Articles | Volume 3, issue 2
https://doi.org/10.5194/wcd-3-659-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-3-659-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stratospheric wave driving events as an alternative to sudden stratospheric warmings
Department of Atmospheric Sciences, University of Utah, Salt Lake
City, UT 84112, USA
Martin Jucker
Climate Change Research Centre, the University of New South Wales,
Sydney, NSW, Australia
Australian Research Council Center of Excellence for Climate Extremes, Sydney, NSW, Australia
Related authors
Molly E. Menzel, Darryn W. Waugh, Zheng Wu, and Thomas Reichler
Weather Clim. Dynam., 5, 251–261, https://doi.org/10.5194/wcd-5-251-2024, https://doi.org/10.5194/wcd-5-251-2024, 2024
Short summary
Short summary
Recent work exploring the tropical atmospheric circulation response to climate change has revealed a disconnect in the latitudinal location of two features, the subtropical jet and the Hadley cell edge. Here, we investigate if the surprising result from coupled climate model and meteorological reanalysis output is consistent across model complexity.
Daniel Baldassare, Thomas Reichler, Piret Plink-Björklund, and Jacob Slawson
Weather Clim. Dynam., 4, 531–541, https://doi.org/10.5194/wcd-4-531-2023, https://doi.org/10.5194/wcd-4-531-2023, 2023
Short summary
Short summary
Using ensemble members from the ERA5 reanalysis, the most widely used method for estimating tropical-width trends, the meridional stream function, was found to have large error, particularly in the Northern Hemisphere and in the summer, because of weak gradients at the tropical edge and poor data quality. Another method, using the latitude where the surface wind switches from westerly to easterly, was found to have lower error due to better-observed data.
Hao-Jhe Hong and Thomas Reichler
Geosci. Model Dev., 14, 6647–6660, https://doi.org/10.5194/gmd-14-6647-2021, https://doi.org/10.5194/gmd-14-6647-2021, 2021
Short summary
Short summary
The Arctic wintertime circulation of the stratosphere has pronounced impacts on the troposphere and surface climate. Changes in the stratospheric circulation can lead to either increases or decreases in Arctic ozone. Understanding the interactions between ozone and the circulation will have the benefit of model prediction for the climate. This study introduces an economical and fast simplified model that represents the realistic distribution of ozone and its interaction with the circulation.
Alkuin Maximilian Koenig, Olivier Magand, Paolo Laj, Marcos Andrade, Isabel Moreno, Fernando Velarde, Grover Salvatierra, René Gutierrez, Luis Blacutt, Diego Aliaga, Thomas Reichler, Karine Sellegri, Olivier Laurent, Michel Ramonet, and Aurélien Dommergue
Atmos. Chem. Phys., 21, 3447–3472, https://doi.org/10.5194/acp-21-3447-2021, https://doi.org/10.5194/acp-21-3447-2021, 2021
Short summary
Short summary
The environmental cycling of atmospheric mercury, a harmful global contaminant, is still not sufficiently constrained, partly due to missing data in remote regions. Here, we address this issue by presenting 20 months of atmospheric mercury measurements, sampled in the Bolivian Andes. We observe a significant seasonal pattern, whose key features we explore. Moreover, we deduce ratios to constrain South American biomass burning mercury emissions and the mercury uptake by the Amazon rainforest.
Hao-Jhe Hong and Thomas Reichler
Atmos. Chem. Phys., 21, 1159–1171, https://doi.org/10.5194/acp-21-1159-2021, https://doi.org/10.5194/acp-21-1159-2021, 2021
Short summary
Short summary
Stratospheric ozone is a crucial chemical substance that protects life on Earth from harmful ultraviolet radiation. This article demonstrates how a strong or a weak Arctic polar vortex has an impact on wintertime circulation activity and the concentration of ozone in the stratosphere. Our results suggest that changes in the strength of the polar vortex lead to not only significant and persistent ozone changes locally in the Arctic but also to evident ozone changes in the tropics.
