Articles | Volume 2, issue 1
https://doi.org/10.5194/wcd-2-205-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-205-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Origins of multi-decadal variability in sudden stratospheric warmings
Oscar Dimdore-Miles
CORRESPONDING AUTHOR
Department of Physics, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, OX1 3PU, UK
Lesley Gray
Department of Physics, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, OX1 3PU, UK
National Centre for Atmospheric Science, Oxford, OX1 3PU, UK
Scott Osprey
Department of Physics, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, OX1 3PU, UK
National Centre for Atmospheric Science, Oxford, OX1 3PU, UK
Related authors
Oscar Dimdore-Miles, Lesley Gray, Scott Osprey, Jon Robson, Rowan Sutton, and Bablu Sinha
Atmos. Chem. Phys., 22, 4867–4893, https://doi.org/10.5194/acp-22-4867-2022, https://doi.org/10.5194/acp-22-4867-2022, 2022
Short summary
Short summary
This study examines interactions between variations in the strength of polar stratospheric winds and circulation in the North Atlantic in a climate model simulation. It finds that the Atlantic Meridional Overturning Circulation (AMOC) responds with oscillations to sets of consecutive Northern Hemisphere winters, which show all strong or all weak polar vortex conditions. The study also shows that a set of strong vortex winters in the 1990s contributed to the recent slowdown in the observed AMOC.
Hiroaki Naoe, Jorge L. Garcia-Franco, Chang-Hyun Park, Mario Rodrigo, Froila M. Palmeiro, Federico Serva, Masakazu Taguchi, Kohei Yoshida, James A. Anstey, Javier Garcia-Serrano, Seok-Woo Son, Yoshio Kawatani, Neal Butchart, Kevin Hamilton, Chih-Chieh Chen, Anne Glanville, Tobias Kerzenmacher, Francois Lott, Clara Orbe, Scott Osprey, Mijeong Park, Jadwiga H. Richter, Stefan Versick, and Shingo Watanabe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1148, https://doi.org/10.5194/egusphere-2025-1148, 2025
Short summary
Short summary
This study examines links between the stratospheric Quasi-Biennial Oscillation (QBO) and large-scale atmospheric circulations in the tropics, subtropics, and polar regions. The QBO teleconnections and their modulation by the El Niño-Southern Oscillation (ENSO) are investigated through a series of climate model experiments. While QBO teleconnections are qualitatively reproduced by the multi-model ensemble, they are not consistent due to modelled QBO bias and other systematic model biases.
Dillon Elsbury, Federico Serva, Julie M. Caron, Seung-Yoon Back, Clara Orbe, Jadwiga H. Richter, James A. Anstey, Neal Butchart, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Yoshio Kawatani, Tobias Kerzenmacher, Francois Lott, Hiroaki Naoe, Scott Osprey, Froila M. Palmeiro, Seok-Woo Son, Masakazu Taguchi, Stefan Versick, Shingo Watanabe, and Kohei Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-3950, https://doi.org/10.5194/egusphere-2024-3950, 2025
Short summary
Short summary
This study examines how the Madden-Julian Oscillation (MJO), a major tropical weather pattern, is influenced by persistent El Niño or La Niña sea surface temperature conditions during winter. Using a coordinated set of climate model experiments, we find that El Niño strengthens Kelvin waves, speeding up MJO propagation, while La Niña strengthens Rossby waves, slowing it down. Better understanding these interactions between the MJO and ocean helps us better understand natural climate variability.
Aleena M. Jaison, Lesley J. Gray, Scott M. Osprey, Jeff R. Knight, and Martin B. Andrews
Weather Clim. Dynam., 5, 1489–1504, https://doi.org/10.5194/wcd-5-1489-2024, https://doi.org/10.5194/wcd-5-1489-2024, 2024
Short summary
Short summary
Models have biases in semi-annual oscillation (SAO) representation, mainly due to insufficient eastward wave forcing. We examined if the bias is from increased wave absorption due to circulation biases in the low–middle stratosphere. Alleviating biases at lower altitudes improves the SAO, but substantial bias remains. Alternative methods like gravity wave parameterization changes should be explored to enhance the modelled SAO, potentially improving sudden stratospheric warming predictability.
Yoshio Kawatani, Kevin Hamilton, Shingo Watanabe, James A. Anstey, Jadwiga H. Richter, Neal Butchart, Clara Orbe, Scott M. Osprey, Hiroaki Naoe, Dillon Elsbury, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Tobias Kerzenmacher, François Lott, Froila M. Palmerio, Mijeong Park, Federico Serva, Masakazu Taguchi, Stefan Versick, and Kohei Yoshioda
EGUsphere, https://doi.org/10.5194/egusphere-2024-3270, https://doi.org/10.5194/egusphere-2024-3270, 2024
Short summary
Short summary
The Quasi-Biennial Oscillation (QBO) of the tropical stratospheric mean winds has been relatively steady over the 7 decades it has been observed, but there are always cycle-to-cycle variations. This study used several global atmospheric models to investigate systematic modulation of the QBO by the El Niño/La Niña cycle. All models simulated shorter periods during El Niño, in agreement with observations. By contrast, the models disagreed even on the sign of the El Niño effect on QBO amplitude.
