Articles | Volume 3, issue 1
Weather Clim. Dynam., 3, 377–389, 2022
https://doi.org/10.5194/wcd-3-377-2022
Weather Clim. Dynam., 3, 377–389, 2022
https://doi.org/10.5194/wcd-3-377-2022
Research article
01 Apr 2022
Research article | 01 Apr 2022

Impact of climate change on wintertime European atmospheric blocking

Sara Bacer et al.

Related authors

Influence of aromatics on tropospheric gas-phase composition
Domenico Taraborrelli, David Cabrera-Perez, Sara Bacer, Sergey Gromov, Jos Lelieveld, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 21, 2615–2636, https://doi.org/10.5194/acp-21-2615-2021,https://doi.org/10.5194/acp-21-2615-2021, 2021
Short summary
Cold cloud microphysical process rates in a global chemistry–climate model
Sara Bacer, Sylvia C. Sullivan, Odran Sourdeval, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 21, 1485–1505, https://doi.org/10.5194/acp-21-1485-2021,https://doi.org/10.5194/acp-21-1485-2021, 2021
Short summary
Weaker cooling by aerosols due to dust–pollution interactions
Klaus Klingmüller, Vlassis A. Karydis, Sara Bacer, Georgiy L. Stenchikov, and Jos Lelieveld
Atmos. Chem. Phys., 20, 15285–15295, https://doi.org/10.5194/acp-20-15285-2020,https://doi.org/10.5194/acp-20-15285-2020, 2020
Short summary
Global modeling of fungal spores with the EMAC chemistryclimate model: uncertainties in emission parametrizations and observations
Meryem Tanarhte, Sara Bacer, Susannah M. Burrows, J. Alex Huffman, Kyle M. Pierce, Andrea Pozzer, Roland Sarda-Estève, Nicole J. Savage, and Jos Lelieveld
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-251,https://doi.org/10.5194/acp-2019-251, 2019
Publication in ACP not foreseen
Short summary
Implementation of a comprehensive ice crystal formation parameterization for cirrus and mixed-phase clouds in the EMAC model (based on MESSy 2.53)
Sara Bacer, Sylvia C. Sullivan, Vlassis A. Karydis, Donifan Barahona, Martina Krämer, Athanasios Nenes, Holger Tost, Alexandra P. Tsimpidi, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 11, 4021–4041, https://doi.org/10.5194/gmd-11-4021-2018,https://doi.org/10.5194/gmd-11-4021-2018, 2018
Short summary

Related subject area

Role of atmospheric dynamics in climate change projections
Future changes in North Atlantic winter cyclones in CESM-LE – Part 1: Cyclone intensity, potential vorticity anomalies, and horizontal wind speed
Edgar Dolores-Tesillos, Franziska Teubler, and Stephan Pfahl
Weather Clim. Dynam., 3, 429–448, https://doi.org/10.5194/wcd-3-429-2022,https://doi.org/10.5194/wcd-3-429-2022, 2022
Short summary
Twenty-first-century Southern Hemisphere impacts of ozone recovery and climate change from the stratosphere to the ocean
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171, https://doi.org/10.5194/wcd-3-139-2022,https://doi.org/10.5194/wcd-3-139-2022, 2022
Short summary
Future summer warming pattern under climate change is affected by lapse-rate changes
Roman Brogli, Silje Lund Sørland, Nico Kröner, and Christoph Schär
Weather Clim. Dynam., 2, 1093–1110, https://doi.org/10.5194/wcd-2-1093-2021,https://doi.org/10.5194/wcd-2-1093-2021, 2021
Short summary
The importance of horizontal model resolution on simulated precipitation in Europe – from global to regional models
Gustav Strandberg and Petter Lind
Weather Clim. Dynam., 2, 181–204, https://doi.org/10.5194/wcd-2-181-2021,https://doi.org/10.5194/wcd-2-181-2021, 2021
Short summary
Future wintertime meridional wind trends through the lens of subseasonal teleconnections
Dor Sandler and Nili Harnik
Weather Clim. Dynam., 1, 427–443, https://doi.org/10.5194/wcd-1-427-2020,https://doi.org/10.5194/wcd-1-427-2020, 2020
Short summary

Cited articles

Barnes, E. A., Dunn-Sigouin, E., Masato, G., and Woollings, T.: Exploring recent trends in Northern Hemisphere blocking, Geophys. Res. Lett., 41, 638–644, https://doi.org/10.1002/2013GL058745, 2014. a, b
Barriopedro, D., García-Herrera, R., Lupo, A. R., and Hernández, E.: A Climatology of Northern Hemisphere Blocking, J. Climate, 19, 1042–1063, https://doi.org/10.1175/JCLI3678.1, 2006. a, b, c, d, e, f, g
Barriopedro, D., García-Herrera, R., and Trigo, R. M.: Application of blocking diagnosis methods to General Circulation Models. Part I: a novel detection scheme, Clim. Dynam., 35, 1373–1391, https://doi.org/10.1007/s00382-010-0767-5, 2010. a, b, c
Berckmans, J., Woollings, T., Demory, M.-E., Vidale, P.-L., and Roberts, M.: Atmospheric blocking in a high resolution climate model: influences of mean state, orography and eddy forcing, Atmos. Sci. Lett., 14, 34–40, https://doi.org/10.1002/asl2.412, 2013. a, b
Boé, J. and Terray, L.: A Weather-Type Approach to Analyzing Winter Precipitation in France: Twentieth-Century Trends and the Role of Anthropogenic Forcing, J. Climate, 21, 3118–3133, https://doi.org/10.1175/2007JCLI1796.1, 2008. a
Download
Short summary
We study the impact of climate change on wintertime atmospheric blocking over Europe. We focus on the frequency, duration, and size of blocking events. The blocking events are identified via the weather type decomposition methodology. We find that blocking frequency, duration, and size are mostly stationary over the 21st century. Additionally, we compare the blocking size results with the size of the blocking events identified via a different approach using a blocking index.