Blanca Ayarzagüena, Amy H. Butler, Peter Hitchcock, Chaim I. Garfinkel, Zac D. Lawrence, Wuhan Ning, Philip Rupp, Zheng Wu, Hilla Afargan-Gerstman, Natalia Calvo, Álvaro de la Cámara, Martin Jucker, Gerbrand Koren, Daniel De Maeseneire, Gloria L. Manney, Marisol Osman, Masakazu Taguchi, Cory Barton, Dong-Chang Hong, Yu-Kyung Hyun, Hera Kim, Jeff Knight, Piero Malguzzi, Daniele Mastrangelo, Jiyoung Oh, Inna Polichtchouk, Jadwiga H. Richter, Isla R. Simpson, Seok-Woo Son, Damien Specq, and Tim Stockdale
EGUsphere, https://doi.org/10.5194/egusphere-2025-3611, https://doi.org/10.5194/egusphere-2025-3611, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Sudden Stratospheric Warmings (SSWs) are known to follow a sustained wave dissipation in the stratosphere, which depends on both the tropospheric and stratospheric states. However, the relative role of each state is still unclear. Using a new set of subseasonal to seasonal forecasts, we show that the stratospheric state does not drastically affect the precursors of three recent SSWs, but modulates the stratospheric wave activity, with impacts depending on SSW features.
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Y. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 6, 171–195, https://doi.org/10.5194/wcd-6-171-2025, https://doi.org/10.5194/wcd-6-171-2025, 2025
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere is coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too weak; however downward coupling from the lower stratosphere to the near surface is too strong.
Molly E. Menzel, Darryn W. Waugh, Zheng Wu, and Thomas Reichler
Weather Clim. Dynam., 5, 251–261, https://doi.org/10.5194/wcd-5-251-2024, https://doi.org/10.5194/wcd-5-251-2024, 2024
Short summary
Short summary
Recent work exploring the tropical atmospheric circulation response to climate change has revealed a disconnect in the latitudinal location of two features, the subtropical jet and the Hadley cell edge. Here, we investigate if the surprising result from coupled climate model and meteorological reanalysis output is consistent across model complexity.
Daniel Baldassare, Thomas Reichler, Piret Plink-Björklund, and Jacob Slawson
Weather Clim. Dynam., 4, 531–541, https://doi.org/10.5194/wcd-4-531-2023, https://doi.org/10.5194/wcd-4-531-2023, 2023
Short summary
Short summary
Using ensemble members from the ERA5 reanalysis, the most widely used method for estimating tropical-width trends, the meridional stream function, was found to have large error, particularly in the Northern Hemisphere and in the summer, because of weak gradients at the tropical edge and poor data quality. Another method, using the latitude where the surface wind switches from westerly to easterly, was found to have lower error due to better-observed data.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Hao-Jhe Hong and Thomas Reichler
Geosci. Model Dev., 14, 6647–6660, https://doi.org/10.5194/gmd-14-6647-2021, https://doi.org/10.5194/gmd-14-6647-2021, 2021
Short summary
Short summary
The Arctic wintertime circulation of the stratosphere has pronounced impacts on the troposphere and surface climate. Changes in the stratospheric circulation can lead to either increases or decreases in Arctic ozone. Understanding the interactions between ozone and the circulation will have the benefit of model prediction for the climate. This study introduces an economical and fast simplified model that represents the realistic distribution of ozone and its interaction with the circulation.
Alkuin Maximilian Koenig, Olivier Magand, Paolo Laj, Marcos Andrade, Isabel Moreno, Fernando Velarde, Grover Salvatierra, René Gutierrez, Luis Blacutt, Diego Aliaga, Thomas Reichler, Karine Sellegri, Olivier Laurent, Michel Ramonet, and Aurélien Dommergue
Atmos. Chem. Phys., 21, 3447–3472, https://doi.org/10.5194/acp-21-3447-2021, https://doi.org/10.5194/acp-21-3447-2021, 2021
Short summary
Short summary
The environmental cycling of atmospheric mercury, a harmful global contaminant, is still not sufficiently constrained, partly due to missing data in remote regions. Here, we address this issue by presenting 20 months of atmospheric mercury measurements, sampled in the Bolivian Andes. We observe a significant seasonal pattern, whose key features we explore. Moreover, we deduce ratios to constrain South American biomass burning mercury emissions and the mercury uptake by the Amazon rainforest.