Paula L. M. Gonzalez, Lesley J. Gray, Stergios Misios, Scott Osprey, and Hedi Ma
EGUsphere, https://doi.org/10.5194/egusphere-2024-2487, https://doi.org/10.5194/egusphere-2024-2487, 2024
Preprint archived
Short summary
Short summary
This study has examined a set of reanalyses, both modern and 20th Century, to evaluate the robustness of the signatures of the 11-yr solar cycle in the North Atlantic climate. We find a robust response to the 11-yr solar cycle over the North Atlantic sector with a positive SLP anomaly north of the Azores region at lags of +2–3 years following solar maximum. An ocean reanalysis dataset shows that thermal inertia of the ocean could explain the lag in the SC response.
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
Jorge L. García-Franco, Lesley J. Gray, Scott Osprey, Robin Chadwick, and Zane Martin
Weather Clim. Dynam., 3, 825–844, https://doi.org/10.5194/wcd-3-825-2022, https://doi.org/10.5194/wcd-3-825-2022, 2022
Short summary
Short summary
This paper establishes robust links between the stratospheric quasi-biennial oscillation (QBO) and several features of tropical climate. Robust precipitation responses, as well as changes to the Walker circulation, were found to be robustly linked to the variability in the lower stratosphere associated with the QBO using a 500-year simulation of a state-of-the-art climate model.
Oscar Dimdore-Miles, Lesley Gray, Scott Osprey, Jon Robson, Rowan Sutton, and Bablu Sinha
Atmos. Chem. Phys., 22, 4867–4893, https://doi.org/10.5194/acp-22-4867-2022, https://doi.org/10.5194/acp-22-4867-2022, 2022
Short summary
Short summary
This study examines interactions between variations in the strength of polar stratospheric winds and circulation in the North Atlantic in a climate model simulation. It finds that the Atlantic Meridional Overturning Circulation (AMOC) responds with oscillations to sets of consecutive Northern Hemisphere winters, which show all strong or all weak polar vortex conditions. The study also shows that a set of strong vortex winters in the 1990s contributed to the recent slowdown in the observed AMOC.
Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer
Atmos. Chem. Phys., 22, 4277–4302, https://doi.org/10.5194/acp-22-4277-2022, https://doi.org/10.5194/acp-22-4277-2022, 2022
Short summary
Short summary
The stratosphere is emerging as one of the keys to improve tropospheric weather and climate predictions. This study provides evidence of the role the stratospheric ozone layer plays in improving weather predictions at different timescales. Using a new ozone modelling approach suitable for high-resolution global models that provide operational forecasts from days to seasons, we find significant improvements in stratospheric meteorological fields and stratosphere–troposphere coupling.
Cited articles
Andrews, M. B., Knight, J. R., Scaife, A. A., Lu, Y., Wu, T., Gray, L. J., and
Schenzinger, V.: Observed and Simulated Teleconnections Between the
Stratospheric Quasi-Biennial Oscillation and Northern Hemisphere Winter
Atmospheric Circulation, J. Geophys. Res.-Atmos., 124,
1219–1232, https://doi.org/10.1029/2018JD029368, 2019. a, b, c, d, e, f, g, h
Andrews, M. B., Ridley, J. K., Wood, R. A., Andrews, T., Blockley, E. W.,
Booth, B., Burke, E., Dittus, A. J., Florek, P., Gray, L. J., Haddad, S.,
Hardiman, S. C., Hermanson, L., Hodson, D., Hogan, E., Jones, G. S., Knight,
J. R., Kuhlbrodt, T., Misios, S., Mizielinski, M. S., Ringer, M. A., Robson,
J., and Sutton, R. T.: Historical Simulations With HadGEM3-GC3.1 for CMIP6,
J. Adv. Model. Earth Sy., 12, e2019MS001995,
https://doi.org/10.1029/2019MS001995, 2020. a
Anstey, J. A. and Shepherd, T. G.: Response of the northern stratospheric polar
vortex to the seasonal alignment of QBO phase transitions, Geophys.
Res. Lett., 35, L22810, https://doi.org/10.1029/2008GL035721, 2008. a, b
Anstey, J. A. and Shepherd, T. G.: High-latitude influence of the
quasi-biennial oscillation, Q. J. Roy. Meteor.
Soc., 140, 1–21, https://doi.org/10.1002/qj.2132, 2014. a
Anstey, J. A., Butchart, N., Hamilton, K., and Osprey, S. M.: The SPARC
Quasi-Biennial Oscillation initiative, Q. J. Roy.
