Articles | Volume 2, issue 4
https://doi.org/10.5194/wcd-2-1149-2021
https://doi.org/10.5194/wcd-2-1149-2021
Research article
 | 
02 Dec 2021
Research article |  | 02 Dec 2021

Intraseasonal variability of ocean surface wind waves in the western South Atlantic: the role of cyclones and the Pacific South American pattern

Dalton K. Sasaki, Carolina B. Gramcianinov, Belmiro Castro, and Marcelo Dottori

Related subject area

Other aspects of weather and climate dynamics
Decadal variability and trends in extratropical Rossby wave packet amplitude, phase, and phase speed
Georgios Fragkoulidis
Weather Clim. Dynam., 3, 1381–1398, https://doi.org/10.5194/wcd-3-1381-2022,https://doi.org/10.5194/wcd-3-1381-2022, 2022
Short summary
Stratospheric intrusion depth and its effect on surface cyclogenetic forcing: an idealized potential vorticity (PV) inversion experiment
Michael A. Barnes, Thando Ndarana, Michael Sprenger, and Willem A. Landman
Weather Clim. Dynam., 3, 1291–1309, https://doi.org/10.5194/wcd-3-1291-2022,https://doi.org/10.5194/wcd-3-1291-2022, 2022
Short summary
Supercell convective environments in Spain based on ERA5: hail and non-hail differences
Carlos Calvo-Sancho, Javier Díaz-Fernández, Yago Martín, Pedro Bolgiani, Mariano Sastre, Juan Jesús González-Alemán, Daniel Santos-Muñoz, José Ignacio Farrán, and María Luisa Martín
Weather Clim. Dynam., 3, 1021–1036, https://doi.org/10.5194/wcd-3-1021-2022,https://doi.org/10.5194/wcd-3-1021-2022, 2022
Short summary
Trends in the tropospheric general circulation from 1979 to 2022
Adrian J. Simmons
Weather Clim. Dynam., 3, 777–809, https://doi.org/10.5194/wcd-3-777-2022,https://doi.org/10.5194/wcd-3-777-2022, 2022
Short summary
A characterisation of Alpine mesocyclone occurrence
Monika Feldmann, Urs Germann, Marco Gabella, and Alexis Berne
Weather Clim. Dynam., 2, 1225–1244, https://doi.org/10.5194/wcd-2-1225-2021,https://doi.org/10.5194/wcd-2-1225-2021, 2021
Short summary

Cited articles

Alves, J.-H. G.: Numerical modeling of ocean swell contributions to the global wind-wave climate, Ocean Model., 11, 98–122, https://doi.org/10.1016/j.ocemod.2004.11.007, 2006. a
Ambrizzi, T. and Hoskins, B. J.: Stationary rossby-wave propagation in a baroclinic atmosphere, Q. J. Roy. Meteorol. Soc., 123, 919–928, https://doi.org/10.1002/qj.49712354007, 1997. a, b
Ambrizzi, T., Hoskins, B. J., and Hsu, H.-H.: Rossby wave propagation and teleconnection patterns in the austral winter, J. Atmos. Sci., 52, 3661–3672, 1995. a
Ardhuin, F. and Orfila, A.: Wind Waves, in: New Frontiers in Operational Oceanography, edited by: Chassignet, E., Pascual, A., Tintoré, J., and Verron, J., GODAE OceanView, Florida State University College of Medicine, chap. 14, 393–422, https://doi.org/10.17125/gov2018.ch14, 2018. a
Ardhuin, F., Chapron, B., and Collard, F.: Observation of swell dissipation across oceans, Geophys. Res. Lett., 36, L06607, https://doi.org/10.1029/2008gl037030, 2009. a
Download
Short summary
Extratropical cyclones are relevant in the western South Atlantic and influence the climate of ocean surface wave. Propagating atmospheric features from the South Pacific to the South Atlantic are relevant to the cyclones and waves, and its intensified westerlies lead to more cyclones and, as a consequence, to higher wave heights. The opposite happens with its weakening. These features are similar to the so-called Pacific South American patterns and present periods between 30 and 180 d.