Articles | Volume 3, issue 1
https://doi.org/10.5194/wcd-3-377-2022
https://doi.org/10.5194/wcd-3-377-2022
Research article
 | 
01 Apr 2022
Research article |  | 01 Apr 2022

Impact of climate change on wintertime European atmospheric blocking

Sara Bacer, Fatima Jomaa, Julien Beaumet, Hubert Gallée, Enzo Le Bouëdec, Martin Ménégoz, and Chantal Staquet

Related authors

Impact of climate change on persistent cold-air pools in an alpine valley during the 21st century
Sara Bacer, Julien Beaumet, Martin Ménégoz, Hubert Gallée, Enzo Le Bouëdec, and Chantal Staquet
Weather Clim. Dynam., 5, 211–229, https://doi.org/10.5194/wcd-5-211-2024,https://doi.org/10.5194/wcd-5-211-2024, 2024
Short summary
Numerical simulation of the impact of COVID-19 lockdown on tropospheric composition and aerosol radiative forcing in Europe
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022,https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Influence of aromatics on tropospheric gas-phase composition
Domenico Taraborrelli, David Cabrera-Perez, Sara Bacer, Sergey Gromov, Jos Lelieveld, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 21, 2615–2636, https://doi.org/10.5194/acp-21-2615-2021,https://doi.org/10.5194/acp-21-2615-2021, 2021
Short summary
Cold cloud microphysical process rates in a global chemistry–climate model
Sara Bacer, Sylvia C. Sullivan, Odran Sourdeval, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 21, 1485–1505, https://doi.org/10.5194/acp-21-1485-2021,https://doi.org/10.5194/acp-21-1485-2021, 2021
Short summary
Weaker cooling by aerosols due to dust–pollution interactions
Klaus Klingmüller, Vlassis A. Karydis, Sara Bacer, Georgiy L. Stenchikov, and Jos Lelieveld
Atmos. Chem. Phys., 20, 15285–15295, https://doi.org/10.5194/acp-20-15285-2020,https://doi.org/10.5194/acp-20-15285-2020, 2020
Short summary

Related subject area

Role of atmospheric dynamics in climate change projections
Impact of climate change on persistent cold-air pools in an alpine valley during the 21st century
Sara Bacer, Julien Beaumet, Martin Ménégoz, Hubert Gallée, Enzo Le Bouëdec, and Chantal Staquet
Weather Clim. Dynam., 5, 211–229, https://doi.org/10.5194/wcd-5-211-2024,https://doi.org/10.5194/wcd-5-211-2024, 2024
Short summary
Future changes in North Atlantic winter cyclones in CESM-LE – Part 2: A Lagrangian analysis
Edgar Dolores-Tesillos and Stephan Pfahl
Weather Clim. Dynam., 5, 163–179, https://doi.org/10.5194/wcd-5-163-2024,https://doi.org/10.5194/wcd-5-163-2024, 2024
Short summary
Atmospheric bias teleconnections in boreal winter associated with systematic sea surface temperature errors in the tropical Indian Ocean
Yuan-Bing Zhao, Nedjeljka Žagar, Frank Lunkeit, and Richard Blender
Weather Clim. Dynam., 4, 833–852, https://doi.org/10.5194/wcd-4-833-2023,https://doi.org/10.5194/wcd-4-833-2023, 2023
Short summary
The relationship between extra-tropical cyclone intensity and precipitation in idealised current and future climates
Victoria A. Sinclair and Jennifer L. Catto
Weather Clim. Dynam., 4, 567–589, https://doi.org/10.5194/wcd-4-567-2023,https://doi.org/10.5194/wcd-4-567-2023, 2023
Short summary
Future changes in the mean and variability of extreme rainfall indices over the Guinea coast and role of the Atlantic equatorial mode
Koffi Worou, Thierry Fichefet, and Hugues Goosse
Weather Clim. Dynam., 4, 511–530, https://doi.org/10.5194/wcd-4-511-2023,https://doi.org/10.5194/wcd-4-511-2023, 2023
Short summary

Cited articles

Barnes, E. A., Dunn-Sigouin, E., Masato, G., and Woollings, T.: Exploring recent trends in Northern Hemisphere blocking, Geophys. Res. Lett., 41, 638–644, https://doi.org/10.1002/2013GL058745, 2014. a, b
Barriopedro, D., García-Herrera, R., Lupo, A. R., and Hernández, E.: A Climatology of Northern Hemisphere Blocking, J. Climate, 19, 1042–1063, https://doi.org/10.1175/JCLI3678.1, 2006. a, b, c, d, e, f, g
Barriopedro, D., García-Herrera, R., and Trigo, R. M.: Application of blocking diagnosis methods to General Circulation Models. Part I: a novel detection scheme, Clim. Dynam., 35, 1373–1391, https://doi.org/10.1007/s00382-010-0767-5, 2010. a, b, c
Berckmans, J., Woollings, T., Demory, M.-E., Vidale, P.-L., and Roberts, M.: Atmospheric blocking in a high resolution climate model: influences of mean state, orography and eddy forcing, Atmos. Sci. Lett., 14, 34–40, https://doi.org/10.1002/asl2.412, 2013. a, b
Boé, J. and Terray, L.: A Weather-Type Approach to Analyzing Winter Precipitation in France: Twentieth-Century Trends and the Role of Anthropogenic Forcing, J. Climate, 21, 3118–3133, https://doi.org/10.1175/2007JCLI1796.1, 2008. a
Download
Short summary
We study the impact of climate change on wintertime atmospheric blocking over Europe. We focus on the frequency, duration, and size of blocking events. The blocking events are identified via the weather type decomposition methodology. We find that blocking frequency, duration, and size are mostly stationary over the 21st century. Additionally, we compare the blocking size results with the size of the blocking events identified via a different approach using a blocking index.