Articles | Volume 3, issue 2
Weather Clim. Dynam., 3, 505–533, 2022
https://doi.org/10.5194/wcd-3-505-2022
Weather Clim. Dynam., 3, 505–533, 2022
https://doi.org/10.5194/wcd-3-505-2022
Research article
20 Apr 2022
Research article | 20 Apr 2022

Quantifying climate model representation of the wintertime Euro-Atlantic circulation using geopotential-jet regimes

Joshua Dorrington et al.

Related authors

Orographic resolution driving the improvements associated with horizontal resolution increase in the Northern Hemisphere winter mid-latitudes
Paolo Davini, Federico Fabiano, and Irina Sandu
Weather Clim. Dynam., 3, 535–553, https://doi.org/10.5194/wcd-3-535-2022,https://doi.org/10.5194/wcd-3-535-2022, 2022
Short summary
How well is Rossby wave activity represented in the PRIMAVERA coupled simulations?
Paolo Ghinassi, Federico Fabiano, and Susanna Corti
Weather Clim. Dynam., 3, 209–230, https://doi.org/10.5194/wcd-3-209-2022,https://doi.org/10.5194/wcd-3-209-2022, 2022
Short summary
Meridional energy transport extremes and the general circulation of NH mid-latitudes: dominant weather regimes and preferred zonal wavenumbers
Valerio Lembo, Federico Fabiano, Vera Melinda Galfi, Rune Graversen, Valerio Lucarini, and Gabriele Messori
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-85,https://doi.org/10.5194/wcd-2021-85, 2022
Revised manuscript under review for WCD
Short summary
Achieving realistic Arctic-midlatitude teleconnections in a climate model through stochastic process representation
Kristian Strommen and Stephan Juricke
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-61,https://doi.org/10.5194/wcd-2021-61, 2021
Revised manuscript under review for WCD
Short summary
A regime view of future atmospheric circulation changes in northern mid-latitudes
Federico Fabiano, Virna L. Meccia, Paolo Davini, Paolo Ghinassi, and Susanna Corti
Weather Clim. Dynam., 2, 163–180, https://doi.org/10.5194/wcd-2-163-2021,https://doi.org/10.5194/wcd-2-163-2021, 2021
Short summary

Related subject area

Dynamical processes in midlatitudes
Orographic resolution driving the improvements associated with horizontal resolution increase in the Northern Hemisphere winter mid-latitudes
Paolo Davini, Federico Fabiano, and Irina Sandu
Weather Clim. Dynam., 3, 535–553, https://doi.org/10.5194/wcd-3-535-2022,https://doi.org/10.5194/wcd-3-535-2022, 2022
Short summary
Circumglobal Rossby wave patterns during boreal winter highlighted by space–time spectral analysis
Jacopo Riboldi, Efi Rousi, Fabio D'Andrea, Gwendal Rivière, and François Lott
Weather Clim. Dynam., 3, 449–469, https://doi.org/10.5194/wcd-3-449-2022,https://doi.org/10.5194/wcd-3-449-2022, 2022
Short summary
How intense daily precipitation depends on temperature and the occurrence of specific weather systems – an investigation with ERA5 reanalyses in the extratropical Northern Hemisphere
Philipp Zschenderlein and Heini Wernli
Weather Clim. Dynam., 3, 391–411, https://doi.org/10.5194/wcd-3-391-2022,https://doi.org/10.5194/wcd-3-391-2022, 2022
Short summary
Differentiating lightning in winter and summer with characteristics of the wind field and mass field
Deborah Morgenstern, Isabell Stucke, Thorsten Simon, Georg J. Mayr, and Achim Zeileis
Weather Clim. Dynam., 3, 361–375, https://doi.org/10.5194/wcd-3-361-2022,https://doi.org/10.5194/wcd-3-361-2022, 2022
Short summary
Future changes in the extratropical storm tracks and cyclone intensity, wind speed, and structure
Matthew D. K. Priestley and Jennifer L. Catto
Weather Clim. Dynam., 3, 337–360, https://doi.org/10.5194/wcd-3-337-2022,https://doi.org/10.5194/wcd-3-337-2022, 2022
Short summary

Cited articles

Anstey, J. A., Davini, P., Gray, L. J., Woollings, T. J., Butchart, N., Cagnazzo, C., Christiansen, B., Hardiman, S. C., Osprey, S. M., and Yang, S.: Multi-model analysis of Northern Hemisphere winter blocking: Model biases and the role of resolution, J. Geophys. Res.-Atmos., 118, 3956–3971, https://doi.org/10.1002/JGRD.50231, 2013. a
Athanasiadis, P. J., Yeager, S., Kwon, Y.-O., Bellucci, A., Smith, D. W., and Tibaldi, S.: Decadal predictability of North Atlantic blocking and the NAO, NPJ Clim. Atmos. Sci., 3, 1–10, 2020. a
Baker, H. S., Woollings, T., and Mbengue, C.: Eddy-Driven Jet Sensitivity to Diabatic Heating in an Idealized GCM, J. Climate, 30, 6413–6431, https://doi.org/10.1175/JCLI-D-16-0864.1, 2017. a
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric Harbingers of Anomalous Weather Regimes, Science, 294, 581–584, https://doi.org/10.1126/SCIENCE.1063315, 2001. a
Barnes, E. A. and Hartmann, D. L.: Testing a theory for the effect of latitude on the persistence of eddy-driven jets using CMIP3 simulations, Geophys. Res. Lett., 37, L15801, https://doi.org/10.1029/2010GL044144, 2010. a, b
Download
Short summary
We investigate how well current state-of-the-art climate models reproduce the wintertime weather of the North Atlantic and western Europe by studying how well different "regimes" of weather are captured. Historically, models have struggled to capture these regimes, making it hard to predict future changes in wintertime extreme weather. We show models can capture regimes if the right method is used, but they show biases, partially as a result of biases in jet speed and eddy strength.