Hao-Jhe Hong and Thomas Reichler
Atmos. Chem. Phys., 21, 1159–1171, https://doi.org/10.5194/acp-21-1159-2021, https://doi.org/10.5194/acp-21-1159-2021, 2021
Short summary
Short summary
Stratospheric ozone is a crucial chemical substance that protects life on Earth from harmful ultraviolet radiation. This article demonstrates how a strong or a weak Arctic polar vortex has an impact on wintertime circulation activity and the concentration of ozone in the stratosphere. Our results suggest that changes in the strength of the polar vortex lead to not only significant and persistent ozone changes locally in the Arctic but also to evident ozone changes in the tropics.
Cited articles
Albers, J. R. and Birner, T.: Vortex Preconditioning due to Planetary and
Gravity Waves prior to Sudden Stratospheric Warmings, J. Atmos. Sci., 71, 4028–4054, https://doi.org/10.1175/jas-d-14-0026.1, 2014.
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics,
Academic Press, Orlando, Florida, ISBN: 9780080511672, 1987.
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous
weather regimes, Science, 294, 581–584, 2001.
Baldwin, M. P. and Thompson, D. W. J.: A critical comparison of stratosphere–troposphere coupling indices, Q. J. Roy. Meteor. Soc., 135, 1661–1672, 2009.
Baldwin, M. P., Thompson, D. W. J., Shuckburgh, E. F., Norton, W. A., and
Gillett, N. P.: Weather from the Stratosphere?, Science, 301, 317–319, 2003.
Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A.
H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H.,
Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.: Sudden
Stratospheric Warmings, Rev. Geophys., 59, e2020RG000708,
https://doi.org/10.1029/2020RG000708, 2021.
Barriopedro, D. and Calvo, N.: On the Relationship between ENSO,
Stratospheric Sudden Warmings, and Blocking, J. Climate, 27,
4704–4720, 2014.
Birner, T. and Albers, J. R.: Sudden stratospheric warmings and anomalous
upward wave activity flux, SOLA, 13A, 8–12, https://doi.org/10.2151/sola.13A-002,
2017.
Black, R. X. and McDaniel, B. A.: The Dynamics of Northern Hemisphere
Stratospheric Final Warming Events, J. Atmos. Sci., 64,
2932–2946, https://doi.org/10.1175/jas3981.1, 2007.
Butchart, N., Charlton-Perez, A. J., Cionni, I., Hardiman, S. C., Haynes, P.
H., Krüger, K., Kushner, P. J., Newman, P. A., Osprey, S. M., Perlwitz,
J., Sigmond, M., Wang, L., Akiyoshi, H., Austin, J., Bekki, S.,
Baumgaertner, A., Braesicke, P., Brühl, C., Chipperfield, M., Dameris,
M., Dhomse, S., Eyring, V., Garcia, R., Garny, H., Jöckel, P., Lamarque,
J.-F., Marchand, M., Michou, M., Morgenstern, O., Nakamura, T., Pawson, S.,
Plummer, D., Pyle, J., Rozanov, E., Scinocca, J., Shepherd, T. G., Shibata,
K., Smale, D., Teyssèdre, H., Tian, W., Waugh, D., and Yamashita, Y.:
Multimodel climate and variability of the stratosphere, J. Geophys. Res., 116, D05102, https://doi.org/10.1029/2010jd014995, 2011.
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and
Match, A.: Defining Sudden Stratospheric Warmings, B. Am.
Meteorol. Soc., 96, 1913–1928, https://doi.org/10.1175/bams-d-13-00173.1, 2015.
Cámara, A. d. l., Albers, J. R., Birner, T., Garcia, R. R., Hitchcock,
P., Kinnison, D. E., and Smith, A. K.: Sensitivity of Sudden Stratospheric
Warmings to Previous Stratospheric Conditions, J. Atmos. Sci., 74, 2857–2877, https://doi.org/10.1175/jas-d-17-0136.1, 2017.
