Articles | Volume 2, issue 4
https://doi.org/10.5194/wcd-2-1149-2021
https://doi.org/10.5194/wcd-2-1149-2021
Research article
 | 
02 Dec 2021
Research article |  | 02 Dec 2021

Intraseasonal variability of ocean surface wind waves in the western South Atlantic: the role of cyclones and the Pacific South American pattern

Dalton K. Sasaki, Carolina B. Gramcianinov, Belmiro Castro, and Marcelo Dottori

Related subject area

Other aspects of weather and climate dynamics
ClimaMeter: contextualizing extreme weather in a changing climate
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024,https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Large-ensemble assessment of the Arctic stratospheric polar vortex morphology and disruptions
Ales Kuchar, Maurice Öhlert, Roland Eichinger, and Christoph Jacobi
Weather Clim. Dynam., 5, 895–912, https://doi.org/10.5194/wcd-5-895-2024,https://doi.org/10.5194/wcd-5-895-2024, 2024
Short summary
Elevation-dependent warming: observations, models, and energetic mechanisms
Michael P. Byrne, William R. Boos, and Shineng Hu
Weather Clim. Dynam., 5, 763–777, https://doi.org/10.5194/wcd-5-763-2024,https://doi.org/10.5194/wcd-5-763-2024, 2024
Short summary
Meeting summary: Exploring cloud dynamics with Cloud Model 1 and 3D visualization – insights from a university modeling workshop
Lisa Schielicke, Yidan Li, Jerome Schyns, Aaron Sperschneider, Jose Pablo Solano Marchini, and Christoph Peter Gatzen
Weather Clim. Dynam., 5, 703–710, https://doi.org/10.5194/wcd-5-703-2024,https://doi.org/10.5194/wcd-5-703-2024, 2024
Short summary
Waviness of the Southern Hemisphere wintertime polar and subtropical jets
Jonathan E. Martin and Taylor Norton
Weather Clim. Dynam., 4, 875–886, https://doi.org/10.5194/wcd-4-875-2023,https://doi.org/10.5194/wcd-4-875-2023, 2023
Short summary

Cited articles

Alves, J.-H. G.: Numerical modeling of ocean swell contributions to the global wind-wave climate, Ocean Model., 11, 98–122, https://doi.org/10.1016/j.ocemod.2004.11.007, 2006. a
Ambrizzi, T. and Hoskins, B. J.: Stationary rossby-wave propagation in a baroclinic atmosphere, Q. J. Roy. Meteorol. Soc., 123, 919–928, https://doi.org/10.1002/qj.49712354007, 1997. a, b
Ambrizzi, T., Hoskins, B. J., and Hsu, H.-H.: Rossby wave propagation and teleconnection patterns in the austral winter, J. Atmos. Sci., 52, 3661–3672, 1995. a
Ardhuin, F. and Orfila, A.: Wind Waves, in: New Frontiers in Operational Oceanography, edited by: Chassignet, E., Pascual, A., Tintoré, J., and Verron, J., GODAE OceanView, Florida State University College of Medicine, chap. 14, 393–422, https://doi.org/10.17125/gov2018.ch14, 2018. a
Ardhuin, F., Chapron, B., and Collard, F.: Observation of swell dissipation across oceans, Geophys. Res. Lett., 36, L06607, https://doi.org/10.1029/2008gl037030, 2009. a
Download
Short summary
Extratropical cyclones are relevant in the western South Atlantic and influence the climate of ocean surface wave. Propagating atmospheric features from the South Pacific to the South Atlantic are relevant to the cyclones and waves, and its intensified westerlies lead to more cyclones and, as a consequence, to higher wave heights. The opposite happens with its weakening. These features are similar to the so-called Pacific South American patterns and present periods between 30 and 180 d.