Articles | Volume 2, issue 4
https://doi.org/10.5194/wcd-2-1149-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-1149-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intraseasonal variability of ocean surface wind waves in the western South Atlantic: the role of cyclones and the Pacific South American pattern
Departamento de Oceanografia Física, Química e Geológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, Cidade Universitária, São Paulo, SP, Brazil
Carolina B. Gramcianinov
Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão, 1226, Cidade Universitária, Sáo Paulo, SP, Brazil
Belmiro Castro
Departamento de Oceanografia Física, Química e Geológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, Cidade Universitária, São Paulo, SP, Brazil
deceased, 10 October 2020
Marcelo Dottori
Departamento de Oceanografia Física, Química e Geológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, Cidade Universitária, São Paulo, SP, Brazil
Related authors
Samantha Siedlecki, Stanley Nmor, Gennadi Lessin, Kelly Kearney, Subhadeep Rakshit, Colleen Petrik, Jessica Luo, Cristina Schultz, Dalton Sasaki, Kayla Gillen, Anh Pham, Christopher Somes, Damian Brady, Jeremy Testa, Christophe Rabouille, Isa Elegbede, and Olivier Sulpis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1846, https://doi.org/10.5194/egusphere-2025-1846, 2025
Preprint archived
Short summary
Short summary
Benthic biogeochemical models are essential for simulating seafloor carbon cycling and climate feedbacks, yet vary widely in structure and assumptions. This paper introduces SedBGC_MIP, a community initiative to compare existing models, refine key processes, and assess uncertainty. We highlight discrepancies through case studies and introduce needs including observational benchmarks. Ultimately, we seek to improve climate and resource projections.
Samantha Siedlecki, Stanley Nmor, Gennadi Lessin, Kelly Kearney, Subhadeep Rakshit, Colleen Petrik, Jessica Luo, Cristina Schultz, Dalton Sasaki, Kayla Gillen, Anh Pham, Christopher Somes, Damian Brady, Jeremy Testa, Christophe Rabouille, Isa Elegbede, and Olivier Sulpis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1846, https://doi.org/10.5194/egusphere-2025-1846, 2025
Preprint archived
Short summary
Short summary
Benthic biogeochemical models are essential for simulating seafloor carbon cycling and climate feedbacks, yet vary widely in structure and assumptions. This paper introduces SedBGC_MIP, a community initiative to compare existing models, refine key processes, and assess uncertainty. We highlight discrepancies through case studies and introduce needs including observational benchmarks. Ultimately, we seek to improve climate and resource projections.
Cited articles
Alves, J.-H. G.: Numerical modeling of ocean swell contributions to the global wind-wave climate, Ocean Model., 11, 98–122,
https://doi.org/10.1016/j.ocemod.2004.11.007, 2006. a
Ambrizzi, T. and Hoskins, B. J.: Stationary rossby-wave propagation in a
baroclinic atmosphere, Q. J. Roy. Meteorol. Soc., 123, 919–928, https://doi.org/10.1002/qj.49712354007, 1997. a, b
Ambrizzi, T., Hoskins, B. J., and Hsu, H.-H.: Rossby wave propagation and
teleconnection patterns in the austral winter, J. Atmos. Sci., 52, 3661–3672, 1995. a
Ardhuin, F. and Orfila, A.: Wind Waves, in: New Frontiers in Operational
Oceanography, edited by: Chassignet, E., Pascual, A., Tintoré, J., and Verron, J., GODAE OceanView, Florida State University College of Medicine, chap. 14, 393–422, https://doi.org/10.17125/gov2018.ch14, 2018. a
Ardhuin, F., Chapron, B., and Collard, F.: Observation of swell dissipation
across oceans, Geophys. Res. Lett., 36, L06607, https://doi.org/10.1029/2008gl037030, 2009. a
Belmonte Rivas, M. and Stoffelen, A.: Characterizing ERA-Interim and ERA5
surface wind biases using ASCAT, Ocean Sci., 15, 831–852,
https://doi.org/10.5194/os-15-831-2019, 2019. a
Chen, G., Chapron, B., Ezraty, R., and Vandemark, D.: A Global View of Swell
and Wind Sea Climate in the Ocean by Satellite Altimeter and Scatterometer,
