Articles | Volume 3, issue 1
https://doi.org/10.5194/wcd-3-377-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-3-377-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of climate change on wintertime European atmospheric blocking
Sara Bacer
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000 Grenoble, France
Fatima Jomaa
Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000 Grenoble, France
now at: Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Julien Beaumet
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Hubert Gallée
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Enzo Le Bouëdec
Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000 Grenoble, France
Martin Ménégoz
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Chantal Staquet
Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000 Grenoble, France
Related authors
Sara Bacer, Julien Beaumet, Martin Ménégoz, Hubert Gallée, Enzo Le Bouëdec, and Chantal Staquet
Weather Clim. Dynam., 5, 211–229, https://doi.org/10.5194/wcd-5-211-2024, https://doi.org/10.5194/wcd-5-211-2024, 2024
Short summary
Short summary
A model chain is used to downscale outputs from a climate model to the Grenoble valley atmosphere over the 21st century in order to study the impact of climate change on persistent cold-air pool episodes. We find that the atmosphere in the Grenoble valleys during these episodes tends to be slightly less stable in the future under the SSP5–8.5 scenario, and statistically unchanged under the SSP2–4.5 scenario but that very stable persistent cold-air pool episodes can still form.
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
Domenico Taraborrelli, David Cabrera-Perez, Sara Bacer, Sergey Gromov, Jos Lelieveld, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 21, 2615–2636, https://doi.org/10.5194/acp-21-2615-2021, https://doi.org/10.5194/acp-21-2615-2021, 2021
Short summary
Short summary
Atmospheric pollutants from anthropogenic activities and biomass burning are usually regarded as ozone precursors. Monocyclic aromatics are no exception. Calculations with a comprehensive atmospheric model are consistent with this view but only for air masses close to pollution source regions. However, the same model predicts that aromatics, when transported to remote areas, may effectively destroy ozone. This loss of tropospheric ozone rivals the one attributed to bromine.
Sara Bacer, Sylvia C. Sullivan, Odran Sourdeval, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 21, 1485–1505, https://doi.org/10.5194/acp-21-1485-2021, https://doi.org/10.5194/acp-21-1485-2021, 2021
Short summary
Short summary
We investigate the relative importance of the rates of both microphysical processes and unphysical correction terms that act as sources or sinks of ice crystals in cold clouds. By means of numerical simulations performed with a global chemistry–climate model, we assess the relevance of these rates at global and regional scales. This estimation is of fundamental importance to assign priority to the development of microphysics parameterizations and compare model output with observations.
Ian Castellanos, Martin Ménégoz, Juliette Blanchet, Julien Beaumet, Hubert Gallée, Eduardo Moreno-Chamarro, Chantal Staquet, and Xavier Fettweis
EGUsphere, https://doi.org/10.5194/egusphere-2025-6211, https://doi.org/10.5194/egusphere-2025-6211, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
The Alps host glaciers, distinct ecosystems, socio-economic interests and water resources that are being impacted by climate change. In this study, we aim at understanding how warming occurs in the Alps in projected scenarios and what physical processes drive it. We find under these scenarios that elevations around the snowline will warm faster than elsewhere, because snow retreats to higher elevations. Indeed, snow slows down warming due to its high albedo and the energy consumed to melt it.
Caroline Legrand, Benoît Hingray, Bruno Wilhelm, and Martin Ménégoz
Hydrol. Earth Syst. Sci., 28, 2139–2166, https://doi.org/10.5194/hess-28-2139-2024, https://doi.org/10.5194/hess-28-2139-2024, 2024
Short summary
Short summary
Climate change is expected to increase flood hazard worldwide. The evolution is typically estimated from multi-model chains, where regional hydrological scenarios are simulated from weather scenarios derived from coarse-resolution atmospheric outputs of climate models. We show that two such chains are able to reproduce, from an atmospheric reanalysis, the 1902–2009 discharge variations and floods of the upper Rhône alpine river, provided that the weather scenarios are bias-corrected.
