz
Institute of Meteorology, Freie Universität Berlin, Berlin,
Germany
Holger Pohlmann
Climate Variability, Max Planck Institute for Meteorology, Hamburg, Germany
Jürgen Kröger
Climate Variability, Max Planck Institute for Meteorology, Hamburg, Germany
Related authors
No articles found.
Wolfgang A. Müller, Stephan Lorenz, Trang V. Pham, Andrea Schneidereit, Renate Brokopf, Victor Brovkin, Nils Brüggemann, Fatemeh Chegini, Dietmar Dommenget, Kristina Fröhlich, Barbara Früh, Veronika Gayler, Helmuth Haak, Stefan Hagemann, Moritz Hanke, Tatiana Ilyina, Johann Jungclaus, Martin Köhler, Peter Korn, Luis Kornblüh, Clarissa Kroll, Julian Krüger, Karel Castro-Morales, Ulrike Niemeier, Holger Pohlmann, Iuliia Polkova, Roland Potthast, Thomas Riddick, Manuel Schlund, Tobias Stacke, Roland Wirth, Dakuan Yu, and Jochem Marotzke
EGUsphere, https://doi.org/10.5194/egusphere-2025-2473, https://doi.org/10.5194/egusphere-2025-2473, 2025
Short summary
Short summary
ICON XPP is a newly developed Earth System model configuration based on the ICON modeling framework. It merges accomplishments from the recent operational numerical weather prediction model with well-established climate components for the ocean, land and ocean-biogeochemistry. ICON XPP reaches typical targets of a coupled climate simulation, and is able to run long integrations and large-ensemble experiments, making it suitable for climate predictions and projections, and for climate research.
Wenjuan Huo, Tobias Spiegl, Sebastian Wahl, Katja Matthes, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
Atmos. Chem. Phys., 25, 2589–2612, https://doi.org/10.5194/acp-25-2589-2025, https://doi.org/10.5194/acp-25-2589-2025, 2025
Short summary
Short summary
Uncertainties of the solar signals in the middle atmosphere are assessed based on large ensemble simulations with multiple climate models. Our results demonstrate that the 11-year solar signals in the shortwave heating rate, temperature, and ozone anomalies are significant and robust. The simulated dynamical responses are model-dependent, and solar imprints in the polar night jet are influenced by biases in the model used.
Cited articles
Allan, R. and Ansell, T.: A new globally complete monthly historical
gridded mean sea level pressure dataset (HadSLP2): 1850–2004, J. Climate,
19, 5816–5842, https://doi.org/10.1175/JCLI3937.1, 2006.
Andrews, D. G.: Wave–mean-flow interaction in the middle atmosphere, Adv. Geophys., 28, 249–275, https://doi.org/10.1016/S0065-2687(08)60226-5, 1985.
Andrews, M. B., Knight, J. R., and Gray, L. J.: A simulated lagged response
of the North Atlantic Oscillation to the solar cycle over the period
1960–2009, Environ. Res. Lett., 10, 054022,
https://doi.org/10.1088/1748-9326/10/5/054022, 2015.
Arsenovic, P., Rozanov, E., Stenke, A., Funke, B., Wissing, J. M., Mursula, K., Tummon, F., and Peter, T.: The influence of Middle Range Energy electrons on atmospheric chemistry and regional climate, J. Atmos. Sol. Terr. Phys., 149, 180–190, https://doi.org/10.1016/j.jastp.2016.04.008, 2016.
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous
weather regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315,
2001.
Baumgaertner, A. J. G., Jöckel, P., Riede, H., Stiller, G., and Funke, B.: Energetic particle precipitation in ECHAM5/MESSy – Part 2: Solar proton events, Atmos. Chem. Phys., 10, 7285–7302, https://https://doi.org/10.5194/acp-10-7285-2010, 2010.
Bodeker, G. E., Boyd, I. S., and Matthews, W. A.: Trends and variability in
vertical ozone and temperature profiles measured by ozonesondes at Lauder,
New Zealand: 1986–1996. J. Geophys. Res., 103, 28661–28681,
https://doi.org/10.1029/98JD02581, 1998.
Butchart, N.: The Brewer-Dobson circulation, Rev. Geophys., 52, 157–184,
https://https://doi.org/10.1002/2013RG000448, 2014.
Cagnazzo, C., Manzini, E., Giorgetta, M. A., Forster, P. M. D. F., and Morcrette, J. J.: Impact of an improved shortwave radiation scheme in the MAECHAM5 General Circulation Model, Atmos. Chem. Phys., 7, 2503–2515, https://https://doi.org/10.5194/acp-7-2503-2007, 2007.