J. Atmos. Ocean. Tech., 19, 1849–1859,
https://doi.org/10.1175/1520-0426(2002)019<1849:agvosa>2.0.co;2, 2002. a
Crespo, N. M., Rocha, R. P., Sprenger, M., and Wernli, H.: A Potential
Vorticity Perspective on Cyclogenesis over Center‐Eastern South America, Int. J. Climatol., 41,
663–678,
https://doi.org/10.1002/joc.6644, 2020. a
da Rocha, R. P., Sugahara, S., and da Silveira, R. B.: Sea Waves Generated by
Extratropical Cyclones in the South Atlantic Ocean: Hindcast and Validation
against Altimeter Data, Weather Forecast., 19, 398–410,
https://doi.org/10.1175/1520-0434(2004)019<0398:swgbec>2.0.co;2, 2004. a, b
Dawson, A.: eofs: A library for EOF analysis of meteorological, oceanographic, and climate data,
J. Open Res. Softw.,
4, e14, https://doi.org/10.5334/jors.122, 2016. a
de Andrade, T. S., Sousa, P. H. G. D. O., and Siegle, E.: Vulnerability to
beach erosion based on a coastal processes
approach, Appl. Geogr., 102,
12–19, https://doi.org/10.1016/j.apgeog.2018.11.003, 2019. a
Ding, Q., Steig, E. J., Battisti, D. S., and Wallace, J. M.: Influence of the
tropics on the southern annular mode, J. Climate, 25, 6330–6348,
https://doi.org/10.1175/JCLI-D-11-00523.1, 2012. a
Dodet, G., Bertin, X., and Taborda, R.: Wave climate variability in the North-East Atlantic Ocean over the last six decades, Ocean Model., 31, 120–131, https://doi.org/10.1016/j.ocemod.2009.10.010, 2010. a
Godoi, V. A. and Torres Júnior, A. R.: A global analysis of austral summer ocean wave variability during SAM–ENSO phase combinations, Clim.
Dynam., 54, 3991–4004, https://doi.org/10.1007/s00382-020-05217-2, 2020. a, b
Godoi, V. A., de Andrade, F. M., Durrant, T. H., and Torres Júnior, A. R.: What happens to the ocean surface gravity waves when ENSO and MJO phases combine during the extended boreal winter?, Clim. Dynam., 54, 1407–1424, https://doi.org/10.1007/s00382-019-05065-9, 2020. a, b
Gramcianinov, C. B., Hodges, K. I., and de Camargo, R.: The properties and
genesis environments of South Atlantic cyclones, Clim. Dynam., 53, 4115–4140, https://doi.org/10.1007/s00382-019-04778-1, 2019. a, b
Gramcianinov, C. B., Campos, R. M., de Camargo, R., Hodges, K. I., Guedes Soares, C., and da Silva Dias, P. L.: Analysis of Atlantic extratropical storm tracks characteristics in 41 years of ERA5 and CFSR/CFSv2 databases, Ocean Eng., 216, 108111, https://doi.org/10.1016/j.oceaneng.2020.108111,
2020a. a, b
Gramcianinov, C. B., Campos, R. M., de Camargo, R., Hodges, K. I., Guedes Soares, C., and da Silva Dias, P. L.: Atlantic extratropical cyclone
tracks in 41 years of ERA5 and CFSR/CFSv2 databases, V4, Mendeley Data [data set], https://doi.org/10.17632/kwcvfr52hp.4, 2020b. a, b
Gramcianinov, C. B., Campos, R. M., de Camargo, R., and Guedes Soares, C.:
Relation between cyclone evolution and fetch associated with extreme wave events in the South Atlantic Ocean, J. Offshore Mech. Arct. Eng., 143, 061202, https://doi.org/10.1115/1.4051038, 2021. a, b, c
Hare, F. K.: The Westerlies, Geogr. Rev., 50, 345–367, https://doi.org/10.2307/212280, 1960. a
Hemer, M. A., Church, J. A., and Hunter, J. R.: Variability and trends in the
directional wave climate of the Southern Hemisphere, Int. J. Climatol., 30, 475–491, https://doi.org/10.1002/joc.1900, 2010. a
Hersbach, H., Bell, B., Berrisford, P., Horányi, A., Sabater, J. M.,
Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., and Dee, D.:
Global reanalysis: goodbye ERA-Interim, hello ERA5, ECMWF Newslett., 159, 17–24, https://doi.org/10.21957/vf291hehd7, 2019. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b, c
Hodges, K. I.: A General Method for Tracking Analysis and Its Application to
Meteorological Data, Mon. Weather Rev., 122, 2573–2586,
https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2, 1994. a
Hodges, K. I.: Feature Tracking on the Unit Sphere, Mon. Weather Rev., 123,
3458–3465, https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2, 1995. a
Hodges, K. I.: Spherical Nonparametric Estimators Applied to the UGAMP Model
Integration for AMIP, Mon. Weather Rev., 124, 2914–2932,