Cámara, A. d. l., Birner, T., and Albers, J. R.: Are Sudden
Stratospheric Warmings Preceded by Anomalous Tropospheric Wave Activity?,
J. Climate, 32, 7173–7189, https://doi.org/10.1175/jcli-d-19-0269.1, 2019.
Charlton, A. J. and Polvani, L. M.: A New Look at Stratospheric Sudden
Warmings. Part I: Climatology and Modeling Benchmarks, J. Climate,
20, 449–469, https://doi.org/10.1175/jcli3996.1, 2007.
Charney, J. G. and Drazin, P. G.: Propagation of planetary-scale
disturbances from the lower into the upper atmosphere, J. Geophys. Res., 66,
83–109, 1961.
Chen, P. and Robinson, W. A.: Propagation of Planetary Waves between the
Troposphere and Stratosphere, J. Atmos. Sci., 49,
2533–2545, 1992.
Christiansen, B.: Stratospheric Vacillations in a General Circulation Model,
J. Atmos. Sci., 56, 1858–1872,
https://doi.org/10.1175/1520-0469(1999)056<1858:SVIAGC>2.0.CO;2, 1999.
Cohen, J. and Jones, J.: Tropospheric Precursors and Stratospheric Warmings,
J. Climate, 24, 6562–6572, 2011.
Copernicus Climate Change Service (C3S): Climate reanalysis, Climate Data Store (CDS) [data set], https://climate.copernicus.eu/climate-reanalysis, last access: 14 June 2022.
Dai, Y. and Hitchcock, P.: Understanding the Basin Asymmetry in Surface
Response to Sudden Stratospheric Warmings from an Ocean–Atmosphere Coupled
Perspective, J. Climate, 34, 8683–8698, https://doi.org/10.1175/jcli-d-21-0314.1,
2021.
Delworth, T. L., Broccoli, A. J., Rosati, A., et al.: GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics, J. Climate, 19, 643–674, https://doi.org/10.1175/jcli3629.1, 2006.
Domeisen, D. I. V., Grams, C. M., and Papritz, L.: The role of North
Atlantic–European weather regimes in the surface impact of sudden
stratospheric warming events, Weather Clim. Dynam., 1, 373–388,
https://doi.org/10.5194/wcd-1-373-2020, 2020a.
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena,
B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim,
E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and
Taguchi, M.: The Role of the Stratosphere in Subseasonal to Seasonal
Prediction: 1. Predictability of the Stratosphere, J. Geophys.
Res.-Atmos., 125, e2019JD030920, https://doi.org/10.1029/2019JD030920, 2020b.
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena,
B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim,
E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and
Taguchi, M.: The Role of the Stratosphere in Subseasonal to Seasonal
Prediction: 2. Predictability Arising From Stratosphere-Troposphere
Coupling, J. Geophys. Res.-Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019JD030923, 2020c.
Eliassen, A. and Palm, E.: On the transfer of energy in stationary mountain
waves, Geofys. Publ., 22, 1–23, 1961.
Esler, J. G. and Matthewman, N. J.: Stratospheric Sudden Warmings as
Self-Tuning Resonances. Part II: Vortex Displacement Events, J. Atmos. Sci., 68, 2505–2523, https://doi.org/10.1175/jas-d-11-08.1, 2011.
Garfinkel, C. I. and Hartmann, D. L.: Different ENSO teleconnections and
their effects on the stratospheric polar vortex, J. Geophys.
Res.-Atmos., 113, D18114, https://doi.org/10.1029/2008JD009920, 2008.
Garfinkel, C. I., Hartmann, D. L., and Sassi, F.: Tropospheric Precursors of
Anomalous Northern Hemisphere Stratospheric Polar Vortices, J. Climate, 23, 3282–3299, https://doi.org/10.1175/2010JCLI3010.1, 2010.
Gerber, E. P. and Manzini, E.: The Dynamics and Variability Model Intercomparison Project (DynVarMIP) for CMIP6: assessing the stratosphere–troposphere system, Geosci. Model Dev., 9, 3413–3425, https://doi.org/10.5194/gmd-9-3413-2016, 2016.