Meteor. Soc., 1–4, https://doi.org/10.1002/qj.3820, 2020. a
Ayarzagüena, B., Charlton-Perez, A. J., Butler, A. H., Hitchcock, P., Simpson,
I. R., Polvani, L. M., Butchart, N., Gerber, E. P., Gray, L., Hassler, B.,
Lin, P., Lott, F., Manzini, E., Mizuta, R., Orbe, C., Osprey, S.,
Saint-Martin, D., Sigmond, M., Taguchi, M., Volodin, E. M., and Watanabe, S.:
Uncertainty in the Response of Sudden Stratospheric Warmings and
Stratosphere-Troposphere Coupling to Quadrupled CO2 Concentrations in CMIP6
Models, J. Geophys. Res.-Atmos., 125, e2019JD032345, https://doi.org/10.1029/2019JD032345, 2020. a, b, c
Baldwin, M., Ayarzagüena, B., Birner, T., Butchart, N., Charlton-Perez, A.,
Butler, A., Domeisen, D., Garfinkel, C., Garny, H., Gerber, E., Hegglin, M.,
Langematz, U., and Pedatella, N.: Sudden Stratospheric Warmings, Rev.
Geophys., 59, e2020RG000708, https://doi.org/10.1029/2020RG000708, 2021. a
Baldwin, M. P. and Dunkerton, T. J.: The Quasi-Biennial Oscillations Above
10mb, Geophys. Res. Lett., 18, 1205–1208, https://doi.org/10.1029/91GL01333,
1991. a
Baldwin, M. P. and Dunkerton, T. J.: Quasi-biennial modulation of the southern
hemisphere stratospheric polar vortex, Geophys. Res. Lett., 25,
3343–3346, https://doi.org/10.1029/98GL02445, 1998. a, b
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric Harbingers of Anomalous
Weather Regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001. a
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H.,
Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T.,
Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi,
M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229,
https://doi.org/10.1029/1999RG000073, 2001. a, b
Bell, C. J., Gray, L. J., Charlton-Perez, A. J., Joshi, M. M., and Scaife,
A. A.: Stratospheric Communication of El Niño Teleconnections to European
Winter, J. Climate, 22, 4083–4096, https://doi.org/10.1175/2009JCLI2717.1,
2009. a
Bushell, A. C., Anstey, J. A., Butchart, N., Kawatani, Y., Osprey, S. M.,
Richter, J. H., Serva, F., Braesicke, P., Cagnazzo, C., Chen, C.-C., Chun,
H.-Y., Garcia, R. R., Gray, L. J., Hamilton, K., Kerzenmacher, T., Kim,
Y.-H., Lott, F., McLandress, C., Naoe, H., Scinocca, J., Smith, A. K.,
Stockdale, T. N., Versick, S., Watanabe, S., Yoshida, K., and Yukimoto, S.:
Evaluation of the Quasi-Biennial Oscillation in global climate models for the
SPARC QBO-initiative, Q. J. Roy. Meteor. Soc.,
1–31, https://doi.org/10.1002/qj.3765, 2020. a, b, c
Butchart, N., Austin, J., Knight, J. R., Scaife, A. A., and Gallani, M. L.:
The Response of the Stratospheric Climate to Projected Changes in the
Concentrations of Well-Mixed Greenhouse Gases from 1992 to 2051, J.
Climate, 13, 2142–2159, https://doi.org/10.1175/1520-0442(2000)013<2142:TROTSC>2.0.CO;2, 2000. a
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and
Match, A.: Defining Sudden Stratospheric Warmings, B. Am.
Meteorol. Soc., 96, 1913–1928, https://doi.org/10.1175/BAMS-D-13-00173.1,
2015. a, b, c
Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.: A sudden stratospheric warming compendium, Earth Syst. Sci. Data, 9, 63–76, https://doi.org/10.5194/essd-9-63-2017, 2017. a
Charlton, A., Polvani, L., Perlwitz, J., Sassi, F., Manzini, E., Shibata, K.,
Pawson, S., Nielsen, J., and Rind, D.: A new look at stratospheric sudden
warmings. Part II: Evaluation of numerical model simulations, J.
Climate, 10, 470–488, https://doi.org/10.1175/JCLI3994.1, 2007. a
Chen, S., Chen, W., Wu, R., Yu, B., and Graf, H.-F.: Potential impact of
preceding Aleutian Low variation on the El Niño-Southern Oscillation during
the following winter, J. Climate, 33, 3061–3077, https://doi.org/10.1175/JCLI-D-19-0717.1,
2020. a
Cohen, J., Barlow, M., Kushner, P., and Saito, K.: Stratosphere Troposphere
Coupling and Links with Eurasian Land Surface Variability, J. Climate,
20, 5335–5343, https://doi.org/10.1175/2007JCLI1725.1, 2007. a
Cohen, J., Barlow, M., and Saito, K.: Decadal Fluctuations in Planetary Wave
Forcing Modulate Global Warming in Late Boreal Winter, J. Climate,
22, 4418–4426, https://doi.org/10.1175/2009JCLI2931.1, 2009. a
Daubechies, I.: The wavelet transform, time-frequency localization and signal
analysis, IEEE T. Inform. Theory, 36, 961–1005,
https://doi.org/10.1109/18.57199, 1990. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J.,
Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N.,
and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of
the data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Deser, C., Simpson, I. R., McKinnon, K. A., and Phillips, A. S.: The Northern
Hemisphere Extratropical Atmospheric Circulation Response to ENSO: How Well
Do We Know It and How Do We Evaluate Models Accordingly?, J. Climate,
30, 5059–5082, https://doi.org/10.1175/JCLI-D-16-0844.1, 2017. a
Domeisen, D., Garfinkel, C., and Butler, A.: The Teleconnection of El Niño
Southern Oscillation to the Stratosphere, Rev. Geophys., 57, 5–47,
https://doi.org/10.1029/2018RG000596, 2019. a
Domeisen, D. I.: Estimating the Frequency of Sudden Stratospheric Warming
Events From Surface Observations of the North Atlantic Oscillation, J.
