Articles | Volume 3, issue 2
https://doi.org/10.5194/wcd-3-659-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-3-659-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stratospheric wave driving events as an alternative to sudden stratospheric warmings
Department of Atmospheric Sciences, University of Utah, Salt Lake
City, UT 84112, USA
Martin Jucker
Climate Change Research Centre, the University of New South Wales,
Sydney, NSW, Australia
Australian Research Council Center of Excellence for Climate Extremes, Sydney, NSW, Australia
Related authors
Molly E. Menzel, Darryn W. Waugh, Zheng Wu, and Thomas Reichler
Weather Clim. Dynam., 5, 251–261, https://doi.org/10.5194/wcd-5-251-2024, https://doi.org/10.5194/wcd-5-251-2024, 2024
Short summary
Short summary
Recent work exploring the tropical atmospheric circulation response to climate change has revealed a disconnect in the latitudinal location of two features, the subtropical jet and the Hadley cell edge. Here, we investigate if the surprising result from coupled climate model and meteorological reanalysis output is consistent across model complexity.
Daniel Baldassare, Thomas Reichler, Piret Plink-Björklund, and Jacob Slawson
Weather Clim. Dynam., 4, 531–541, https://doi.org/10.5194/wcd-4-531-2023, https://doi.org/10.5194/wcd-4-531-2023, 2023
Short summary
Short summary
Using ensemble members from the ERA5 reanalysis, the most widely used method for estimating tropical-width trends, the meridional stream function, was found to have large error, particularly in the Northern Hemisphere and in the summer, because of weak gradients at the tropical edge and poor data quality. Another method, using the latitude where the surface wind switches from westerly to easterly, was found to have lower error due to better-observed data.
Hao-Jhe Hong and Thomas Reichler
Geosci. Model Dev., 14, 6647–6660, https://doi.org/10.5194/gmd-14-6647-2021, https://doi.org/10.5194/gmd-14-6647-2021, 2021
Short summary
Short summary
The Arctic wintertime circulation of the stratosphere has pronounced impacts on the troposphere and surface climate. Changes in the stratospheric circulation can lead to either increases or decreases in Arctic ozone. Understanding the interactions between ozone and the circulation will have the benefit of model prediction for the climate. This study introduces an economical and fast simplified model that represents the realistic distribution of ozone and its interaction with the circulation.
Alkuin Maximilian Koenig, Olivier Magand, Paolo Laj, Marcos Andrade, Isabel Moreno, Fernando Velarde, Grover Salvatierra, René Gutierrez, Luis Blacutt, Diego Aliaga, Thomas Reichler, Karine Sellegri, Olivier Laurent, Michel Ramonet, and Aurélien Dommergue
Atmos. Chem. Phys., 21, 3447–3472, https://doi.org/10.5194/acp-21-3447-2021, https://doi.org/10.5194/acp-21-3447-2021, 2021
Short summary
Short summary
The environmental cycling of atmospheric mercury, a harmful global contaminant, is still not sufficiently constrained, partly due to missing data in remote regions. Here, we address this issue by presenting 20 months of atmospheric mercury measurements, sampled in the Bolivian Andes. We observe a significant seasonal pattern, whose key features we explore. Moreover, we deduce ratios to constrain South American biomass burning mercury emissions and the mercury uptake by the Amazon rainforest.
Hao-Jhe Hong and Thomas Reichler
Atmos. Chem. Phys., 21, 1159–1171, https://doi.org/10.5194/acp-21-1159-2021, https://doi.org/10.5194/acp-21-1159-2021, 2021
Short summary
Short summary
Stratospheric ozone is a crucial chemical substance that protects life on Earth from harmful ultraviolet radiation. This article demonstrates how a strong or a weak Arctic polar vortex has an impact on wintertime circulation activity and the concentration of ozone in the stratosphere. Our results suggest that changes in the strength of the polar vortex lead to not only significant and persistent ozone changes locally in the Arctic but also to evident ozone changes in the tropics.
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Yu. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzaguena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1762, https://doi.org/10.5194/egusphere-2024-1762, 2024
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere are coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too-weak, however downward coupling from the lower stratosphere to the near surface is too strong.
Molly E. Menzel, Darryn W. Waugh, Zheng Wu, and Thomas Reichler
Weather Clim. Dynam., 5, 251–261, https://doi.org/10.5194/wcd-5-251-2024, https://doi.org/10.5194/wcd-5-251-2024, 2024
Short summary
Short summary
Recent work exploring the tropical atmospheric circulation response to climate change has revealed a disconnect in the latitudinal location of two features, the subtropical jet and the Hadley cell edge. Here, we investigate if the surprising result from coupled climate model and meteorological reanalysis output is consistent across model complexity.
Daniel Baldassare, Thomas Reichler, Piret Plink-Björklund, and Jacob Slawson
Weather Clim. Dynam., 4, 531–541, https://doi.org/10.5194/wcd-4-531-2023, https://doi.org/10.5194/wcd-4-531-2023, 2023
Short summary
Short summary
Using ensemble members from the ERA5 reanalysis, the most widely used method for estimating tropical-width trends, the meridional stream function, was found to have large error, particularly in the Northern Hemisphere and in the summer, because of weak gradients at the tropical edge and poor data quality. Another method, using the latitude where the surface wind switches from westerly to easterly, was found to have lower error due to better-observed data.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Hao-Jhe Hong and Thomas Reichler
Geosci. Model Dev., 14, 6647–6660, https://doi.org/10.5194/gmd-14-6647-2021, https://doi.org/10.5194/gmd-14-6647-2021, 2021
Short summary
Short summary
The Arctic wintertime circulation of the stratosphere has pronounced impacts on the troposphere and surface climate. Changes in the stratospheric circulation can lead to either increases or decreases in Arctic ozone. Understanding the interactions between ozone and the circulation will have the benefit of model prediction for the climate. This study introduces an economical and fast simplified model that represents the realistic distribution of ozone and its interaction with the circulation.