Sara Bacer, Julien Beaumet, Martin Ménégoz, Hubert Gallée, Enzo Le Bouëdec, and Chantal Staquet
Weather Clim. Dynam., 5, 211–229, https://doi.org/10.5194/wcd-5-211-2024, https://doi.org/10.5194/wcd-5-211-2024, 2024
Short summary
Short summary
A model chain is used to downscale outputs from a climate model to the Grenoble valley atmosphere over the 21st century in order to study the impact of climate change on persistent cold-air pool episodes. We find that the atmosphere in the Grenoble valleys during these episodes tends to be slightly less stable in the future under the SSP5–8.5 scenario, and statistically unchanged under the SSP2–4.5 scenario but that very stable persistent cold-air pool episodes can still form.
Mickaël Lalande, Martin Ménégoz, Gerhard Krinner, Catherine Ottlé, and Frédérique Cheruy
The Cryosphere, 17, 5095–5130, https://doi.org/10.5194/tc-17-5095-2023, https://doi.org/10.5194/tc-17-5095-2023, 2023
Short summary
Short summary
This study investigates the impact of topography on snow cover parameterizations using models and observations. Parameterizations without topography-based considerations overestimate snow cover. Incorporating topography reduces snow overestimation by 5–10 % in mountains, in turn reducing cold biases. However, some biases remain, requiring further calibration and more data. Assessing snow cover parameterizations is challenging due to limited and uncertain data in mountainous regions.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
Christoph Kittel, Charles Amory, Stefan Hofer, Cécile Agosta, Nicolas C. Jourdain, Ella Gilbert, Louis Le Toumelin, Étienne Vignon, Hubert Gallée, and Xavier Fettweis
The Cryosphere, 16, 2655–2669, https://doi.org/10.5194/tc-16-2655-2022, https://doi.org/10.5194/tc-16-2655-2022, 2022
Short summary
Short summary
Model projections suggest large differences in future Antarctic surface melting even for similar greenhouse gas scenarios and warming rates. We show that clouds containing a larger amount of liquid water lead to stronger melt. As surface melt can trigger the collapse of the ice shelves (the safety band of the Antarctic Ice Sheet), clouds could be a major source of uncertainties in projections of sea level rise.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Mickaël Lalande, Martin Ménégoz, Gerhard Krinner, Kathrin Naegeli, and Stefan Wunderle
Earth Syst. Dynam., 12, 1061–1098, https://doi.org/10.5194/esd-12-1061-2021, https://doi.org/10.5194/esd-12-1061-2021, 2021
Short summary
Short summary
Climate change over High Mountain Asia is investigated with CMIP6 climate models. A general cold bias is found in this area, often related to a snow cover overestimation in the models. Ensemble experiments generally encompass the past observed trends, suggesting that even biased models can reproduce the trends. Depending on the future scenario, a warming from 1.9 to 6.5 °C, associated with a snow cover decrease and precipitation increase, is expected at the end of the 21st century.
Julien Beaumet, Michel Déqué, Gerhard Krinner, Cécile Agosta, Antoinette Alias, and Vincent Favier
The Cryosphere, 15, 3615–3635, https://doi.org/10.5194/tc-15-3615-2021, https://doi.org/10.5194/tc-15-3615-2021, 2021
Short summary
Short summary
We use empirical run-time bias correction (also called flux correction) to correct the systematic errors of the ARPEGE atmospheric climate model. When applying the method to future climate projections, we found a lesser poleward shift and an intensification of the maximum of westerly winds present in the southern high latitudes. This yields a significant additional warming of +0.6 to +0.9 K of the Antarctic Ice Sheet with respect to non-corrected control projections using the RCP8.5 scenario.
Louis Le Toumelin, Charles Amory, Vincent Favier, Christoph Kittel, Stefan Hofer, Xavier Fettweis, Hubert Gallée, and Vinay Kayetha
The Cryosphere, 15, 3595–3614, https://doi.org/10.5194/tc-15-3595-2021, https://doi.org/10.5194/tc-15-3595-2021, 2021
Short summary
Short summary
Snow is frequently eroded from the surface by the wind in Adelie Land (Antarctica) and suspended in the lower atmosphere. By performing model simulations, we show firstly that suspended snow layers interact with incoming radiation similarly to a near-surface cloud. Secondly, suspended snow modifies the atmosphere's thermodynamic structure and energy exchanges with the surface. Our results suggest snow transport by the wind should be taken into account in future model studies over the region.