Geophys. Res.-Atmos., 124, 3180–3194,
https://doi.org/10.1029/2018JD030077, 2019. a
Domeisen, D. I. V., Butler, A. H., Fröhlich, K., Bittner, M., Müller, W. A.,
and Baehr, J.: Seasonal Predictability over Europe Arising from El Niño and
Stratospheric Variability in the MPI-ESM Seasonal Prediction System, J. Climate, 28, 256–271, https://doi.org/10.1175/JCLI-D-14-00207.1, 2014. a
Domeisen, D. I., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B.,
Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim,
E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and
Taguchi, M.: The Role of the Stratosphere in Subseasonal to Seasonal
Prediction: 1. Predictability of the Stratosphere, J. Geophys.
Res.-Atmos., 125, e2019JD030920,
https://doi.org/10.1029/2019JD030920, 2020a. a
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B.,
Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim,
E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and
Taguchi, M.: The Role of the Stratosphere in Subseasonal to Seasonal
Prediction: 2. Predictability Arising From Stratosphere-Troposphere Coupling,
J. Geophys. Res.-Atmos., 125, e2019JD030923,
https://doi.org/10.1029/2019JD030923, 2020b. a
Dunkerton, T. J.: Nearly identical cycles of the quasi-biennial oscillation in
the equatorial lower stratosphere, J. Geophys. Res.-Atmos., 122, 8467–8493, https://doi.org/10.1002/2017JD026542, 2017. a
European Centre for Medium-range Weather Forecast (ECMWF): The ERA-Interim reanalysis dataset, Copernicus Climate Change Service (C3S), available at: https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim
(last access: 6 October 2020), 2011. a
Fletcher, C. G. and Kushner, P. J.: The Role of Linear Interference in the
Annular Mode Response to Tropical SST Forcing, J. Climate, 24, 778–794, 2011. a
Fletcher, C. G. and Kushner, P. J.: Linear interference and the Northern
Annular Mode response to tropical SST forcing: Sensitivity to model
configuration, J. Geophys. Res.-Atmos., 118, 4267–4279,
https://doi.org/10.1002/jgrd.50385, 2013. a
Fraedrich, K., Pawson, S., and Wang, R.: An EOF Analysis of the
Vertical-Time Delay Structure of the Quasi-Biennial Oscillation., J.
Atmos. Sci., 50, 3357–3365, https://doi.org/10.1175/1520-0469(1993)050<3357:AEAOTV>2.0.CO;2, 1993. a
Garfinkel, C., Hartmann, D., and Sassi, F.: Tropospheric Precursors of
Anomalous Northern Hemisphere Stratospheric Polar Vortices, J.
Climate, 23, 3282–3299, https://doi.org/10.1175/2010JCLI3010.1, 2010. a
Garfinkel, C., Butler, A., Waugh, D., Hurwitz, M., and Polvani, L.: Why might
stratospheric sudden warmings occur with similar frequency in El Niño and La
Niña winters?, J. Geophys. Res.-Atmos., 117, D19106, https://doi.org/10.1029/2012JD017777, 2012. a, b
Garfinkel, C., Schwartz, C., White, I., and Rao, J.: Predictability of the
Early Winter Arctic Oscillation from Autumn Eurasian Snowcover in
Subseasonal Forecast Models, Clim. Dynam., 55, 961–974,
https://doi.org/10.1007/s00382-020-05305-3, 2020. a
Garfinkel, C. I. and Hartmann, D. L.: Different ENSO teleconnections and their
effects on the stratospheric polar vortex, J. Geophys. Res.-Atmos., 113, D18114, https://doi.org/10.1029/2008JD009920, 2008. a
Garfinkel, C. I., Hurwitz, M. M., and Oman, L. D.: Effect of recent sea surface
temperature trends on the Arctic stratospheric vortex, J. Geophys.
Res.-Atmos., 120, 5404–5416, 2015. a
Garfinkel, C. I., Son, S.-W., Song, K., Aquila, V., and Oman, L. D.:
Stratospheric variability contributed to and sustained the recent hiatus in
Eurasian winter warming, Geophys. Res. Lett., 44, 374–382,
https://doi.org/10.1002/2016GL072035, 2017. a, b
Garfinkel, C. I., Schwartz, C., Domeisen, D. I. V., Son, S.-W., Butler, A. H.,
and White, I. P.: Extratropical Atmospheric Predictability From the
Quasi-Biennial Oscillation in Subseasonal Forecast Models, J.
Geophys. Res.-Atmos., 123, 7855–7866, 2018. a
Gray, L., Brown, M., Knight, J., Andrews, M., Lu, H., O'Reilly, C., and Anstey,
J.: Forecasting extreme stratospheric polar vortex events, Nat.