Alkuin Maximilian Koenig, Olivier Magand, Paolo Laj, Marcos Andrade, Isabel Moreno, Fernando Velarde, Grover Salvatierra, René Gutierrez, Luis Blacutt, Diego Aliaga, Thomas Reichler, Karine Sellegri, Olivier Laurent, Michel Ramonet, and Aurélien Dommergue
Atmos. Chem. Phys., 21, 3447–3472, https://doi.org/10.5194/acp-21-3447-2021, https://doi.org/10.5194/acp-21-3447-2021, 2021
Short summary
Short summary
The environmental cycling of atmospheric mercury, a harmful global contaminant, is still not sufficiently constrained, partly due to missing data in remote regions. Here, we address this issue by presenting 20 months of atmospheric mercury measurements, sampled in the Bolivian Andes. We observe a significant seasonal pattern, whose key features we explore. Moreover, we deduce ratios to constrain South American biomass burning mercury emissions and the mercury uptake by the Amazon rainforest.
Hao-Jhe Hong and Thomas Reichler
Atmos. Chem. Phys., 21, 1159–1171, https://doi.org/10.5194/acp-21-1159-2021, https://doi.org/10.5194/acp-21-1159-2021, 2021
Short summary
Short summary
Stratospheric ozone is a crucial chemical substance that protects life on Earth from harmful ultraviolet radiation. This article demonstrates how a strong or a weak Arctic polar vortex has an impact on wintertime circulation activity and the concentration of ozone in the stratosphere. Our results suggest that changes in the strength of the polar vortex lead to not only significant and persistent ozone changes locally in the Arctic but also to evident ozone changes in the tropics.
Geoffrey K. Vallis, Greg Colyer, Ruth Geen, Edwin Gerber, Martin Jucker, Penelope Maher, Alexander Paterson, Marianne Pietschnig, James Penn, and Stephen I. Thomson
Geosci. Model Dev., 11, 843–859, https://doi.org/10.5194/gmd-11-843-2018, https://doi.org/10.5194/gmd-11-843-2018, 2018
Short summary
Short summary
The models that are used to describe the atmospheres of Earth and other planets are often very complicated. Although this is necessary for such things as weather prediction, it does not help in understanding. Furthermore, when studying other planets, there are insufficient data to warrant the use of complicated models. We have developed a framework that allows the construction of models of appropriate complexity for the problem at hand, and thus helps to actually model these atmospheres.
Related subject area
Atmospheric teleconnections incl. stratosphere–troposphere coupling
The role of the Indian Ocean Dipole in modulating the austral spring ENSO teleconnection to the Southern Hemisphere
Model spread in multidecadal North Atlantic Oscillation variability connected to stratosphere–troposphere coupling
A process-based evaluation of biases in extratropical stratosphere-troposphere coupling in subseasonal forecast systems
Opposite spectral properties of Rossby waves during weak and strong stratospheric polar vortex events
Stratospheric influence on the winter North Atlantic storm track in subseasonal reforecasts
How do different pathways connect the stratospheric polar vortex to its tropospheric precursors?
A critical evaluation of decadal solar cycle imprints in the MiKlip historical ensemble simulations
The teleconnection of extreme El Niño–Southern Oscillation (ENSO) events to the tropical North Atlantic in coupled climate models
Using large ensembles to quantify the impact of sudden stratospheric warmings and their precursors on the North Atlantic Oscillation
The stratosphere: a review of the dynamics and variability
Stratospheric downward wave reflection events modulate North American weather regimes and cold spells
Modulation of the El Niño teleconnection to the North Atlantic by the tropical North Atlantic during boreal spring and summer
Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems
Stratospheric modulation of Arctic Oscillation extremes as represented by extended-range ensemble forecasts
The tropical route of quasi-biennial oscillation (QBO) teleconnections in a climate model
Decline in Etesian winds after large volcanic eruptions in the last millennium
Stationary wave biases and their effect on upward troposphere– stratosphere coupling in sub-seasonal prediction models
Tropical influence on heat-generating atmospheric circulation over Australia strengthens through spring
Sudden stratospheric warmings during El Niño and La Niña: sensitivity to atmospheric model biases
Minimal impact of model biases on Northern Hemisphere El Niño–Southern Oscillation teleconnections
Resampling of ENSO teleconnections: accounting for cold-season evolution reduces uncertainty in the North Atlantic
The wave geometry of final stratospheric warming events
Origins of multi-decadal variability in sudden stratospheric warmings
Tropospheric eddy feedback to different stratospheric conditions in idealised baroclinic life cycles
Impacts of the North Atlantic Oscillation on winter precipitations and storm track variability in southeast Canada and the northeast United States
The role of Barents–Kara sea ice loss in projected polar vortex changes
Mechanisms and predictability of sudden stratospheric warming in winter 2018
On the intermittency of orographic gravity wave hotspots and its importance for middle atmosphere dynamics
The role of North Atlantic–European weather regimes in the surface impact of sudden stratospheric warming events
Nonlinearity in the tropospheric pathway of ENSO to the North Atlantic
Luciano Gustavo Andrian, Marisol Osman, and Carolina Susana Vera
Weather Clim. Dynam., 5, 1505–1522, https://doi.org/10.5194/wcd-5-1505-2024, https://doi.org/10.5194/wcd-5-1505-2024, 2024
Short summary
Short summary
The interplay between the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) is well-researched in the tropical Indian Ocean, but their effects on the Southern Hemisphere's extratropical regions during spring are less studied. We show that the positive phase of the IOD can strengthen the El Niño circulation anomalies, heightening their continental impacts. On the other hand, negative IOD combined with La Niña shows less consistent changes among the different methodologies.
Rémy Bonnet, Christine M. McKenna, and Amanda C. Maycock
Weather Clim. Dynam., 5, 913–926, https://doi.org/10.5194/wcd-5-913-2024, https://doi.org/10.5194/wcd-5-913-2024, 2024
Short summary
Short summary
Climate models underestimate multidecadal winter North Atlantic Oscillation (NAO) variability. Understanding the origin of this weak variability is important for making reliable climate projections. We use multi-model climate simulations to explore statistical relationships with drivers that may contribute to NAO variability. We find a relationship between modelled stratosphere–troposphere coupling and multidecadal NAO variability, offering an avenue to improve the simulation of NAO variability.