Cionni, I., Eyring, V., Lamarque, J. F., Randel, W. J., Stevenson, D. S., Wu, F., Bodeker, G. E., Shepherd, T. G., Shindell, D. T., and Waugh, D. W.: Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing, Atmos. Chem. Phys., 11, 11267–11292, https://https://doi.org/10.5194/acp-11-11267-2011, 2011.
Chiodo, G., Calvo, N., Marsh, D. R., and Garcia-Herrera, R.: The 11 year solar cycle signal in transient simulations from the Whole Atmosphere Community Climate Model, J. Geophys. Res., 117, D06109,
https://doi.org/10.1029/2011JD016393, 2012.
Chiodo, G., Oehrlein, J., Polvani, L. M., Fyfe, J. C., and Smith, A. K.:
Insignificant influence of the 11-year solar cycle on the North Atlantic
Oscillation, Nat. Geosci., 12, 94–99, https://doi.org/10.1038/s41561-018-0293-3,
2019.
Dhomse, S. S., Chipperfield, M. P., Feng, W., Hossaini, R., Mann, G. W., Santee, M. L., and Weber, M.: A single-peak-structured solar cycle signal in stratospheric ozone based on Microwave Limb Sounder observations and model simulations, Atmos. Chem. Phys., 22, 903–916, https://doi.org/10.5194/acp-22-903-2022, 2022.
Drews, A., Huo, W., Matthes, K., Kodera, K., and Kruschke, T.: The Sun's role in decadal climate predictability in the North Atlantic, Atmos. Chem. Phys., 22, 7893–7904, https://doi.org/10.5194/acp-22-7893-2022, 2022.
Forster, P. M., Fomichev, V. I., Rozanov, E., Cagnazzo, C., Jonsson, A. I., Langematz, U., Fomin, B., Iacono, M. J., Mayer, B., Mlawer, E., Myhre, G., Portmann, R. W., Akiyoshi, H., Falaleeva, V., Gillett, N., Karpechko, A., Li, J., Lemennais, P., Morgenstern, O., Oberländer, S., Sigmond, M., and Shibata, K.: Evaluation of radiation scheme performance within chemistry climate models, J. Geophys. Res., 116, D10302, https://doi.org/10.1029/2010JD015361, 2011.
Fouquart, Y. and Bonnel, B.: Computations of solar heating of the earth's
atmosphere – A new parameterization, Beitr. Phy. Atmos., 53, 35–62, 1980.
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G. M., Shindell, D., van Geel, B., and White, W.: A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns, J. Geophys. Res., 118, 13–405, https://doi.org/10.1002/2013JD020062, 2013.
Huang, J., Hitchcock, P., Maycock, A. C., McKenna, C. M., and Tian, W.:
Northern hemisphere cold air outbreaks are more likely to be severe during
weak polar vortex conditions, Communications Earth and Environment, 2,
147, https://doi.org/10.1038/s43247-021-00215-6, 2021.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res., 113,
D13103, https://doi.org/10.1029/2008JD009944, 2008.
Ilyina, T., Six, K. D., Segschneider, J., Maier-Reimer, E., Li, H., and
Núñez-Riboni, I.: Global ocean biogeochemistry model HAMOCC: Model
architecture and performance as component of the MPI-Earth system model in
different CMIP5 experimental realizations, J. Adv. Model. Earth Syst., 5,
287–315, https://doi.org/10.1029/2012MS000178, 2013.
Ineson, S., Scaife, A. A., Knight, J. R., Manners, J. C., Dunstone, N. J.,
Gray, L. J., and Haigh, J. D.: Solar forcing of winter climate variability
in the Northern Hemisphere, Nat. Geosci., 4, 753–757,
https://doi.org/10.1038/ngeo1282, 2011.
Jackman, C. H., Marsh, D. R., Vitt, F. M., Garcia, R. R., Randall, C. E.,
Fleming, E. L. and Frith, S. M.: Long-term middle atmospheric influence of
very large solar proton events, J. Geophys. Res, 114, D11304,
https://doi.org/10.1029/2008JD011415, 2009.
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Mikolajewicz, U., Notz, D., and Von Storch, J. S.: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model, J. Adv. Model. Earth Syst., 5, 422–446, https://doi.org/10.1002/jame.20023, 2013.