Commun., 11, 4630, https://doi.org/10.1038/s41467-020-18299-7, 2020. a
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004. a
Gruzdev, A. N. and Bezverkhny, V. A.: Two regimes of the quasi-biennial
oscillation in the equatorial stratospheric wind, J. Geophy. Res., 105,
29435–29444, https://doi.org/10.1029/2000JD900495, 2000. a
Henderson, G., Peings, Y., Furtado, J., and Kushner, P.: Snow-atmosphere
coupling in the Northern Hemisphere, Nat. Clim. Change, 8, 954–964,
https://doi.org/10.1038/s41558-018-0295-6, 2018. a
Hirota, N., Shiogama, H., Akiyoshi, H., Ogura, T., Takahashi, M., Kawatani, Y.,
Kimoto, M., and Mori, M.: The influences of El Nino and Arctic sea-ice on the
QBO disruption in February 2016, NPJ Clim. Atmos. Sci., 1, 10,
https://doi.org/10.1038/s41612-018-0020-1, 2018. a
Holton, J. R. and Tan, H. C.: The Influence of the Equatorial Quasi-Biennial
Oscillation on the Global Circulation at 50 mb, J. Atmos.
Sci., 37, 2200–2208, https://doi.org/10.1175/1520-0469, 1980. a
Holton, J. R. and Tan, H.-C.: The Quasi-Biennial Oscillation in the Northern
Hemisphere Lower Stratosphere, J. Meteorol. Soc.
Jpn., 60, 140–148, https://doi.org/10.2151/jmsj1965.60.1_140, 1982. a
Horan, M. F. and Reichler, T.: Modeling Seasonal Sudden Stratospheric Warming
Climatology Based on Polar Vortex Statistics, J. Climate, 30, 10101–10116, 2017. a
Hu, D. and Guan, Z.: Decadal Relationship between the Stratospheric Arctic
Vortex and Pacific Decadal Oscillation, J. Climate, 31, 3371–3386,
https://doi.org/10.1175/JCLI-D-17-0266.1, 2018. a, b
Ineson, S. and Scaife, A. A.: The role of the stratosphere in the European
climate response to El Niño, Nat. Geosci., 2, 32–36,
https://doi.org/10.1038/ngeo381, 2009. a
Iza, M., Calvo, N., and Manzini, E.: The Stratospheric Pathway of La Niña,
J. Climate, 29, 8899–8914, https://doi.org/10.1175/JCLI-D-16-0230.1, 2016. a
Kang, W. and Tziperman, E.: More Frequent Sudden Stratospheric Warming Events
due to Enhanced MJO Forcing Expected in a Warmer Climate, J.
Climate, 30, 8727–8743, https://doi.org/10.1175/JCLI-D-17-0044.1, 2017. a
Kawatani, Y., Hamilton, K., Miyazaki, K., Fujiwara, M., and Anstey, J. A.: Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses, Atmos. Chem. Phys., 16, 6681–6699, https://doi.org/10.5194/acp-16-6681-2016, 2016. a
Kidston, J., Scaife, A., Hardiman, S., Mitchell, D., Butchart, N., Baldwin, M.,
and Gray, L.: Stratospheric influence on tropospheric jet streams, storm
tracks and surface weather, Nat. Geosci., 8, 433–440,
https://doi.org/10.1038/ngeo2424, 2015. a, b
Kim, J. and Kim, K.-Y.: Characteristics of stratospheric polar vortex
fluctuations associated with sea ice variability in the Arctic winter,
Clim. Dynam., 54, 3599–3611, https://doi.org/10.1007/s00382-020-05191-9, 2020. a
Kren, A. C., Marsh, D. R., Smith, A. K., and Pilewskie, P.: Wintertime
Northern Hemisphere Response in the Stratosphere to the Pacific Decadal
Oscillation Using the Whole Atmosphere Community Climate Model, J.
Climate, 29, 1031–1049, https://doi.org/10.1175/JCLI-D-15-0176.1, 2016. a
Kretschmer, M., Cohen, J., Matthias, V., Runge, J., and Coumou, D.:
Stratospheric influence on tropospheric jet streams, storm tracks and surface
weather, NPJ Clim. Atmos. Sci., 1, 433–440,
https://doi.org/10.1038/s41612-018-0054-4, 2018. a
Krzywinski, M. and Altman, N.: Multiple linear regression, Nat. Meth., 12,
1103–1104, 2015. a
Labe, Z., Peings, Y., and Magnusdottir, G.: The Effect of QBO Phase on the
Atmospheric Response to Projected Arctic Sea Ice Loss in Early Winter,
Geophys. Res. Lett., 46, 7663–7671, 2019. a
Lau, K.-M. and Weng, H.: Climate Signal Detection Using Wavelet Transform: How
to Make a Time Series Sing, B. Am. Meteorol. Soc.,
76, 2391–2402, https://doi.org/10.1175/1520-0477(1995)076<2391:CSDUWT>2.0.CO;2, 1995. a
Lehtonen, I. and Karpechko, A. Y.: Observed and modeled tropospheric cold
anomalies associated with sudden stratospheric warmings, J.