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Yu. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzaguena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1762, https://doi.org/10.5194/egusphere-2024-1762, 2024
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere are coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too-weak, however downward coupling from the lower stratosphere to the near surface is too strong.
Michael Schutte, Daniela I. V. Domeisen, and Jacopo Riboldi
Weather Clim. Dynam., 5, 733–752, https://doi.org/10.5194/wcd-5-733-2024, https://doi.org/10.5194/wcd-5-733-2024, 2024
Short summary
Short summary
The winter circulation in the stratosphere, a layer of the Earth’s atmosphere between 10 and 50 km height, is tightly linked to the circulation in the lower atmosphere determining our daily weather. This interconnection happens in the form of waves propagating in and between these two layers. Here, we use space–time spectral analysis to show that disruptions and enhancements of the stratospheric circulation modify the shape and propagation of waves in both layers.
Hilla Afargan-Gerstman, Dominik Büeler, C. Ole Wulff, Michael Sprenger, and Daniela I. V. Domeisen
Weather Clim. Dynam., 5, 231–249, https://doi.org/10.5194/wcd-5-231-2024, https://doi.org/10.5194/wcd-5-231-2024, 2024
Short summary
Short summary
The stratosphere is a layer of Earth's atmosphere found above the weather systems. Changes in the stratosphere can affect the winds and the storm tracks in the North Atlantic region for a relatively long time, lasting for several weeks and even months. We show that the stratosphere can be important for weather forecasts beyond 1 week, but more work is needed to improve the accuracy of these forecasts for 3–4 weeks.
Raphael Harry Köhler, Ralf Jaiser, and Dörthe Handorf
Weather Clim. Dynam., 4, 1071–1086, https://doi.org/10.5194/wcd-4-1071-2023, https://doi.org/10.5194/wcd-4-1071-2023, 2023
Short summary
Short summary
This study explores the local mechanisms of troposphere–stratosphere coupling on seasonal timescales during extended winter in the Northern Hemisphere. The detected tropospheric precursor regions exhibit very distinct mechanisms of coupling to the stratosphere, thus highlighting the importance of the time- and zonally resolved picture. Moreover, this study demonstrates that the ICOsahedral Non-hydrostatic atmosphere model (ICON) can realistically reproduce troposphere–stratosphere coupling.
Tobias C. Spiegl, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
Weather Clim. Dynam., 4, 789–807, https://doi.org/10.5194/wcd-4-789-2023, https://doi.org/10.5194/wcd-4-789-2023, 2023
Short summary
Short summary
We investigate the role of the solar cycle in atmospheric domains with the Max Plank Institute Earth System Model in high resolution (MPI-ESM-HR). We focus on the tropical upper stratosphere, Northern Hemisphere (NH) winter dynamics and potential surface imprints. We found robust solar signals at the tropical stratopause and a weak dynamical response in the NH during winter. However, we cannot confirm the importance of the 11-year solar cycle for decadal variability in the troposphere.
Jake W. Casselman, Joke F. Lübbecke, Tobias Bayr, Wenjuan Huo, Sebastian Wahl, and Daniela I. V. Domeisen
Weather Clim. Dynam., 4, 471–487, https://doi.org/10.5194/wcd-4-471-2023, https://doi.org/10.5194/wcd-4-471-2023, 2023
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) has remote effects on the tropical North Atlantic (TNA), but the connections' nonlinearity (strength of response to an increasing ENSO signal) is not always well represented in models. Using the Community Earth System Model version 1 – Whole Atmosphere Community Climate Mode (CESM-WACCM) and the Flexible Ocean and Climate Infrastructure version 1, we find that the TNA responds linearly to extreme El Niño but nonlinearly to extreme La Niña for CESM-WACCM.
Philip E. Bett, Adam A. Scaife, Steven C. Hardiman, Hazel E. Thornton, Xiaocen Shen, Lin Wang, and Bo Pang
Weather Clim. Dynam., 4, 213–228, https://doi.org/10.5194/wcd-4-213-2023, https://doi.org/10.5194/wcd-4-213-2023, 2023
Short summary
Short summary
Sudden-stratospheric-warming (SSW) events can severely affect the subsequent weather at the surface. We use a large ensemble of climate model hindcasts to investigate features of the climate that make strong impacts more likely through negative NAO conditions. This allows a more robust assessment than using observations alone. Air pressure over the Arctic prior to an SSW and the zonal-mean zonal wind in the lower stratosphere have the strongest relationship with the subsequent NAO response.
Neal Butchart
Weather Clim. Dynam., 3, 1237–1272, https://doi.org/10.5194/wcd-3-1237-2022, https://doi.org/10.5194/wcd-3-1237-2022, 2022
Short summary
Short summary
In recent years, it has emerged that there is an affinity between stratospheric variability and surface events. Waves from the troposphere interacting with the mean flow drive much of the variability in the polar vortex, sudden stratospheric warmings and tropical quasi-biennial oscillation. Here we review the historical evolution of established knowledge of the stratosphere's global structure and dynamical variability, along with recent advances and theories, and identify outstanding challenges.
Gabriele Messori, Marlene Kretschmer, Simon H. Lee, and Vivien Wendt
Weather Clim. Dynam., 3, 1215–1236, https://doi.org/10.5194/wcd-3-1215-2022, https://doi.org/10.5194/wcd-3-1215-2022, 2022
Short summary
Short summary
Over 10 km above the ground, there is a region of the atmosphere called the stratosphere. While there is very little air in the stratosphere itself, its interactions with the lower parts of the atmosphere – where we live – can affect the weather. Here we study a specific example of such an interaction, whereby processes occurring at the boundary of the stratosphere can lead to a continent-wide drop in temperatures in North America during winter.