Domenico Taraborrelli, David Cabrera-Perez, Sara Bacer, Sergey Gromov, Jos Lelieveld, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 21, 2615–2636, https://doi.org/10.5194/acp-21-2615-2021, https://doi.org/10.5194/acp-21-2615-2021, 2021
Short summary
Short summary
Atmospheric pollutants from anthropogenic activities and biomass burning are usually regarded as ozone precursors. Monocyclic aromatics are no exception. Calculations with a comprehensive atmospheric model are consistent with this view but only for air masses close to pollution source regions. However, the same model predicts that aromatics, when transported to remote areas, may effectively destroy ozone. This loss of tropospheric ozone rivals the one attributed to bromine.
Marion Donat-Magnin, Nicolas C. Jourdain, Christoph Kittel, Cécile Agosta, Charles Amory, Hubert Gallée, Gerhard Krinner, and Mondher Chekki
The Cryosphere, 15, 571–593, https://doi.org/10.5194/tc-15-571-2021, https://doi.org/10.5194/tc-15-571-2021, 2021
Short summary
Short summary
We simulate the West Antarctic climate in 2100 under increasing greenhouse gases. Future accumulation over the ice sheet increases, which reduces sea level changing rate. Surface ice-shelf melt rates increase until 2100. Some ice shelves experience a lot of liquid water at their surface, which indicates potential ice-shelf collapse. In contrast, no liquid water is found over other ice shelves due to huge amounts of snowfall that bury liquid water, favouring refreezing and ice-shelf stability.
Sara Bacer, Sylvia C. Sullivan, Odran Sourdeval, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 21, 1485–1505, https://doi.org/10.5194/acp-21-1485-2021, https://doi.org/10.5194/acp-21-1485-2021, 2021
Short summary
Short summary
We investigate the relative importance of the rates of both microphysical processes and unphysical correction terms that act as sources or sinks of ice crystals in cold clouds. By means of numerical simulations performed with a global chemistry–climate model, we assess the relevance of these rates at global and regional scales. This estimation is of fundamental importance to assign priority to the development of microphysics parameterizations and compare model output with observations.
Cited articles
Barnes, E. A., Dunn-Sigouin, E., Masato, G., and Woollings, T.: Exploring
recent trends in Northern Hemisphere blocking, Geophys. Res. Lett.,
41, 638–644, https://doi.org/10.1002/2013GL058745, 2014. a, b
Barriopedro, D., García-Herrera, R., and Trigo, R. M.: Application of
blocking diagnosis methods to General Circulation Models. Part I: a novel
detection scheme, Clim. Dynam., 35, 1373–1391,
https://doi.org/10.1007/s00382-010-0767-5, 2010. a, b, c
Berckmans, J., Woollings, T., Demory, M.-E., Vidale, P.-L., and Roberts, M.:
Atmospheric blocking in a high resolution climate model: influences of mean
state, orography and eddy forcing, Atmos. Sci. Lett., 14, 34–40,
https://doi.org/10.1002/asl2.412, 2013. a, b
Boé, J. and Terray, L.: A Weather-Type Approach to Analyzing Winter
Precipitation in France: Twentieth-Century Trends and the Role of
Anthropogenic Forcing, J. Climate, 21, 3118–3133,
https://doi.org/10.1175/2007JCLI1796.1, 2008. a
Cassou, C.: Intraseasonal interaction between the Madden–Julian Oscillation
and the North Atlantic Oscillation, Nature, 455, 523–527,
https://doi.org/10.1038/nature07286, 2008. a, b, c, d
Cassou, C., Terray, L., Hurrell, J. W., and Deser, C.: North Atlantic Winter
Climate Regimes: Spatial Asymmetry, Stationarity with Time, and Oceanic
Forcing, J. Clim., 17, 1055–1068,
https://doi.org/10.1175/1520-0442(2004)017<1055:NAWCRS>2.0.CO;2, 2004. a
Cassou, C., Terray, L., and Phillips, A.: Tropical Atlantic Influence on
European Heat Waves, J. Clim., 18, 2805–2811,
https://doi.org/10.1175/JCLI3506.1, 2005. a
Cheung, H., Zhou, W., Mok, H., Wu, M., and Shao, Y.: Revisiting the climatology
of atmospheric blocking in the Northern Hemisphere, Adv. Atmos. Sci., 30,
397–410, https://doi.org/10.1007/s00376-012-2006-y, 2013. a, b
Chhin, R. and Yoden, S.: Ranking CMIP5 GCMs for Model Ensemble Selection on
Regional Scale: Case Study of the Indochina Region, J. Geophys.