Geophys. Res.-Atmos., 121, 1591–1610, 2016. a
Lu, H., Baldwin, M., Gray, L., and Jarvis, M.: Decadal-scale changes in the
effect of the QBO on the northern stratospheric polar vortex, J.
Geophys. Res. Atmos., 113, 102–116, https://doi.org/10.1029/2007JD009647,
2008. a, b, c, d
Lu, H., Bracegirdle, T. J., Phillips, T., Bushell, A., and Gray, L.: Mechanisms
for the Holton-Tan relationship and its decadal variation, J.
Geophys. Res.-Atmos., 119, 2811–2830,
https://doi.org/10.1002/2013JD021352, 2014. a, b, c
Manney, G. L., Krüger, K., Sabutis, J. L., Sena, S. A., and Pawson, S.: The
remarkable 2003–2004 winter and other recent warm winters in the Arctic
stratosphere since the late 1990s, J. Geophys. Res.-Atmos., 110, D04107, https://doi.org/10.1029/2004JD005367, 2005. a, b
Mantua, N., Hare, S., Zhang, Y., Wallace, J., and Francis, R.: A Pacific
Interdecadal Climate Oscillation with Impacts on Salmon Production, B. Am. Meteorol. Soc., 78, 1069–1079,
https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2, 1997. a, b, c
Manzini, E., Giorgetta, M. A., Esch, M., Kornblueh, L., and Roeckner, E.: The
Influence of Sea Surface Temperatures on the Northern Winter Stratosphere:
Ensemble Simulations with the MAECHAM5 Model, J. Climate, 19,
3863–3881, https://doi.org/10.1175/JCLI3826.1, 2006. a, b
Manzini, E., Cagnazzo, C., Fogli, P. G., Bellucci, A., and Müller, W. A.:
Stratosphere-troposphere coupling at inter-decadal time scales: Implications
for the North Atlantic Ocean, Geophys. Res. Lett., 39, L05801,
https://doi.org/10.1029/2011GL050771, 2012. a
Menary, M. B., Kuhlbrodt, T., Ridley, J., Andrews, M. B., Dimdore-Miles, O. B.,
Deshayes, J., Eade, R., Gray, L., Ineson, S., Mignot, J., Roberts, C. D.,
Robson, J., Wood, R. A., and Xavier, P.: Preindustrial Control Simulations
With HadGEM3-GC3.1 for CMIP6, J. Adv. Model. Earth Sy.,
10, 3049–3075, https://doi.org/10.1029/2018MS001495, 2018. a, b
Minobe, S.: Resonance in bidecadal and pentadecadal climate oscillations over
the North Pacific: Role in climatic regime shifts, Geophys. Res.
Lett., 26, 855–858, https://doi.org/10.1029/1999GL900119, 1999. a
Mulcahy, J. P., Jones, C., Sellar, A., Johnson, B., Boutle, I. A., Jones, A.,
Andrews, T., Rumbold, S. T., Mollard, J., Bellouin, N., Johnson, C. E.,
Williams, K. D., Grosvenor, D. P., and McCoy, D. T.: Improved Aerosol
Processes and Effective Radiative Forcing in HadGEM3 and UKESM1, J.
Adv. Model. Earth Sy., 10, 2786–2805, https://doi.org/10.1029/2018MS001464, 2018. a, b
Nakamura, T., Yamazaki, K., Iwamoto, K., Honda, M., Miyoshi, Y., Ogawa, Y.,
Tomikawa, Y., and Ukita, J.: The stratospheric pathway for Arctic impacts on
midlatitude climate, Geophys. Res. Lett., 43, 3494–3501, 2016. a
Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Lorenzo,
E. D., Mantua, N. J., Miller, A. J., Minobe, S., Nakamura, H., Schneider, N.,
Vimont, D. J., Phillips, A. S., Scott, J. D., and Smith, C. A.: The Pacific
Decadal Oscillation, Revisited, J. Climate, 29, 4399–4427, 2016. a
Osprey, S. M., Gray, L. J., Hardiman, S. C., Butchart, N., Bushell, A. C., and
Hinton, T. J.: Stratospheric role in interdecadal changes of El Niño impacts
over Europe, Clim. Dynam., 52, 1173–1186, 2019. a
Overland, J. E., Adams, J. M., and Bond, N. A.: Decadal Variability of the
Aleutian Low and Its Relation to High-Latitude Circulation, J.
Climate, 12, 1542–1548, https://doi.org/10.1175/1520-0442, 1999. a, b
Pascoe, C. L., Gray, L. J., Crooks, S. A., Juckes, M. N., and Baldwin, M. P.:
The quasi-biennial oscillation: Analysis using ERA-40 data, J.