https://doi.org/10.1175/1520-0493(1996)124<2914:SNEATT>2.0.CO;2, 1996. a
Hodges, K. I.: Confidence intervals and significance tests for spherical data derived from feature tracking, Mon. Weather Rev., 136, 1758–1777,
https://doi.org/10.1175/2007MWR2299.1, 2008. a
Hoskins, B. J. and Ambrizzi, T.: Rossby Wave Propagation on a Realistic
Longitudinally Varying Flow, J. Atmos. Sci., 50, 1661–1671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2, 1993. a, b
Hoskins, B. J. and Hodges, K. I.: New Perspectives on the Northern Hemisphere
Winter Storm Tracks, J. Atmos. Sci., 59, 1041–1061,
https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2, 2002. a
Hoskins, B. J. and Hodges, K. I.: A New Perspective on Southern Hemisphere
Storm Tracks, J. Climate, 18, 4108–4129, https://doi.org/10.1175/JCLI3570.1, 2005. a, b, c
Irving, D. and Simmonds, I.: A new method for identifying the Pacific-South
American pattern and its influence on regional climate variability, J. Climate, 29, 6109–6125, https://doi.org/10.1175/JCLI-D-15-0843.1, 2016. a, b, c
Li, X., Gerber, E. P., Holland, D. M., and Yoo, C.: A Rossby wave bridge from
the tropical Atlantic to West Antarctica, J. Climate, 28, 2256–2273, https://doi.org/10.1175/JCLI-D-14-00450.1, 2015. a
Liebmann, B., Kiladis, G. N., Vera, C. S., Saulo, A. C., and Carvalho, L. M.:
Subseasonal variations of rainfall in South America in the vicinity of the
low-level jet east of the Andes and comparison to those in the South Atlantic
convergence zone, J. Climate, 17, 3829–3842,
https://doi.org/10.1175/1520-0442(2004)017<3829:SVORIS>2.0.CO;2, 2004. a, b, c, d, e, f
Liu, Y., Liang, X. S., and Weisberg, R. H.: Rectification of the bias in the
wavelet power spectrum, J. Atmos. Ocean. Tech., 24, 2093–2102, https://doi.org/10.1175/2007JTECHO511.1, 2007. a
Marshall, G. J.: Trends in the Southern Annular Mode from observations and
reanalyses, J. Climate, 16, 4134–4143,
https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2, 2003. a
Mo, K. C.: Relationships between low-frequency variability in the Southern
Hemisphere and sea surface temperature anomalies, J. Climat, 13, 3599–3610,
https://doi.org/10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2, 2000. a, b
Mo, K. C. and Paegle, J. N.: The Pacific-South American modes and their
downstream effects, Int. J. Climatol., 21, 1211–1229, https://doi.org/10.1002/joc.685, 2001. a
O'Kane, T. J., Risbey, J. S., Monselesan, D. P., Horenko, I., and Franzke,
C. L.: On the dynamics of persistent states and their secular trends in the
waveguides of the Southern Hemisphere troposphere, Clim. Dynam., 46,
3567–3597, https://doi.org/10.1007/s00382-015-2786-8, 2016. a, b
Paegle, J. N., Byerle, L. A., and Mo, K. C.: Intraseasonal modulation of South American summer precipitation, Mon. Weather Rev., 128, 837–850,
https://doi.org/10.1175/1520-0493(2000)128<0837:IMOSAS>2.0.CO;2, 2000. a, b, c, d
Pereira, H. P. P., Violante-Carvalho, N., Nogueira, I. C. M., Babanin, A., Liu, Q., de Pinho, U. F., Nascimento, F., and Parente, C. E.: Wave observations from an array of directional buoys over the southern Brazilian coast, Ocean Dynam., 67, 1577–1591, https://doi.org/10.1007/s10236-017-1113-9, 2017. a
Pereira, N. E. D. S. and Klumb-Oliveira, L. A.: Analysis of the influence of
ENSO phenomena on wave climate on the central coastal zone of Rio de Janeiro
(Brazil), J. Integr. Coast. Zone Manage. – Revista de Gestão Costeira Integrada, 15, 353–370, https://doi.org/10.5894/rgci570, 2015. a
Reboita, M. S., da Rocha, R. P., Ambrizzi, T., and Sugahara, S.: South
Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3), Clim. Dynam., 35, 1331–1347, https://doi.org/10.1007/s00382-009-0668-7, 2010. a
Reboita, M. S., da Rocha, R. P., Ambrizzi, T., and Gouveia, C. D.: Trend and
teleconnection patterns in the climatology of extratropical cyclones over the
Southern Hemisphere, Clim. Dynam., 45, 1929–1944, https://doi.org/10.1007/s00382-014-2447-3, 2015. a
Reguero, B. G., Losada, I. J., and Méndez, F. J.: A global wave power
resource and its seasonal, interannual and long-term variability, Appl.