Res.-Atmos., 123, 8949–8974, https://doi.org/10.1029/2017JD028026, 2018. a
Chung, C. and Nigam, S.: Weighting of geophysical data in Principal Component
Analysis, J. Geophys. Res.-Atmos., 104,
16925–16928, https://doi.org/10.1029/1999JD900234, 1999. a
Cortesi, N., Torralba, V., Gonzáez-Reviriego, N., Soret, A., and
J.Doblas-Reyes, F.: Characterization of European wind speed variability using
weather regimes, Clim. Dynam., 53, 4961–4976,
https://doi.org/10.1007/s00382-019-04839-5, 2019. a
Davini, P., Cagnazzo, C., and Anstey, J. A.: A blocking view of the
stratosphere-troposphere coupling, J. Geophys. Res.-Atmos., 119, 11100–11115, https://doi.org/10.1002/2014JD021703, 2014. a
Davini, P., Corti, S., D'Andrea, F., Rivière, G., and von Hardenberg, J.:
Improved Winter European Atmospheric Blocking Frequencies in High-Resolution
Global Climate Simulations, J. Adv. Model. Earth Syst., 9,
2615–2634, https://doi.org/10.1002/2017MS001082, 2017. a
Dole, R. M. and Gordon, N. D.: Persistent Anomalies of the Extratropical
Northern Hemisphere Wintertime Circulation: Geographical Distribution and
Regional Persistence Characteristics, Mon. Weather Rev., 111,
1567–1586, https://doi.org/10.1175/1520-0493(1983)111<1567:PAOTEN>2.0.CO;2, 1983. a, b, c, d
Dorrington, J. and Strommen, K. J.: Jet Speed Variability Obscures
Euro-Atlantic Regime Structure, Geophys. Res. Lett., 47,
e2020GL087907, https://doi.org/10.1029/2020GL087907, 2020. a, b
Dorrington, J., Strommen, K., and Fabiano, F.: How well does CMIP6 capture the dynamics of Euro-Atlantic weather regimes, and why?, Weather Clim. Dynam. Discuss. [preprint], https://doi.org/10.5194/wcd-2021-71, in review, 2021. a
Drouard, M. and Woollings, T.: Contrasting Mechanisms of Summer Blocking Over
Western Eurasia, Geophys. Res. Lett., 45, 12040–12048,
https://doi.org/10.1029/2018GL079894, 2018. a
Dunn-Sigouin, E., Son, S.-W., and Lin, H.: Evaluation of Northern Hemisphere
Blocking Climatology in the Global Environment Multiscale Model, Mon.
Weather Rev., 141, 707–727, https://doi.org/10.1175/MWR-D-12-00134.1, 2013. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Falkena, S. K., de Wiljes, J., Weisheimer, A., and Shepherd, T. G.: Revisiting
the identification of wintertime atmospheric circulation regimes in the
Euro-Atlantic sector, Q. J. Roy. Meteorol. Soc.,
146, 2801–2814, https://doi.org/10.1002/qj.3818, 2020. a
Francis, J. A. and Vavrus, S. J.: Evidence linking Arctic amplification to
extreme weather in mid-latitudes, Geophys. Res. Lett., 39, 6,
https://doi.org/10.1029/2012GL051000, 2012. a
Hausfather, Z. and Peters, G.: Emissions – the 'businessas usual' story is
misleading, Nature, 577, 618–620, https://doi.org/10.1038/d41586-020-00177-3, 2020. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteorol. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hertig, E. and Jacobeit, J.: Variability of weather regimes in the North
Atlantic-European area: past and future, Atmos. Sci. Lett., 15,
314–320, https://doi.org/10.1002/asl2.505, 2014. a, b
Hou, P. and Wu, S.: Long-term Changes in Extreme Air Pollution Meteorology and
the Implications for Air Quality, Sci. Rep., 6, 23792,
https://doi.org/10.1038/srep23792, 2016. a
Huguenin, M. F., Fischer, E. M., Kotlarski, S., Scherrer, S. C., Schwierz, C.,
and Knutti, R.: Lack of Change in the Projected Frequency and Persistence of
Atmospheric Circulation Types Over Central Europe, Geophys. Res.