Geophys. Res.-Atmos., 110, 1–13, https://doi.org/10.1029/2004JD004941,
2005. a, b, c
Pawson, S. and Naujokat, B.: The cold winters of the middle 1990s in the
northern lower stratosphere, J. Geophys. Res.-Atmos.,
104, 14209–14222, https://doi.org/10.1029/1999JD900211, 1999. a, b
Raible, C., Stocker, T., Yoshimori, M., Renold, M., Beyerle, U., Casty, C., and
Luterbacher, J.: Northern Hemispheric Trends of Pressure Indices and
Atmospheric Circulation Patterns in Observations, Reconstructions, and
Coupled GCM Simulations, J. Climate, 18, 3968–3982, https://doi.org/10.1175/JCLI3511.1,
2005. a
Rajendran, K., Moroz, I., Read, P., and Osprey, S.: Synchronisation of the
equatorial QBO by the annual cycle in tropical upwelling in a warming
climate, Q. J. Roy. Meteor. Soc., 142, 1111–1120,
https://doi.org/10.1002/qj.2714, 2015. a
Rao, J. and Ren, R.: A decomposition of ENSO's impacts on the northern winter
stratosphere: Competing effect of SST forcing in the tropical Indian Ocean,
Clim. Dynam., 46, 3689–3707, https://doi.org/10.1007/s00382-015-2797-5, 2015. a
Rao, J. and Ren, R.: Varying stratospheric responses to tropical Atlantic SST
forcing from early to late winter, Clim. Dynam., 51, 2079–2096,
https://doi.org/10.1007/s00382-017-3998-x, 2017. a
Rao, J., Ren, R., Xia, X., Shi, C., and Guo, D.: Combined Impact of El
Niño-Southern Oscillation and Pacific Decadal Oscillation on the Northern
Winter Stratosphere, Atmosphere, 10, 211, https://doi.org/10.3390/atmos10040211, 2019. a
Rao, J., Garfinkel, C. I., and White, I. P.: Impact of the Quasi-Biennial
Oscillation on the Northern Winter Stratospheric Polar Vortex in CMIP5/6
Models, J. Climate, 33, 4787–4813, https://doi.org/10.1175/JCLI-D-19-0663.1,
2020. a
Richter, J., Deser, C., and Sun, L.: Effects of stratospheric variability on El
Niño teleconnections, Environ. Res. Lett., 10, 124021,
https://doi.org/10.1088/1748-9326/10/12/124021, 2015. a
Ridley, J. K., Blockley, E. W., Keen, A. B., Rae, J. G. L., West, A. E., and Schroeder, D.: The sea ice model component of HadGEM3-GC3.1, Geosci. Model Dev., 11, 713–723, https://doi.org/10.5194/gmd-11-713-2018, 2018. a
Rodionov, S. N., Overland, J. E., and Bond, N. A.: The Aleutian Low and
Winter Climatic Conditions in the Bering Sea. Part I: Classification,
J. Climate, 18, 160–177, https://doi.org/10.1175/JCLI3253.1, 2005. a, b
Santoso, A., Mcphaden, M. J., and Cai, W.: The Defining Characteristics of ENSO
Extremes and the Strong 2015/2016 El Niño, Rev. Geophys., 55,
1079–1129, https://doi.org/10.1002/2017RG000560, 2017. a
Scaife, A. A., Comer, R. E., Dunstone, N. J., Knight, J. R., Smith, D. M.,
MacLachlan, C., Martin, N., Peterson, K. A., Rowlands, D., Carroll, E. B.,
Belcher, S., and Slingo, J.: Tropical rainfall, Rossby waves and regional
winter climate predictions, Q. J. Roy. Meteor.
Soc., 143, 1–11, https://doi.org/10.1002/qj.2910, 2017. a, b
Schenzinger, V.: Tropical stratosphere variability and extratropical
teleconnections, PhD thesis, University of Oxford, Oxford, UK, 202 pp., 2016. a
Schimanke, S., Körper, J., Spangehl, T., and Cubasch, U.: Multi-decadal
variability of sudden stratospheric warmings in an AOGCM, Geophys.
Res. Lett., 38, 1–6, https://doi.org/10.1029/2010GL045756, 2011. a
Seviour, W. J. M.: Weakening and shift of the Arctic stratospheric polar
vortex: Internal variability or forced response?, Geophys. Res.
Lett., 44, 3365–3373, https://doi.org/10.1002/2017GL073071, 2017. a
Shindell, D. T., Miller, R. L., Schmidt, G. A., and Pandolfo, L.: Simulation of
recent northern winter climate trends by greenhouse-gas forcing, Nature, 399,
452–455, https://doi.org/10.1038/20905, 1999. a, b
Smith, K. L. and Kushner, P. J.: Linear interference and the initiation of
extratropical stratosphere-troposphere interactions, J. Geophys.