Energy, 148, 366–380, https://doi.org/10.1016/j.apenergy.2015.03.114, 2015.
a
Robinson, W. A.: A Baroclinic Mechanism for the Eddy Feedback on the Zonal
Index, J. Atmos. Sci., 57, 415–422, https://doi.org/10.1175/1520-0469(2000)057<0415:abmfte>2.0.co;2, 2000. a
Rodrigues, R. R. and Woollings, T.: Impact of Atmospheric Blocking on South
America in Austral Summer, J. Climate, 30, 1821–1837, https://doi.org/10.1175/JCLI-D-16-0493.1, 2017. a, b, c, d
Rodrigues, R. R., Taschetto, A. S., Sen Gupta, A., and Foltz, G. R.: Common
cause for severe droughts in South America and marine heatwaves in the South
Atlantic, Nat. Geosci., 12, 620–626, https://doi.org/10.1038/s41561-019-0393-8,
2019. a, b, c
Solari, S. and Alonso, R.: A New Methodology For Extreme Waves Analysis Based On Weather-Patterns Classification Methods, in: Coastal Engineering Proceedings, Turkey, 2016, p. 23, https://doi.org/10.9753/icce.v35.waves.23, 2017. a
Srinivas, G., Remya, P. G., Malavika, S., and Nair, T. M.: The influence of
boreal summer intra-seasonal oscillations on Indo-western Pacific Ocean
surface waves, Scient. Rep., 10, 1–12, https://doi.org/10.1038/s41598-020-69496-9, 2020. a, b
Takbash, A. and Young, I. R.: Long-term and seasonal trends in global wave
height extremes derived from era-5 reanalysis data, J. Mar. Sci. Eng., 8,
1–16, https://doi.org/10.3390/jmse8121015, 2020. a
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998. a
Vera, C. S., Vigliarolo, P. K., and Berbery, E. H.: Cold Season Synoptic-Scale Waves over Subtropical South America, Mon. Weather Rev., 130, 684–699, https://doi.org/10.1175/1520-0493(2002)130<0684:CSSSWO>2.0.CO;2, 2002. a
WAMDI Group: The WAM model – A third generation ocean wave prediction
model, 18, 1775–1810, https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2, 1988. a
Willmott, C. J.: On the validation of models, Phys. Geogr., 2, 184–194, https://doi.org/10.1080/02723646.1981.10642213, 1981. a, b
Young, I.: Seasonal variability of the global ocean wind and wave climate,
Int. J. Climatol., 19, 931–950,
https://doi.org/10.1002/(sici)1097-0088(199907)19:9<931::aid-joc412>3.0.co;2-o, 1999. a
Young, L. R., Zieger, S., and Babanin, A. V.: Response to Comment on “Global
Trends in Wind Speed and Wave Height”, Science, 332, 451–455,
https://doi.org/10.1126/science.1210548, 2011. a
Short summary
Extratropical cyclones are relevant in the western South Atlantic and influence the climate of ocean surface wave. Propagating atmospheric features from the South Pacific to the South Atlantic are relevant to the cyclones and waves, and its intensified westerlies lead to more cyclones and, as a consequence, to higher wave heights. The opposite happens with its weakening. These features are similar to the so-called Pacific South American patterns and present periods between 30 and 180 d.
Extratropical cyclones are relevant in the western South Atlantic and influence the climate of...