Jake W. Casselman, Bernat Jiménez-Esteve, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 1077–1096, https://doi.org/10.5194/wcd-3-1077-2022, https://doi.org/10.5194/wcd-3-1077-2022, 2022
Short summary
Short summary
Using an atmospheric general circulation model, we analyze how the tropical North Atlantic influences the El Niño–Southern Oscillation connection towards the North Atlantic European region. We also focus on the lesser-known boreal spring and summer response following an El Niño–Southern Oscillation event. Our results show that altered tropical Atlantic sea surface temperatures may cause different responses over the Caribbean region, consequently influencing the North Atlantic European region.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Jonas Spaeth and Thomas Birner
Weather Clim. Dynam., 3, 883–903, https://doi.org/10.5194/wcd-3-883-2022, https://doi.org/10.5194/wcd-3-883-2022, 2022
Short summary
Short summary
Past research has demonstrated robust stratosphere–troposphere dynamical coupling following stratospheric circulation extremes. Here, we use a large set of extended-range ensemble forecasts to robustly quantify the increased risk for tropospheric circulation extremes following stratospheric extreme events. In particular, we provide estimates of the fraction of tropospheric extremes that may be attributable to preceding stratospheric extremes.
Jorge L. García-Franco, Lesley J. Gray, Scott Osprey, Robin Chadwick, and Zane Martin
Weather Clim. Dynam., 3, 825–844, https://doi.org/10.5194/wcd-3-825-2022, https://doi.org/10.5194/wcd-3-825-2022, 2022
Short summary
Short summary
This paper establishes robust links between the stratospheric quasi-biennial oscillation (QBO) and several features of tropical climate. Robust precipitation responses, as well as changes to the Walker circulation, were found to be robustly linked to the variability in the lower stratosphere associated with the QBO using a 500-year simulation of a state-of-the-art climate model.
Stergios Misios, Ioannis Logothetis, Mads F. Knudsen, Christoffer Karoff, Vassilis Amiridis, and Kleareti Tourpali
Weather Clim. Dynam., 3, 811–823, https://doi.org/10.5194/wcd-3-811-2022, https://doi.org/10.5194/wcd-3-811-2022, 2022
Short summary
Short summary
We investigate the impact of strong volcanic eruptions on the northerly Etesian winds blowing in the eastern Mediterranean. Μodel simulations of the last millennium demonstrate a robust reduction in the total number of days with Etesian winds in the post-eruption summers. The decline in the Etesian winds is attributed to a weakened Indian summer monsoon in the post-eruption summer. These findings could improve seasonal predictions of the wind circulation in the eastern Mediterranean.
Chen Schwartz, Chaim I. Garfinkel, Priyanka Yadav, Wen Chen, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 679–692, https://doi.org/10.5194/wcd-3-679-2022, https://doi.org/10.5194/wcd-3-679-2022, 2022
Short summary
Short summary
Eleven operational forecast models that run on subseasonal timescales (up to 2 months) are examined to assess errors in their simulated large-scale stationary waves in the Northern Hemisphere winter. We found that models with a more finely resolved stratosphere generally do better in simulating the waves in both the stratosphere (10–50 km) and troposphere below. Moreover, a connection exists between errors in simulated time-mean convection in tropical regions and errors in the simulated waves.
Roseanna C. McKay, Julie M. Arblaster, and Pandora Hope
Weather Clim. Dynam., 3, 413–428, https://doi.org/10.5194/wcd-3-413-2022, https://doi.org/10.5194/wcd-3-413-2022, 2022
Short summary
Short summary
Understanding what makes it hot in Australia in spring helps us better prepare for harmful impacts. We look at how the higher latitudes and tropics change the atmospheric circulation from early to late spring and how that changes maximum temperatures in Australia. We find that the relationship between maximum temperatures and the tropics is stronger in late spring than early spring. These findings could help improve forecasts of hot months in Australia in spring.
Nicholas L. Tyrrell, Juho M. Koskentausta, and Alexey Yu. Karpechko
Weather Clim. Dynam., 3, 45–58, https://doi.org/10.5194/wcd-3-45-2022, https://doi.org/10.5194/wcd-3-45-2022, 2022
Short summary
Short summary
El Niño events are known to effect the variability of the wintertime stratospheric polar vortex. The observed relationship differs from what is seen in climate models. Climate models have errors in their average winds and temperature, and in this work we artificially reduce those errors to see how that changes the communication of El Niño events to the polar stratosphere. We find reducing errors improves stratospheric variability, but does not explain the differences with observations.
Nicholas L. Tyrrell and Alexey Yu. Karpechko
Weather Clim. Dynam., 2, 913–925, https://doi.org/10.5194/wcd-2-913-2021, https://doi.org/10.5194/wcd-2-913-2021, 2021
Short summary
Short summary
Tropical Pacific sea surface temperatures (El Niño) affect the global climate. The Pacific-to-Europe connection relies on interactions of large atmospheric waves with winds and surface pressure. We looked at how mean errors in a climate model affect its ability to simulate the Pacific-to-Europe connection. We found that even large errors in the seasonal winds did not affect the response of the model to an El Niño event, which is good news for seasonal forecasts which rely on these connections.
Martin P. King, Camille Li, and Stefan Sobolowski
Weather Clim. Dynam., 2, 759–776, https://doi.org/10.5194/wcd-2-759-2021, https://doi.org/10.5194/wcd-2-759-2021, 2021
Short summary
Short summary
We re-examine the uncertainty of ENSO teleconnection to the North Atlantic by considering the November–December and January–February months in the cold season, in addition to the conventional DJF months. This is motivated by previous studies reporting varying teleconnected atmospheric anomalies and the mechanisms concerned. Our results indicate an improved confidence in the patterns of the teleconnection. The finding may also have implications on research in predictability and climate impact.
Amy H. Butler and Daniela I. V. Domeisen
Weather Clim. Dynam., 2, 453–474, https://doi.org/10.5194/wcd-2-453-2021, https://doi.org/10.5194/wcd-2-453-2021, 2021
Short summary
Short summary
We classify by wave geometry the stratospheric polar vortex during the final warming that occurs every spring in both hemispheres due to a combination of radiative and dynamical processes. We show that the shape of the vortex, as well as the timing of the seasonal transition, is linked to total column ozone prior to and surface weather following the final warming. These results have implications for prediction and our understanding of stratosphere–troposphere coupling processes in springtime.
