Articles | Volume 3, issue 2
https://doi.org/10.5194/wcd-3-659-2022
https://doi.org/10.5194/wcd-3-659-2022
Research article
 | 
17 Jun 2022
Research article |  | 17 Jun 2022

Stratospheric wave driving events as an alternative to sudden stratospheric warmings

Thomas Reichler and Martin Jucker

Related authors

Replicating the Hadley cell edge and subtropical jet latitude disconnect in idealized atmospheric models
Molly E. Menzel, Darryn W. Waugh, Zheng Wu, and Thomas Reichler
Weather Clim. Dynam., 5, 251–261, https://doi.org/10.5194/wcd-5-251-2024,https://doi.org/10.5194/wcd-5-251-2024, 2024
Short summary
Large uncertainty in observed estimates of tropical width from the meridional stream function
Daniel Baldassare, Thomas Reichler, Piret Plink-Björklund, and Jacob Slawson
Weather Clim. Dynam., 4, 531–541, https://doi.org/10.5194/wcd-4-531-2023,https://doi.org/10.5194/wcd-4-531-2023, 2023
Short summary
The Simplified Chemistry-Dynamical Model (SCDM V1.0)
Hao-Jhe Hong and Thomas Reichler
Geosci. Model Dev., 14, 6647–6660, https://doi.org/10.5194/gmd-14-6647-2021,https://doi.org/10.5194/gmd-14-6647-2021, 2021
Short summary
Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia
Alkuin Maximilian Koenig, Olivier Magand, Paolo Laj, Marcos Andrade, Isabel Moreno, Fernando Velarde, Grover Salvatierra, René Gutierrez, Luis Blacutt, Diego Aliaga, Thomas Reichler, Karine Sellegri, Olivier Laurent, Michel Ramonet, and Aurélien Dommergue
Atmos. Chem. Phys., 21, 3447–3472, https://doi.org/10.5194/acp-21-3447-2021,https://doi.org/10.5194/acp-21-3447-2021, 2021
Short summary
Local and remote response of ozone to Arctic stratospheric circulation extremes
Hao-Jhe Hong and Thomas Reichler
Atmos. Chem. Phys., 21, 1159–1171, https://doi.org/10.5194/acp-21-1159-2021,https://doi.org/10.5194/acp-21-1159-2021, 2021
Short summary

Related subject area

Atmospheric teleconnections incl. stratosphere–troposphere coupling
Model spread in multidecadal North Atlantic Oscillation variability connected to stratosphere–troposphere coupling
Rémy Bonnet, Christine M. McKenna, and Amanda C. Maycock
Weather Clim. Dynam., 5, 913–926, https://doi.org/10.5194/wcd-5-913-2024,https://doi.org/10.5194/wcd-5-913-2024, 2024
Short summary
A process-based evaluation of biases in extratropical stratosphere-troposphere coupling in subseasonal forecast systems
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Yu. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzaguena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1762,https://doi.org/10.5194/egusphere-2024-1762, 2024
Short summary
The role of the Indian Ocean Dipole in modulating the Austral Spring ENSO teleconnection into the Southern Hemisphere
Luciano Gustavo Andrian, Marisol Osman, and Carolina Susana Vera
EGUsphere, https://doi.org/10.5194/egusphere-2024-1812,https://doi.org/10.5194/egusphere-2024-1812, 2024
Short summary
Opposite spectral properties of Rossby waves during weak and strong stratospheric polar vortex events
Michael Schutte, Daniela I. V. Domeisen, and Jacopo Riboldi
Weather Clim. Dynam., 5, 733–752, https://doi.org/10.5194/wcd-5-733-2024,https://doi.org/10.5194/wcd-5-733-2024, 2024
Short summary
Stratospheric influence on the winter North Atlantic storm track in subseasonal reforecasts
Hilla Afargan-Gerstman, Dominik Büeler, C. Ole Wulff, Michael Sprenger, and Daniela I. V. Domeisen
Weather Clim. Dynam., 5, 231–249, https://doi.org/10.5194/wcd-5-231-2024,https://doi.org/10.5194/wcd-5-231-2024, 2024
Short summary

Cited articles

Albers, J. R. and Birner, T.: Vortex Preconditioning due to Planetary and Gravity Waves prior to Sudden Stratospheric Warmings, J. Atmos. Sci., 71, 4028–4054, https://doi.org/10.1175/jas-d-14-0026.1, 2014. 
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, Academic Press, Orlando, Florida, ISBN: 9780080511672, 1987. 
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous weather regimes, Science, 294, 581–584, 2001. 
Baldwin, M. P. and Thompson, D. W. J.: A critical comparison of stratosphere–troposphere coupling indices, Q. J. Roy. Meteor. Soc., 135, 1661–1672, 2009. 
Baldwin, M. P., Thompson, D. W. J., Shuckburgh, E. F., Norton, W. A., and Gillett, N. P.: Weather from the Stratosphere?, Science, 301, 317–319, 2003. 
Download
Short summary
Variations in the stratospheric polar vortex, so-called vortex events, can improve predictions of surface weather and climate. There are various ways to detect such events, and here we use the amount of wave energy that propagates into the stratosphere. The new definition is tested against so-called stratospheric sudden warmings (SSWs). We find that the wave definition has advantages over SSWs, for example in terms of a stronger surface response that follows the events.