Gnanadesikan, A., Dixon, K. W., Griffies, S. M., Balaji, V., Barreiro, M.,
Beesley, J. A., Cooke, W. F., Delworth, T. L., Gerdes, R., Harrison, M. J.,
Held, I. M., Hurlin, W. J., Lee, H.-C., Liang, Z., Nong, G., Pacanowski, R.
C., Rosati, A., Russell, J., Samuels, B. L., Song, Q., Spelman, M. J.,
Stouffer, R. J., Sweeney, C. O., Vecchi, G., Winton, M., Wittenberg, A. T.,
Zeng, F., Zhang, R., and Dunne, J. P.: GFDL's CM2 Global Coupled Climate
Models. Part II: The Baseline Ocean Simulation, J. Climate, 19,
675–697, https://doi.org/10.1175/jcli3630.1, 2006.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hitchcock, P. and Haynes, P. H.: Stratospheric control of planetary waves,
Geophys. Res. Lett., 43, 11884–11892, https://doi.org/10.1002/2016GL071372, 2016.
Holton, J. R. and Mass, C.: Stratospheric vacillation cycles, J. Atmos. Sci., 33, 2218–2225, 1976.
Hong, H.-J. and Reichler, T.: Local and remote response of ozone to Arctic stratospheric circulation extremes, Atmos. Chem. Phys., 21, 1159–1171, https://doi.org/10.5194/acp-21-1159-2021, 2021.
Horan, M. F. and Reichler, T.: Modeling seasonal sudden stratospheric
warming climatology based on polar vortex statistics, J. Climate,
30, 10101–10116, https://doi.org/10.1175/jcli-d-17-0257.1, 2017.
Horel, J. D. and Wallace, J. M.: Planetary-Scale Atmospheric Phenomena
Associated with the Southern Oscillation, Mon. Weather Rev., 109, 813–829, 1981.
Hu, J., Ren, R., and Xu, H.: Occurrence of Winter Stratospheric Sudden
Warming Events and the Seasonal Timing of Spring Stratospheric Final
Warming, J. Atmos. Sci., 71, 2319–2334, 2014.
Jucker, M.: Are Sudden Stratospheric Warmings Generic? Insights from an
Idealized GCM, J. Atmos. Sci., 73, 5061–5080,
https://doi.org/10.1175/jas-d-15-0353.1, 2016.
Jucker, M. and Reichler, T.: Dynamical precursors for statistical prediction
of stratospheric sudden warming events, Geophys. Res. Lett., 45, 13124–13132,
https://doi.org/10.1029/2018GL080691, 2018.
Jucker, M., Reichler, T., and Waugh, D. W.: How Frequent Are Antarctic
Sudden Stratospheric Warmings in Present and Future Climate?, Geophys.
Res. Lett., 48, e2021GL093215, https://doi.org/10.1029/2021GL093215, 2021.
Karpechko, A. Y. and Manzini, E.: Arctic Stratosphere Dynamical Response to
Global Warming, J. Climate, 30, 7071–7086, https://doi.org/10.1175/jcli-d-16-0781.1,
2017.
Karpechko, A. Y., Hitchcock, P., Peters, D. H. W., and Schneidereit, A.:
Predictability of downward propagation of major sudden stratospheric
warmings, Q. J. Roy. Meteor. Soc., 143, 1459–1470, https://doi.org/10.1002/qj.3017, 2017.
Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N.,
Baldwin, M. P., and Gray, L. J.: Stratospheric influence on tropospheric jet
streams, storm tracks and surface weather, Nat. Geosci., 8, 433–440,
https://doi.org/10.1038/ngeo2424, 2015.
Kim, J., Son, S.-W., Gerber, E. P., and Park, H.-S.: Defining Sudden
Stratospheric Warming in Climate Models: Accounting for Biases in Model
Climatologies, J. Climate, 30, 5529–5546, https://doi.org/10.1175/jcli-d-16-0465.1,
2017.