Oscar Dimdore-Miles, Lesley Gray, and Scott Osprey
Weather Clim. Dynam., 2, 205–231, https://doi.org/10.5194/wcd-2-205-2021, https://doi.org/10.5194/wcd-2-205-2021, 2021
Short summary
Short summary
Observations of the stratosphere span roughly half a century, preventing analysis of multi-decadal variability in circulation using these data. Instead, we rely on long simulations of climate models. Here, we use a model to examine variations in northern polar stratospheric winds and find they vary with a period of around 90 years. We show that this is possibly due to variations in the size of winds over the Equator. This result may improve understanding of Equator–polar stratospheric coupling.
Philip Rupp and Thomas Birner
Weather Clim. Dynam., 2, 111–128, https://doi.org/10.5194/wcd-2-111-2021, https://doi.org/10.5194/wcd-2-111-2021, 2021
Short summary
Short summary
We use the simple framework of an idealised baroclinic life cycle to study the tropospheric eddy feedback to different stratospheric conditions and, hence, obtain insights into the fundamental processes of stratosphere–troposphere coupling – in particular, the processes involved in creating the robust equatorward shift in the tropospheric mid-latitude jet that has been observed following sudden stratospheric warming events.
Julien Chartrand and Francesco S. R. Pausata
Weather Clim. Dynam., 1, 731–744, https://doi.org/10.5194/wcd-1-731-2020, https://doi.org/10.5194/wcd-1-731-2020, 2020
Short summary
Short summary
This study explores the relationship between the North Atlantic Oscillation and the winter climate of eastern North America using reanalysis data. Results show that negative phases are linked with an increase in frequency of winter storms developing on the east coast of the United States, resulting in much heavier snowfall over the eastern United States. On the contrary, an increase in cyclone activity over southeastern Canada results in slightly heavier precipitation during positive phases.
Marlene Kretschmer, Giuseppe Zappa, and Theodore G. Shepherd
Weather Clim. Dynam., 1, 715–730, https://doi.org/10.5194/wcd-1-715-2020, https://doi.org/10.5194/wcd-1-715-2020, 2020
Short summary
Short summary
The winds in the polar stratosphere affect the weather in the mid-latitudes, making it important to understand potential changes in response to global warming. However, climate model projections disagree on how this so-called polar vortex will change in the future. Here we show that sea ice loss in the Barents and Kara (BK) seas plays a central role in this. The time when the BK seas become ice-free differs between models, which explains some of the disagreement regarding vortex projections.
Irene Erner, Alexey Y. Karpechko, and Heikki J. Järvinen
Weather Clim. Dynam., 1, 657–674, https://doi.org/10.5194/wcd-1-657-2020, https://doi.org/10.5194/wcd-1-657-2020, 2020
Short summary
Short summary
In this paper we investigate the role of the tropospheric forcing in the occurrence of the sudden stratospheric warming (SSW) that took place in February 2018, its predictability and teleconnection with the Madden–Julian oscillation (MJO) by analysing the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecast. The purpose of the paper is to present the results of the analysis of the atmospheric circulation before and during the SSW and clarify the driving mechanisms.
Ales Kuchar, Petr Sacha, Roland Eichinger, Christoph Jacobi, Petr Pisoft, and Harald E. Rieder
Weather Clim. Dynam., 1, 481–495, https://doi.org/10.5194/wcd-1-481-2020, https://doi.org/10.5194/wcd-1-481-2020, 2020
Short summary
Short summary
Our study focuses on the impact of topographic structures such as the Himalayas and Rocky Mountains, so-called orographic gravity-wave hotspots. These hotspots play an important role in the dynamics of the middle atmosphere, in particular in the lower stratosphere. We study intermittency and zonally asymmetric character of these hotspots and their effects on the upper stratosphere and mesosphere using a new detection method in various modeling and observational datasets.
Daniela I. V. Domeisen, Christian M. Grams, and Lukas Papritz
Weather Clim. Dynam., 1, 373–388, https://doi.org/10.5194/wcd-1-373-2020, https://doi.org/10.5194/wcd-1-373-2020, 2020
Short summary
Short summary
We cannot currently predict the weather over Europe beyond 2 weeks. The stratosphere provides a promising opportunity to go beyond that limit by providing a change in probability of certain weather regimes at the surface. However, not all stratospheric extreme events are followed by the same surface weather evolution. We show that this weather evolution is related to the tropospheric weather regime around the onset of the stratospheric extreme event for many stratospheric events.
Bernat Jiménez-Esteve and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 225–245, https://doi.org/10.5194/wcd-1-225-2020, https://doi.org/10.5194/wcd-1-225-2020, 2020
Short summary
Short summary
Atmospheric predictability over Europe on subseasonal to seasonal timescales remains limited. However, the remote impact from the El Niño–Southern Oscillation (ENSO) can help to improve predictability. Research has suggested that the ENSO impact in the North Atlantic region is affected by nonlinearities. Here, we isolate the nonlinearities in the tropospheric pathway through the North Pacific, finding that a strong El Niño leads to a stronger and distinct impact compared to a strong La Niña.
Cited articles
Albers, J. R. and Birner, T.: Vortex Preconditioning due to Planetary and
Gravity Waves prior to Sudden Stratospheric Warmings, J. Atmos. Sci., 71, 4028–4054, https://doi.org/10.1175/jas-d-14-0026.1, 2014.
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics,
Academic Press, Orlando, Florida, ISBN: 9780080511672, 1987.
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous
weather regimes, Science, 294, 581–584, 2001.
Baldwin, M. P. and Thompson, D. W. J.: A critical comparison of stratosphere–troposphere coupling indices, Q. J. Roy. Meteor. Soc., 135, 1661–1672, 2009.
Baldwin, M. P., Thompson, D. W. J., Shuckburgh, E. F., Norton, W. A., and
Gillett, N. P.: Weather from the Stratosphere?, Science, 301, 317–319, 2003.
Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A.
H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H.,
Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.: Sudden
Stratospheric Warmings, Rev. Geophys., 59, e2020RG000708,
https://doi.org/10.1029/2020RG000708, 2021.