Lett., 47, 9, https://doi.org/10.1029/2019GL086132, 2020. a, b, c
Jiménez, P. A., González-Rouco, J., Montávez, J.,
García-Bustamante, E., and Navarro, J.: Climatology of wind patterns in
the northeast of the Iberian Peninsula, Int. J. Climatol.,
29, 501–525, https://doi.org/10.1002/joc.1705, 2009. a
Kautz, L.-A., Martius, O., Pfahl, S., Pinto, J. G., Ramos, A. M., Sousa, P. M., and Woollings, T.: Atmospheric Blocking and Weather Extremes over the Euro-Atlantic Sector – A Review, Weather Clim. Dynam. Discuss. [preprint], https://doi.org/10.5194/wcd-2021-56, in review, 2021. a
Khan, N., Shahid, S., Ahmed, K., Wang, X., Ali, R., Ismail, T., and Nawaz, N.:
Selection of GCMs for the projection of spatial distribution of heat waves in
Pakistan, Atmos. Res., 233, 104688,
https://doi.org/10.1016/j.atmosres.2019.104688, 2020. a
Largeron, Y. and Staquet, C.: Persistent inversion dynamics and wintertime
PM10 air pollution in Alpine valleys, Atmos. Environ., 135,
92–108, https://doi.org/10.1016/j.atmosenv.2016.03.045, 2016. a
Lee, D. Y. and Ahn, J.-B.: Future change in the frequency and intensity of
wintertime North Pacific blocking in CMIP5 models, Int. J.
Climatol., 37, 2765–2781, https://doi.org/10.1002/joc.4878, 2017. a
Lupo, A., Jensen, A., Mokhov, I., Timazhev, A., Eichler, T., and Efe, B.:
Changes in Global Blocking Character in Recent Decades, Atmosphere, 10,
92, https://doi.org/10.3390/atmos10020092, 2019. a, b, c
Masato, G., Hoskins, B. J., and Woollings, T.: Winter and Summer Northern
Hemisphere Blocking in CMIP5 Models, J. Clim., 26, 7044–7059,
https://doi.org/10.1175/JCLI-D-12-00466.1, 2013. a, b
Masato, G., Woollings, T., and Hoskins, B. J.: Structure and impact of
atmospheric blocking over the Euro-Atlantic region in present-day and future
simulations, Geophys. Res. Lett., 41, 1051–1058,
https://doi.org/10.1002/2013GL058570, 2014. a, b, c
Matsueda, M. and Endo, H.: The robustness of future changes in Northern
Hemisphere blocking: A large ensemble projection with multiple sea surface
temperature patterns, Geophys. Res. Lett., 44, 5158–5166,
https://doi.org/10.1002/2017GL073336, 2017. a, b, c, d
Matsueda, M., Mizuta, R., and Kusunoki, S.: Future change in wintertime
atmospheric blocking simulated using a 20-km-mesh atmospheric global
circulation model, J. Geophys. Res.-Atmos., 114, D12114,
https://doi.org/10.1029/2009JD011919, 2009. a, b, c
Ménégoz, M., Cassou, C., Swingedouw, D., Ruprich-Robert, Y.,
Bretonniére, P.-A., and Doblas-Reyes, D.: Role of the Atlantic
Multidecadal Variability in modulating the climate response to a
Pinatubo-like volcanic eruption, Clim. Dynam., 51, 1863–1883,
https://doi.org/10.1007/s00382-017-3986-1, 2018. a
Michelangeli, P.-A., Vautard, R., and Legras, B.: Weather Regimes: Recurrence
and Quasi Stationarity, J. Atmos. Sci., 52, 1237–1256,
https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2, 1995. a, b, c
Mokhov, I. and Timazhev, A.: Atmospheric Blocking and Changes in its Frequency
in the 21st Century Simulated with the Ensemble of Climate Models, Russ.