Kuroda, Y. and Kodera, K.: Variability of the polar night jet in the
northern and southern hemispheres, J. Geophys. Res., 106, 20703–20713, https://doi.org/10.1029/2001JD900226, 2001.
Labitzke, K.: Stratospheric-mesospheric midwinter disturbances: A summary of
observed characteristics, J. Geophys. Res., 86, 9665–9678, https://doi.org/10.1029/JC086iC10p09665, 1981.
Lawrence, Z. D. and Manney, G. L.: Does the Arctic Stratospheric Polar
Vortex Exhibit Signs of Preconditioning Prior to Sudden Stratospheric
Warmings?, J. Atmos. Sci., 77, 611–632, 2020.
Lawrence, Z. D., Perlwitz, J., Butler, A. H., Manney, G. L., Newman, P. A.,
Lee, S. H., and Nash, E. R.: The Remarkably Strong Arctic Stratospheric
Polar Vortex of Winter 2020: Links to Record-Breaking Arctic Oscillation and
Ozone Loss, J. Geophys. Res.-Atmos., 125, e2020JD033271, https://doi.org/10.1029/2020JD033271, 2020.
Lehtonen, I. and Karpechko, A. Y.: Observed and modeled tropospheric cold
anomalies associated with sudden stratospheric warmings, J.
Geophys. Res.-Atmos., 121, 1591–1610, https://doi.org/10.1002/2015JD023860, 2016.
Lim, E.-P., Hendon, H. H., Boschat, G., Hudson, D., Thompson, D. W. J.,
Dowdy, A. J., and Arblaster, J. M.: Australian hot and dry extremes induced
by weakenings of the stratospheric polar vortex, Nat. Geosci., 12, 896–901, https://doi.org/10.1038/s41561-019-0456-x, 2019.
Limpasuvan, V., Hartmann, D. L., Thompson, D. W. J., Jeev, K., and Yung, Y.
L.: Stratosphere-troposphere evolution during polar vortex intensification, J. Geophys. Res., 110, D24101, https://doi.org/10.1029/2005JD006302, 2005.
Martius, O., Polvani, L. M., and Davies, H. C.: Blocking precursors to
stratospheric sudden warming events, Geophys. Res. Lett., 36,
L14806, https://doi.org/10.1029/2009GL038776, 2009.
Matsuno, T.: A dynamical model of the stratospheric sudden warming, J. Atmos. Sci., 28, 1479–1494, 1971.
Matthewman, N. J. and Esler, J. G.: Stratospheric Sudden Warmings as
Self-Tuning Resonances. Part I: Vortex Splitting Events, J. Atmos. Sci., 68, 2481–2504, https://doi.org/10.1175/jas-d-11-07.1, 2011.
McLandress, C. and Shepherd, T. G.: Impact of Climate Change on
Stratospheric Sudden Warmings as Simulated by the Canadian Middle Atmosphere
Model, J. Climate, 22, 5449–5463, https://doi.org/10.1175/2009JCLI3069.1, 2009.
Newman, P. A. and Nash, E. R.: Quantifying the wave driving of the
stratosphere, J. Geophys. Res.-Atmos., 105, 12485–12497, https://doi.org/10.1029/1999JD901191, 2000.
Newman, P. A., Nash, E. R., and Rosenfield, J. E.: What controls the
temperature of the Arctic stratosphere during the spring?, J. Geophys. Res.,
106, 19999–20010, https://doi.org/10.1029/2000JD000061, 2001.
Oehrlein, J., Polvani, L. M., Sun, L., and Deser, C.: How Well Do We Know
the Surface Impact of Sudden Stratospheric Warmings?, Geophys. Res.
Lett., 48, e2021GL095493, https://doi.org/10.1029/2021GL095493, 2021.
Palmeiro, F. M., Barriopedro, D., García-Herrera, R., and Calvo, N.:
Comparing Sudden Stratospheric Warming Definitions in Reanalysis Data,
J. Climate, 28, 6823–6840, https://doi.org/10.1175/jcli-d-15-0004.1, 2015.
Polvani, L. M. and Waugh, D. W.: Upward wave activity flux as precursor to
extreme stratospheric events and subsequent anomalous surface weather
regimes, J. Climate, 17, 3548–3554, 2004.