Barriopedro, D. and Calvo, N.: On the Relationship between ENSO,
Stratospheric Sudden Warmings, and Blocking, J. Climate, 27,
4704–4720, 2014.
Birner, T. and Albers, J. R.: Sudden stratospheric warmings and anomalous
upward wave activity flux, SOLA, 13A, 8–12, https://doi.org/10.2151/sola.13A-002,
2017.
Black, R. X. and McDaniel, B. A.: The Dynamics of Northern Hemisphere
Stratospheric Final Warming Events, J. Atmos. Sci., 64,
2932–2946, https://doi.org/10.1175/jas3981.1, 2007.
Butchart, N., Charlton-Perez, A. J., Cionni, I., Hardiman, S. C., Haynes, P.
H., Krüger, K., Kushner, P. J., Newman, P. A., Osprey, S. M., Perlwitz,
J., Sigmond, M., Wang, L., Akiyoshi, H., Austin, J., Bekki, S.,
Baumgaertner, A., Braesicke, P., Brühl, C., Chipperfield, M., Dameris,
M., Dhomse, S., Eyring, V., Garcia, R., Garny, H., Jöckel, P., Lamarque,
J.-F., Marchand, M., Michou, M., Morgenstern, O., Nakamura, T., Pawson, S.,
Plummer, D., Pyle, J., Rozanov, E., Scinocca, J., Shepherd, T. G., Shibata,
K., Smale, D., Teyssèdre, H., Tian, W., Waugh, D., and Yamashita, Y.:
Multimodel climate and variability of the stratosphere, J. Geophys. Res., 116, D05102, https://doi.org/10.1029/2010jd014995, 2011.
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and
Match, A.: Defining Sudden Stratospheric Warmings, B. Am.
Meteorol. Soc., 96, 1913–1928, https://doi.org/10.1175/bams-d-13-00173.1, 2015.
Cámara, A. d. l., Albers, J. R., Birner, T., Garcia, R. R., Hitchcock,
P., Kinnison, D. E., and Smith, A. K.: Sensitivity of Sudden Stratospheric
Warmings to Previous Stratospheric Conditions, J. Atmos. Sci., 74, 2857–2877, https://doi.org/10.1175/jas-d-17-0136.1, 2017.
Cámara, A. d. l., Birner, T., and Albers, J. R.: Are Sudden
Stratospheric Warmings Preceded by Anomalous Tropospheric Wave Activity?,
J. Climate, 32, 7173–7189, https://doi.org/10.1175/jcli-d-19-0269.1, 2019.
Charlton, A. J. and Polvani, L. M.: A New Look at Stratospheric Sudden
Warmings. Part I: Climatology and Modeling Benchmarks, J. Climate,
20, 449–469, https://doi.org/10.1175/jcli3996.1, 2007.
Charney, J. G. and Drazin, P. G.: Propagation of planetary-scale
disturbances from the lower into the upper atmosphere, J. Geophys. Res., 66,
83–109, 1961.
Chen, P. and Robinson, W. A.: Propagation of Planetary Waves between the
Troposphere and Stratosphere, J. Atmos. Sci., 49,
2533–2545, 1992.
Christiansen, B.: Stratospheric Vacillations in a General Circulation Model,
J. Atmos. Sci., 56, 1858–1872,
https://doi.org/10.1175/1520-0469(1999)056<1858:SVIAGC>2.0.CO;2, 1999.
Cohen, J. and Jones, J.: Tropospheric Precursors and Stratospheric Warmings,
J. Climate, 24, 6562–6572, 2011.
Copernicus Climate Change Service (C3S): Climate reanalysis, Climate Data Store (CDS) [data set], https://climate.copernicus.eu/climate-reanalysis, last access: 14 June 2022.
Dai, Y. and Hitchcock, P.: Understanding the Basin Asymmetry in Surface
Response to Sudden Stratospheric Warmings from an Ocean–Atmosphere Coupled
Perspective, J. Climate, 34, 8683–8698, https://doi.org/10.1175/jcli-d-21-0314.1,
2021.
Delworth, T. L., Broccoli, A. J., Rosati, A., et al.: GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics, J. Climate, 19, 643–674, https://doi.org/10.1175/jcli3629.1, 2006.
Domeisen, D. I. V., Grams, C. M., and Papritz, L.: The role of North
Atlantic–European weather regimes in the surface impact of sudden
stratospheric warming events, Weather Clim. Dynam., 1, 373–388,
https://doi.org/10.5194/wcd-1-373-2020, 2020a.
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena,
B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim,
E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and
Taguchi, M.: The Role of the Stratosphere in Subseasonal to Seasonal
Prediction: 1. Predictability of the Stratosphere, J. Geophys.
Res.-Atmos., 125, e2019JD030920, https://doi.org/10.1029/2019JD030920, 2020b.
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena,
B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim,
E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and
Taguchi, M.: The Role of the Stratosphere in Subseasonal to Seasonal
Prediction: 2. Predictability Arising From Stratosphere-Troposphere
Coupling, J. Geophys. Res.-Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019JD030923, 2020c.
Eliassen, A. and Palm, E.: On the transfer of energy in stationary mountain
waves, Geofys. Publ., 22, 1–23, 1961.
Esler, J. G. and Matthewman, N. J.: Stratospheric Sudden Warmings as
Self-Tuning Resonances. Part II: Vortex Displacement Events, J. Atmos. Sci., 68, 2505–2523, https://doi.org/10.1175/jas-d-11-08.1, 2011.
Garfinkel, C. I. and Hartmann, D. L.: Different ENSO teleconnections and
their effects on the stratospheric polar vortex, J. Geophys.
Res.-Atmos., 113, D18114, https://doi.org/10.1029/2008JD009920, 2008.
Garfinkel, C. I., Hartmann, D. L., and Sassi, F.: Tropospheric Precursors of
Anomalous Northern Hemisphere Stratospheric Polar Vortices, J. Climate, 23, 3282–3299, https://doi.org/10.1175/2010JCLI3010.1, 2010.