Res.-Atmos., 117, 13107, https://doi.org/10.1029/2012JD017587, 2012. a
Storkey, D., Blaker, A. T., Mathiot, P., Megann, A., Aksenov, Y., Blockley, E. W., Calvert, D., Graham, T., Hewitt, H. T., Hyder, P., Kuhlbrodt, T., Rae, J. G. L., and Sinha, B.: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions, Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018, 2018. a
Sugimoto, S. and Hanawa, K.: Decadal and Interdecadal Variations of the
Aleutian Low Activity and Their Relation to Upper Oceanic Variations over the
North Pacific, J. Meteorol. Soc. Jpn., 87,
601–614, https://doi.org/10.2151/jmsj.87.601, 2009. a
Taguchi, M. and Hartmann, D. L.: Increased Occurrence of Stratospheric
Sudden Warmings during El Niño as Simulated by WACCM, J. Climate,
19, 324–332, https://doi.org/10.1175/JCLI3655.1, 2006. a
Tang, Y., Rumbold, S., Ellis, R., Kelley, D., Mulcahy, J., Sellar, A., Walton, J., and Jones, C.: MOHC
UKESM1.0-LL model output prepared for CMIP6 CMIP piControl, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.6298, 2019. a
Thompson, D. W. J.: Stratospheric connection to northern hemisphere wintertime
weather: Implications for prediction, J. Climate, 16, 2433–2433,
2003. a
Tomassini, L., Gerber, E. P., Baldwin, M. P., Bunzel, F., and Giorgetta, M.:
The role of stratosphere-troposphere coupling in the occurrence of extreme
winter cold spells over northern Europe, J. Adv. Model.
Earth Sy., 4, M00A03, https://doi.org/10.1029/2012MS000177, 2012. a
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis,
B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477,
1998. a, b, c, d
Trenberth, K. and Hurrell, J.: Decadal Atmosphere-Ocean Variations in the
Pacific, Clim. Dynam., 9, 303–319, https://doi.org/10.1007/BF00204745, 1994. a
Trenberth, K. E. and Stepaniak, D. P.: Indices of El Niño Evolution, J. Climate, 14, 1697–1701, https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2, 2001. a
Tsuyoshi, N. and Shingo, Y.: Recent warming of tropical sea surface temperature
and its relationship to the northern hemisphere circulation, J.
Meteorol. Soc. Jpn., 67, 375–383, https://doi.org/10.2151/jmsj1965.67.3_375, 1989. a
Wallace, J. M., Panetta, R. L., and Estberg, J.: Representation of the
Equatorial Stratospheric Quasi-Biennial Oscillation in EOF Phase Space,
J. Atmos. Sci., 50, 1751–1762, https://doi.org/10.1175/1520-0469,
1993. a
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019.
a, b
Watson, P. A. and Gray, L. J.: How does the quasi-biennial oscillation affect
the stratospheric polar vortex?, J. Atmos. Sci., 71,
391–409, https://doi.org/10.1175/JAS-D-13-096.1, 2014. a
Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert, D.,
Comer, R., Davis, P., Graham, T., Hewitt, H. T., Hill, R., Hyder, P., Ineson,
S., Johns, T. C., Keen, A. B., Lee, R. W., Megann, A., Milton, S. F., Rae, J.
G. L., Roberts, M. J., Scaife, A. A., Schiemann, R., Storkey, D., Thorpe, L.,
Watterson, I. G., Walters, D. N., West, A., Wood, R. A., Woollings, T., and
Xavier, P. K.: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and
GC3.1) Configurations, J. Adv. Model. Earth Sy., 10,
357–380, https://doi.org/10.1002/2017MS001115, 2018. a
Woo, S.-H., Sung, M.-K., Son, S.-W., and Kug, J.-S.: Connection
between weak stratospheric vortex events and the Pacific Decadal
Oscillation, Clim. Dynam., 45, 3481–3492,
https://doi.org/10.1007/s00382-015-2551-z, 2015. a, b, c, d
Yang, M. and Yu, Y.: Attribution of variations in the quasi-biennial
oscillation period from the duration of easterly and westerly phases, Clim.
Dynam., 47, 1943–1959, https://doi.org/10.1007/s00382-015-2943-0, 2016. a
Yool, A., Popova, E. E., and Anderson, T. R.: MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies, Geosci. Model Dev., 6, 1767–1811, https://doi.org/10.5194/gmd-6-1767-2013, 2013. a
Yool, A., Palmiéri, J., Jones, C. G., Sellar, A. A., de Mora, L., Kuhlbrodt,
T., Popova, E. E., Mulcahy, J. P., Wiltshire, A., Rumbold, S. T., Stringer,
M., Hill, R. S. R., Tang, Y., Walton, J., Blaker, A., Nurser, A. J. G.,
Coward, A. C., Hirschi, J., Woodward, S., Kelley, D. I., Ellis, R., and
Rumbold-Jones, S.: Spin-up of UK Earth System Model 1 (UKESM1) for CMIP6,
J. Adv. Model. Earth Sy., 12, e2019MS001933,
https://doi.org/10.1029/2019MS001933, 2020. a
Zhang, Y., Wallace, J. M., and Battisti, D. S.: ENSO-like Interdecadal
Variability: 1900–93, J. Climate, 10, 1004–1020,
https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2, 1997. a
Short summary
Observations of the stratosphere span roughly half a century, preventing analysis of multi-decadal variability in circulation using these data. Instead, we rely on long simulations of climate models. Here, we use a model to examine variations in northern polar stratospheric winds and find they vary with a period of around 90 years. We show that this is possibly due to variations in the size of winds over the Equator. This result may improve understanding of Equator–polar stratospheric coupling.
Observations of the stratosphere span roughly half a century, preventing analysis of...