Randel, W. J., Wu, F., and Stolarski, R.: Changes in column ozone correlated
with EP flux, J. Meteor. Soc. Jpn., 80, 849–862, 2002.
Reichler, T. and Kim, J.: How Well Do Coupled Models Simulate Today's
Climate?, B. Am. Meteorol. Soc., 89, 303–312, https://doi.org/10.1175/bams-89-3-303, 2008.
Reichler, T., Kushner, P. J., and Polvani, L. M.: The coupled
stratosphere-troposphere response to impulsive forcing from the troposphere,
J. Atmos. Sci., 62, 3337–3352, 2005.
Scaife, A. A., Baldwin, M. P., Butler, A. H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Hardiman, S. C., Haynes, P., Karpechko, A. Y., Lim, E.-P., Noguchi, S., Perlwitz, J., Polvani, L., Richter, J. H., Scinocca, J., Sigmond, M., Shepherd, T. G., Son, S.-W., and Thompson, D. W. J.: Long-range prediction and the stratosphere, Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, 2021.
Scherhag, R.: Die explosionsartigen Stratosphärenerwärmungeu des Spätwinters 1951/1952 (The explosive warmings in the stratosphere of the late winter 1951/1952), Berichte des Deutschen Wetterdienstes in der US Zone, 6, 51–63, 1952.
Scott, R. K. and Polvani, L. M.: Stratospheric control of upward wave flux
near the tropopause, Geophys. Res. Lett., 31, L02115, https://doi.org/10.1029/2003GL017965, 2004.
Scott, R. K. and Polvani, L. M.: Internal variability of the winter
stratosphere. Part I: Time-independent forcing, J. Atmos. Sci., 63, 2758–2776, 2006.
Sigmond, M., Scinocca, J. F., Kharin, V. V., and Shepherd, T. G.: Enhanced
seasonal forecast skill following stratospheric sudden warmings, Nat.
Geosci., 6, 98–102, 2013.
Sjoberg, J. P. and Birner, T.: Transient Tropospheric Forcing of Sudden
Stratospheric Warmings, J. Atmos. Sci., 69, 3420–3432,
https://doi.org/10.1175/jas-d-11-0195.1, 2012.
Staten, P. W. and Reichler, T.: On the ratio between shifts in the
eddy-driven jet and the Hadley cell edge, Clim. Dynam., 42, 1229–1242,
2014.
Thompson, D. W. J., Baldwin, M. P., and Solomon, S.: Stratosphere-Troposphere Coupling in the Southern Hemisphere, J. Atmos. Sci., 62, 708–715, https://doi.org/10.1175/jas-3321.1, 2005.
Wang, L., Hardiman, S. C., Bett, P. E., Comer, R. E., Kent, C., and Scaife,
A. A.: What chance of a sudden stratospheric warming in the southern
hemisphere?, Environ. Res. Lett., 15, 104038,
https://doi.org/10.1088/1748-9326/aba8c1, 2020.
White, I., Garfinkel, C. I., Gerber, E. P., Jucker, M., Aquila, V., and
Oman, L. D.: The Downward Influence of Sudden Stratospheric Warmings:
Association with Tropospheric Precursors, J. Climate, 32, 85–108,
2019.
Wittenberg, A. T., Rosati, A., Lau, N.-C., and Ploshay, J. J.: GFDL's CM2
Global Coupled Climate Models. Part III: Tropical Pacific Climate and ENSO,
J. Climate, 19, 698–722, https://doi.org/10.1175/jcli3631.1, 2006.
Short summary
Variations in the stratospheric polar vortex, so-called vortex events, can improve predictions of surface weather and climate. There are various ways to detect such events, and here we use the amount of wave energy that propagates into the stratosphere. The new definition is tested against so-called stratospheric sudden warmings (SSWs). We find that the wave definition has advantages over SSWs, for example in terms of a stronger surface response that follows the events.
Variations in the stratospheric polar vortex, so-called vortex events, can improve predictions...