Gerber, E. P. and Manzini, E.: The Dynamics and Variability Model Intercomparison Project (DynVarMIP) for CMIP6: assessing the stratosphere–troposphere system, Geosci. Model Dev., 9, 3413–3425, https://doi.org/10.5194/gmd-9-3413-2016, 2016.
Gnanadesikan, A., Dixon, K. W., Griffies, S. M., Balaji, V., Barreiro, M.,
Beesley, J. A., Cooke, W. F., Delworth, T. L., Gerdes, R., Harrison, M. J.,
Held, I. M., Hurlin, W. J., Lee, H.-C., Liang, Z., Nong, G., Pacanowski, R.
C., Rosati, A., Russell, J., Samuels, B. L., Song, Q., Spelman, M. J.,
Stouffer, R. J., Sweeney, C. O., Vecchi, G., Winton, M., Wittenberg, A. T.,
Zeng, F., Zhang, R., and Dunne, J. P.: GFDL's CM2 Global Coupled Climate
Models. Part II: The Baseline Ocean Simulation, J. Climate, 19,
675–697, https://doi.org/10.1175/jcli3630.1, 2006.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hitchcock, P. and Haynes, P. H.: Stratospheric control of planetary waves,
Geophys. Res. Lett., 43, 11884–11892, https://doi.org/10.1002/2016GL071372, 2016.
Holton, J. R. and Mass, C.: Stratospheric vacillation cycles, J. Atmos. Sci., 33, 2218–2225, 1976.
Hong, H.-J. and Reichler, T.: Local and remote response of ozone to Arctic stratospheric circulation extremes, Atmos. Chem. Phys., 21, 1159–1171, https://doi.org/10.5194/acp-21-1159-2021, 2021.
Horan, M. F. and Reichler, T.: Modeling seasonal sudden stratospheric
warming climatology based on polar vortex statistics, J. Climate,
30, 10101–10116, https://doi.org/10.1175/jcli-d-17-0257.1, 2017.
Horel, J. D. and Wallace, J. M.: Planetary-Scale Atmospheric Phenomena
Associated with the Southern Oscillation, Mon. Weather Rev., 109, 813–829, 1981.
Hu, J., Ren, R., and Xu, H.: Occurrence of Winter Stratospheric Sudden
Warming Events and the Seasonal Timing of Spring Stratospheric Final
Warming, J. Atmos. Sci., 71, 2319–2334, 2014.
Jucker, M.: Are Sudden Stratospheric Warmings Generic? Insights from an
Idealized GCM, J. Atmos. Sci., 73, 5061–5080,
https://doi.org/10.1175/jas-d-15-0353.1, 2016.
Jucker, M. and Reichler, T.: Dynamical precursors for statistical prediction
of stratospheric sudden warming events, Geophys. Res. Lett., 45, 13124–13132,
https://doi.org/10.1029/2018GL080691, 2018.
Jucker, M., Reichler, T., and Waugh, D. W.: How Frequent Are Antarctic
Sudden Stratospheric Warmings in Present and Future Climate?, Geophys.
Res. Lett., 48, e2021GL093215, https://doi.org/10.1029/2021GL093215, 2021.
Karpechko, A. Y. and Manzini, E.: Arctic Stratosphere Dynamical Response to
Global Warming, J. Climate, 30, 7071–7086, https://doi.org/10.1175/jcli-d-16-0781.1,
2017.
Karpechko, A. Y., Hitchcock, P., Peters, D. H. W., and Schneidereit, A.:
Predictability of downward propagation of major sudden stratospheric
warmings, Q. J. Roy. Meteor. Soc., 143, 1459–1470, https://doi.org/10.1002/qj.3017, 2017.
Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N.,
Baldwin, M. P., and Gray, L. J.: Stratospheric influence on tropospheric jet
streams, storm tracks and surface weather, Nat. Geosci., 8, 433–440,
https://doi.org/10.1038/ngeo2424, 2015.
Kim, J., Son, S.-W., Gerber, E. P., and Park, H.-S.: Defining Sudden
Stratospheric Warming in Climate Models: Accounting for Biases in Model
Climatologies, J. Climate, 30, 5529–5546, https://doi.org/10.1175/jcli-d-16-0465.1,
2017.
Kuroda, Y. and Kodera, K.: Variability of the polar night jet in the
northern and southern hemispheres, J. Geophys. Res., 106, 20703–20713, https://doi.org/10.1029/2001JD900226, 2001.
Labitzke, K.: Stratospheric-mesospheric midwinter disturbances: A summary of
observed characteristics, J. Geophys. Res., 86, 9665–9678, https://doi.org/10.1029/JC086iC10p09665, 1981.
Lawrence, Z. D. and Manney, G. L.: Does the Arctic Stratospheric Polar
Vortex Exhibit Signs of Preconditioning Prior to Sudden Stratospheric
Warmings?, J. Atmos. Sci., 77, 611–632, 2020.
Lawrence, Z. D., Perlwitz, J., Butler, A. H., Manney, G. L., Newman, P. A.,
Lee, S. H., and Nash, E. R.: The Remarkably Strong Arctic Stratospheric
Polar Vortex of Winter 2020: Links to Record-Breaking Arctic Oscillation and
Ozone Loss, J. Geophys. Res.-Atmos., 125, e2020JD033271, https://doi.org/10.1029/2020JD033271, 2020.
Lehtonen, I. and Karpechko, A. Y.: Observed and modeled tropospheric cold
anomalies associated with sudden stratospheric warmings, J.
Geophys. Res.-Atmos., 121, 1591–1610, https://doi.org/10.1002/2015JD023860, 2016.
Lim, E.-P., Hendon, H. H., Boschat, G., Hudson, D., Thompson, D. W. J.,
Dowdy, A. J., and Arblaster, J. M.: Australian hot and dry extremes induced
by weakenings of the stratospheric polar vortex, Nat. Geosci., 12, 896–901, https://doi.org/10.1038/s41561-019-0456-x, 2019.
Limpasuvan, V., Hartmann, D. L., Thompson, D. W. J., Jeev, K., and Yung, Y.
L.: Stratosphere-troposphere evolution during polar vortex intensification, J. Geophys. Res., 110, D24101, https://doi.org/10.1029/2005JD006302, 2005.