Meteorol. Hydrol, 44, 369–377, https://doi.org/10.3103/S1068373919060013, 2019. a
Mokhov, I., Akperov, M., Prokofyeva, M., Timazhev, A., Lupo, A., and Le Treut,
H.: Blockings in the Northern Hemisphere and EuroAtlantic Region:Estimates of
Changes from Reanalysis Data and Model Simulations, Dokl. Earth Sci.,
449, 430–433, https://doi.org/10.1134/S1028334X13040144, 2013. a, b
Mokhov, I. I., Timazhev, A. V., and Lupo, A. R.: Changes in atmospheric
blocking characteristics within Euro-Atlantic region and Northern Hemisphere
as a whole in the 21st century from model simulations using RCP anthropogenic
scenarios, Global Planet. Change, 122, 265–270,
https://doi.org/10.1016/j.gloplacha.2014.09.004, 2014. a, b, c, d
Munoz, C., Schultz, D., and Vaughan, G.: A Midlatitude Climatology and
Interannual Variability of 200- and 500-hPa Cut-Off Lows, J. Clim.,
33, 2201–2222, https://doi.org/10.1175/JCLI-D-19-0497.1, 2020. a
Philipp, A., Beck, C., Huth, R., and Jacobeit, J.: Development and comparison
of circulation type classifications using the COST 733 dataset and software,
Int. J. Climatol., 36, 2673–2691, https://doi.org/10.1002/joc.3920,
2016. a
Pinheiro, M., Ullrich, P., and Grotjahn, R.: Atmospheric blocking and
intercomparison of objective detection methods: flow field characteristics,
Clim. Dynam., 53, 4189–4216, https://doi.org/10.1007/s00382-019-04782-5, 2019. a
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp,
A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S.,
Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da
Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D.,
Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G.,
Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M.,
Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A.,
and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land use,
and greenhouse gas emissions implications: An overview, Global Environ.
Change, 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017. a
Russo, A., Trigo, R. M., Martins, H., and Mendes, M. T.: NO2, PM10 and O3 urban
concentrations and its association with circulation weather types in
Portugal, Atmos. Environ., 89, 768–785,
https://doi.org/10.1016/j.atmosenv.2014.02.010, 2014. a
Sáenz, F. and Durán-Quesada, A.: A climatology of low level windregimes
over Central America using aweather type classification approach, Front.
Earth Sci., 3, 15, https://doi.org/10.3389/feart.2015.00015, 2015.
a
Schiemann, R., Demory, M., Shaffrey, L. C., Strachan, J., Vidale, P. L.,
Mizielinski, M. S., Roberts, M. J., Matsueda, M., Wehner, M. F., and Jung,
T.: The Resolution Sensitivity of Northern Hemisphere Blocking in Four 25-km
Atmospheric Global Circulation Models, J. Clim., 30, 337–358,
https://doi.org/10.1175/JCLI-D-16-0100.1, 2017. a
Sillmann, J. and Croci-Maspoli, M.: Present and future atmospheric blocking and
its impact on European mean and extreme climate, Geophys. Res.
Lett., 36, 10, https://doi.org/10.1029/2009GL038259, 2009. a, b, c
Tibaldi, S. and Molteni, F.: On the operational predictability of blocking,
Tellus A, 42, 343–365, https://doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x, 1990. a
Whiteman, C. D.: Breakup of Temperature Inversions in Deep Mountain Valleys:
Part I. Observations, J. Appl. Meteorol., 21, 270–289,
https://doi.org/10.1175/1520-0450(1982)021<0270:BOTIID>2.0.CO;2, 1982. a
Wiedenmann, J. M., Lupo, A. R., Mokhov, I. I., and Tikhonova, E. A.: The
Climatology of Blocking Anticyclones for the Northern and Southern
Hemispheres: Block Intensity as a Diagnostic, J. Clim., 15,
3459–3473, https://doi.org/10.1175/1520-0442(2002)015<3459:TCOBAF>2.0.CO;2, 2002. a, b
Woollings, T., Barriopedro, D., Methven, J., Son, S.-W., Martius, O., Harvey,
B., Sillmann, J., Lupo, A. R., and Seneviratne, S.: Blocking and its Response
to Climate Change, Curr. Clim. Change Rep., 4, 287–300,
https://doi.org/10.1007/s40641-018-0108-z, 2018. a, b, c, d
Short summary
We study the impact of climate change on wintertime atmospheric blocking over Europe. We focus on the frequency, duration, and size of blocking events. The blocking events are identified via the weather type decomposition methodology. We find that blocking frequency, duration, and size are mostly stationary over the 21st century. Additionally, we compare the blocking size results with the size of the blocking events identified via a different approach using a blocking index.
We study the impact of climate change on wintertime atmospheric blocking over Europe. We focus...