Kodera, K.: Solar cycle modulation of the North Atlantic Oscillation:
Implication in the spatial structure of the NAO, Geophys. Res. Lett, 29,
1218, https://doi.org/10.1029/2001GL014557, 2002.
Kodera, K. and Kuroda, Y.: Dynamical response to the solar cycle, J.
Geophys. Res., 107, ACL-5, https://doi.org/10.1029/2002JD002224, 2002.
Kuroda, Y., Kodera, K., Yoshida, K., Yukimoto, S., and Gray, L.: Influence
of the solar cycle on the North Atlantic Oscillation, J. Geophys. Res.,
127, e2021JD035519, https://doi.org/10.1029/2021JD035519, 2022.
Langematz, U., Kubin A., Brühl, C., Baumgaertner, A. J. G., Cubasch, U.,
and Spangehl, T.: Solar effects on chemistry and climate including ocean
interactions, in Climate And Weather of the Sun-Earth System (CAWSES):
Highlights from a Priority Program, edited by: Lübken, F.-J., Springer,
Dordrecht, the Netherlands, https://doi.org/10.1007/978-94-007-4348-9_29, 2013.
Lean, J.: Evolution of the Sun's spectral irradiance since the Maunder
Minimum, Geophys. Res. Lett., 27, 2425–2428,
https://doi.org/10.1029/2000GL000043, 2000.
Ma, H., Chen, H., Gray, L., Zhou, L., Li, X., Wang, R., and Zhu, S.: Changing
response of the North Atlantic/European winter climate to the 11-year solar
cycle, Environ. Res. Lett., 13, 034007, doi10.1088/1748-9326/aa9e94,
2018.
Marotzke, J., Müller, W. A., Vamborg, F. S. E., Becker, P., Cubasch, U., Feldmann, H., Kaspar, F., Kottmeier, C., Marini, C., Polkova, I., Prömmel, K., Rust, H. W., Stammer, D., Ulbrich, U., Kadow, C., Köhl, A., Kröger, J., Kruschke, T., Pinto, J. G., Pohlmann, H., Reyers, M., Schröder, M., Sienz, F., Timmreck, C., and Ziese, M.: MiKlip: a national research project on decadal climate prediction, B. Am. Meteorol. Soc., 97, 2379–2394, https://doi.org/10.1175/BAMS-D-15-00184.1, 2016.
Matthes, K., Langematz, U., Gray, L. L., Kodera, K., and Labitzke, K.:
Improved 11-year solar signal in the Freie Universität Berlin climate
middle atmosphere model (FUB-CMAM), J. Geophys. Res., 109, D06101,
https://doi.org/10.1029/2003JD004012, 2004.
Matthes, K., Kuroda, Y., Kodera, K., and Langematz, U.: Transfer of the
solar signal from the stratosphere to the troposphere: Northern winter, J.
Geophys. Res., 111, D06108, https://doi.org/10.1029/2005JD006283, 2006.
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017.
Meehl, G. A., Arblaster, J. M., Branstator, G., and van Loon, H.: A Coupled
Air–Sea Response Mechanism to Solar Forcing in the Pacific Region, J.
Climate, 21, 2883–2897, https://https://doi.org/10.1175/2007JCLI1776.1, 2008.
Meehl, G. A., Goddard, L., Boer, G., Burgman, R., Branstator, G., Cassou, C., Corti, S., Danabasoglu, G., Doblas-Reyes, F., Hawkins, E., Karspeck, A., Kimoto, M., Kumar, A., Matei, D., Mignot, J., Msadek, R., Navarra, A., Pohlmann, H., Rienecker, M., Rosati, T., Schneider, E., Smith, D., Sutton, R., Teng, H., van Oldenborgh, G. J., Vecchi, G., and Yeager, S.: Decadal climate prediction: an update from the trenches, B. Am. Meteorol. Soc., 95, 243–267, https://doi.org/10.1175/BAMS-D-12-00241.1, 2014.
Mehta, V., Meehl, G., Goddard, L., Knight, J., Kumar, A., Latif, M., Lee, T., Rosati, A., and Stammer, D.: Decadal climate predictability and prediction: where are we?, B. Am. Meteorol. Soc., 92, 637–640, https://doi.org/10.1175/2010BAMS3025.1, 2011.
Misios, S. and Schmidt, H.: Mechanisms Involved in the Amplification of the
11-yr solar cycle signal in the tropical Pacific Ocean, J. Climate, 25,
5102–5118, https://doi.org/10.1175/JCLI-D-11-00261.1, 2012.
Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E., Stemmler, I., Tian, F., and Marotzke, J.: A higher-resolution version of the max planck institute earth system model (MPI-ESM1. 2-HR), J. Adv. Model. Earth Syst., 10, 1383–1413, https://doi.org/10.1029/2017MS001217, 2018.
Paulsen, H., Ilyina, T., Six, K. D., and Stemmler, I.: Incorporating a
prognostic representation of marine nitrogen fixers into the global ocean
biogeochemical model HAMOCC, J. Adv. Model. Earth Syst., 9, 438–464,
https://doi.org/10.1002/2016MS000737, 2017.
Pohlmann, H., Müller, W. A., Kulkarni, K., Kameswarrao, M., Matei, D.,
Vamborg, F. S. E., Kadow, C., Illing, S., and Marotzke, J.: Improved
forecast skill in the tropics in the new MiKlip decadal climate predictions,
Geophys. Res. Lett., 40, 5798–5802, doi.10.1002/2013GL058051, 2013.
Pohlmann, H., Müller, W. A., Bittner, M., Hettrich, S., Modali, K.,
Pankatz, K., and Marotzke, J.: Realistic quasi-biennial oscillation
variability in historical and decadal hindcast simulations using CMIP6
forcing, Geophys. Res. Lett., 46, 14118–14125,
https://doi.org/10.1029/2019GL084878, 2019.
Randel, W. J., Smith, A. K., Wu, F., Zou, C., and Qian, H.: Stratospheric
Temperature Trends over 1979–2015 Derived from Combined SSU, MLS, and SABER
Satellite Observations, J. Climate, 29, 4843–4859,
https://doi.org/10.1175/JCLI-D-15-0629.1, 2016.
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of
natural and anthropogenic land cover change in MPI-ESM, J. Adv. Model. Earth
Syst., 5, 459–482, https://doi.org/10.1002/jame.20022, 2013.
Scaife, A. A. and Smith, D.: A signal-to-noise paradox in climate science,
NPJ Climate and Atmospheric Science, 1, 28,
https://doi.org/10.1038/s41612-018-0038-4, 2018.
Scaife, A. A., Ineson, S., Knight, J. R., Gray, L., Kodera, K., and Smith,
D. M.: A mechanism for lagged North Atlantic climate response to solar
variability, Geophys. Res. Lett., 40, 434–439, https://doi.org/10.1002/grl.50099,
2013.
Seppälä, A., Randall, C. E., Clilverd, M. A., Rozanov, E., and Rodger, C. J.: Geomagnetic activity and polar surface air temperature
variability, J. Geophys. Res, 114, A10312, https://doi.org/10.1029/2008JA014029, 2009.
Seppälä, A., Matthes, K., Randall, C. E., and Mironova, I. A.: What
is the solar influence on climate? Overview of activities during CAWSES-II,
Progress in Earth and Planetary Science, 1, 1–12,
https://doi.org/10.1186/s40645-014-0024-3, 2014.
Schmidt, H., Brasseur, G. P., and Giorgetta, M. A.: Solar cycle signal in a
general circulation and chemistry model with internally generated quasi-biennial oscillation, J. Geophys. Res., 115, D00I14,
https://doi.org/10.1029/2009JD012542, 2010.
Spiegl, T. and Langematz, U.: Twenty-First-Century Climate Change Hot Spots
in the Light of a Weakening Sun, J. Climate, 33, 3431–3447,
https://doi.org/10.1175/JCLI-D-19-0059.1, 2020.
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.: Atmospheric component of the MPI-M Earth System Model: ECHAM6, J. Adv. Model. Earth Syst., 5, 146–172, https://doi.org/10.1002/jame.20015, 2013.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Thiéblemont, R., Matthes, K., Omrani, N. E., Kodera, K., and Hansen, F.:
Solar forcing synchronizes decadal North Atlantic climate variability, Nat.
Commun., 6, 8268, https://doi.org/10.1038/ncomms9268, 2015.
Short summary
We investigate the role of the solar cycle in atmospheric domains with the Max Plank Institute Earth System Model in high resolution (MPI-ESM-HR). We focus on the tropical upper stratosphere, Northern Hemisphere (NH) winter dynamics and potential surface imprints. We found robust solar signals at the tropical stratopause and a weak dynamical response in the NH during winter. However, we cannot confirm the importance of the 11-year solar cycle for decadal variability in the troposphere.
We investigate the role of the solar cycle in atmospheric domains with the Max Plank Institute...