Martius, O., Polvani, L. M., and Davies, H. C.: Blocking precursors to
stratospheric sudden warming events, Geophys. Res. Lett., 36,
L14806, https://doi.org/10.1029/2009GL038776, 2009.
Matsuno, T.: A dynamical model of the stratospheric sudden warming, J. Atmos. Sci., 28, 1479–1494, 1971.
Matthewman, N. J. and Esler, J. G.: Stratospheric Sudden Warmings as
Self-Tuning Resonances. Part I: Vortex Splitting Events, J. Atmos. Sci., 68, 2481–2504, https://doi.org/10.1175/jas-d-11-07.1, 2011.
McLandress, C. and Shepherd, T. G.: Impact of Climate Change on
Stratospheric Sudden Warmings as Simulated by the Canadian Middle Atmosphere
Model, J. Climate, 22, 5449–5463, https://doi.org/10.1175/2009JCLI3069.1, 2009.
Newman, P. A. and Nash, E. R.: Quantifying the wave driving of the
stratosphere, J. Geophys. Res.-Atmos., 105, 12485–12497, https://doi.org/10.1029/1999JD901191, 2000.
Newman, P. A., Nash, E. R., and Rosenfield, J. E.: What controls the
temperature of the Arctic stratosphere during the spring?, J. Geophys. Res.,
106, 19999–20010, https://doi.org/10.1029/2000JD000061, 2001.
Oehrlein, J., Polvani, L. M., Sun, L., and Deser, C.: How Well Do We Know
the Surface Impact of Sudden Stratospheric Warmings?, Geophys. Res.
Lett., 48, e2021GL095493, https://doi.org/10.1029/2021GL095493, 2021.
Palmeiro, F. M., Barriopedro, D., García-Herrera, R., and Calvo, N.:
Comparing Sudden Stratospheric Warming Definitions in Reanalysis Data,
J. Climate, 28, 6823–6840, https://doi.org/10.1175/jcli-d-15-0004.1, 2015.
Polvani, L. M. and Waugh, D. W.: Upward wave activity flux as precursor to
extreme stratospheric events and subsequent anomalous surface weather
regimes, J. Climate, 17, 3548–3554, 2004.
Randel, W. J., Wu, F., and Stolarski, R.: Changes in column ozone correlated
with EP flux, J. Meteor. Soc. Jpn., 80, 849–862, 2002.
Reichler, T. and Kim, J.: How Well Do Coupled Models Simulate Today's
Climate?, B. Am. Meteorol. Soc., 89, 303–312, https://doi.org/10.1175/bams-89-3-303, 2008.
Reichler, T., Kushner, P. J., and Polvani, L. M.: The coupled
stratosphere-troposphere response to impulsive forcing from the troposphere,
J. Atmos. Sci., 62, 3337–3352, 2005.
Scaife, A. A., Baldwin, M. P., Butler, A. H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Hardiman, S. C., Haynes, P., Karpechko, A. Y., Lim, E.-P., Noguchi, S., Perlwitz, J., Polvani, L., Richter, J. H., Scinocca, J., Sigmond, M., Shepherd, T. G., Son, S.-W., and Thompson, D. W. J.: Long-range prediction and the stratosphere, Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, 2021.
Scherhag, R.: Die explosionsartigen Stratosphärenerwärmungeu des Spätwinters 1951/1952 (The explosive warmings in the stratosphere of the late winter 1951/1952), Berichte des Deutschen Wetterdienstes in der US Zone, 6, 51–63, 1952.
Scott, R. K. and Polvani, L. M.: Stratospheric control of upward wave flux
near the tropopause, Geophys. Res. Lett., 31, L02115, https://doi.org/10.1029/2003GL017965, 2004.
Scott, R. K. and Polvani, L. M.: Internal variability of the winter
stratosphere. Part I: Time-independent forcing, J. Atmos. Sci., 63, 2758–2776, 2006.
Sigmond, M., Scinocca, J. F., Kharin, V. V., and Shepherd, T. G.: Enhanced
seasonal forecast skill following stratospheric sudden warmings, Nat.
Geosci., 6, 98–102, 2013.
Sjoberg, J. P. and Birner, T.: Transient Tropospheric Forcing of Sudden
Stratospheric Warmings, J. Atmos. Sci., 69, 3420–3432,
https://doi.org/10.1175/jas-d-11-0195.1, 2012.
Staten, P. W. and Reichler, T.: On the ratio between shifts in the
eddy-driven jet and the Hadley cell edge, Clim. Dynam., 42, 1229–1242,
2014.
Thompson, D. W. J., Baldwin, M. P., and Solomon, S.: Stratosphere-Troposphere Coupling in the Southern Hemisphere, J. Atmos. Sci., 62, 708–715, https://doi.org/10.1175/jas-3321.1, 2005.
Wang, L., Hardiman, S. C., Bett, P. E., Comer, R. E., Kent, C., and Scaife,
A. A.: What chance of a sudden stratospheric warming in the southern
hemisphere?, Environ. Res. Lett., 15, 104038,
https://doi.org/10.1088/1748-9326/aba8c1, 2020.
White, I., Garfinkel, C. I., Gerber, E. P., Jucker, M., Aquila, V., and
Oman, L. D.: The Downward Influence of Sudden Stratospheric Warmings:
Association with Tropospheric Precursors, J. Climate, 32, 85–108,
2019.
Wittenberg, A. T., Rosati, A., Lau, N.-C., and Ploshay, J. J.: GFDL's CM2
Global Coupled Climate Models. Part III: Tropical Pacific Climate and ENSO,
J. Climate, 19, 698–722, https://doi.org/10.1175/jcli3631.1, 2006.
Short summary
Variations in the stratospheric polar vortex, so-called vortex events, can improve predictions of surface weather and climate. There are various ways to detect such events, and here we use the amount of wave energy that propagates into the stratosphere. The new definition is tested against so-called stratospheric sudden warmings (SSWs). We find that the wave definition has advantages over SSWs, for example in terms of a stronger surface response that follows the events.
Variations in the stratospheric polar vortex, so-called vortex events, can improve predictions...