Articles | Volume 3, issue 2
https://doi.org/10.5194/wcd-3-413-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-3-413-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tropical influence on heat-generating atmospheric circulation over Australia strengthens through spring
Roseanna C. McKay
CORRESPONDING AUTHOR
School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
Australian Research Council Centre of Excellence for Climate Extremes, Monash University, Melbourne, Victoria, Australia
Bureau of Meteorology, Melbourne, Victoria, Australia
Julie M. Arblaster
School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
Australian Research Council Centre of Excellence for Climate Extremes, Monash University, Melbourne, Victoria, Australia
National Center for Atmospheric Research, Boulder, Colorado, USA
Pandora Hope
Bureau of Meteorology, Melbourne, Victoria, Australia
Related authors
No articles found.
Raina Roy, Julie M. Arblaster, Matthew C. Wheeler, Eun-Pa Lim, and Jadwiga H. Richter
EGUsphere, https://doi.org/10.5194/egusphere-2025-4453, https://doi.org/10.5194/egusphere-2025-4453, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
A key pattern of tropical weather, the Madden-Julian Oscillation, has become significantly harder to predict since the late 1990s. We discovered this by comparing forecasts from major models across two time periods. The decrease in forecast skill is linked to changes in large-scale climate patterns, not just model errors. This means to improve long-range weather forecasts, models must better simulate how these large-scale patterns interact with tropical weather.
John P. Dunne, Helene T. Hewitt, Julie M. Arblaster, Frédéric Bonou, Olivier Boucher, Tereza Cavazos, Beth Dingley, Paul J. Durack, Birgit Hassler, Martin Juckes, Tomoki Miyakawa, Matt Mizielinski, Vaishali Naik, Zebedee Nicholls, Eleanor O'Rourke, Robert Pincus, Benjamin M. Sanderson, Isla R. Simpson, and Karl E. Taylor
Geosci. Model Dev., 18, 6671–6700, https://doi.org/10.5194/gmd-18-6671-2025, https://doi.org/10.5194/gmd-18-6671-2025, 2025
Short summary
Short summary
The seventh phase of the Coupled Model Intercomparison Project (CMIP7) coordinates efforts to answer key and timely climate science questions and facilitate delivery of relevant multi-model simulations for prediction and projection; characterization, attribution, and process understanding; and vulnerability, impact, and adaptation analysis. Key to the CMIP7 design are the mandatory Diagnostic, Evaluation and Characterization of Klima and optional Assessment Fast Track experiments.
Justin Peter, Elisabeth Vogel, Wendy Sharples, Ulrike Bende-Michl, Louise Wilson, Pandora Hope, Andrew Dowdy, Greg Kociuba, Sri Srikanthan, Vi Co Duong, Jake Roussis, Vjekoslav Matic, Zaved Khan, Alison Oke, Margot Turner, Stuart Baron-Hay, Fiona Johnson, Raj Mehrotra, Ashish Sharma, Marcus Thatcher, Ali Azarvinand, Steven Thomas, Ghyslaine Boschat, Chantal Donnelly, and Robert Argent
Geosci. Model Dev., 17, 2755–2781, https://doi.org/10.5194/gmd-17-2755-2024, https://doi.org/10.5194/gmd-17-2755-2024, 2024
Short summary
Short summary
We detail the production of datasets and communication to end users of high-resolution projections of rainfall, runoff, and soil moisture for the entire Australian continent. This is important as previous projections for Australia were for small regions and used differing techniques for their projections, making comparisons difficult across Australia's varied climate zones. The data will be beneficial for research purposes and to aid adaptation to climate change.
Cited articles
Abram, N. J., Wright, N. M., Ellis, B., Dixon, B. C., Wurtzel, J. B.,
England, M. H., Ummenhofer, C. C., Philibosian, B., Cahyarini, S. Y., Yu,
T.-L., Shen, C.-C., Cheng, H., Edwards, R. L., and Heslop, D.: Coupling of
Indo-Pacific climate variability over the last millennium, Nature, 579,
385–392, https://doi.org/10.1038/s41586-020-2084-4, 2020.
Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J. R., Clarke, H.,
Dowdy, A. J., Sharples, J. J., Nolan, R. H., Zhang, T., Wooster, M. J.,
Wurtzel, J. B., Meissner, K. J., Pitman, A. J., Ukkola, A. M., Murphy, B.
P., Tapper, N. J., and Boer, M. M.: Connections of climate change and
variability to large and extreme forest fires in southeast Australia, Commun. Earth Environ., 2, 8, https://doi.org/10.1038/s43247-020-00065-8, 2021.
Ambrizzi, T., Hoskins, B. J., and Hsu, H.-H.: Rossby wave propagation and
teleconnection patterns in austral winter, J. Atmos. Sci., 52, 3661–3672,
https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2, 1995.
Arblaster, J., Lim, E.-P., Hendon, H., Trewin, B., Wheeler, M., Liu, G., and
Braganza, K.: UNDERSTANDING AUSTRALIA'S HOTTEST SEPTEMBER ON RECORD, B. Am. Meteorol. Soc., 95, S37–S41, 2014.
Bals-Elsholz, T. M., Atallah, E. H., Bosart, L. F., Wasula, T. A., Cempa, M.
J., and Lupo, A. R.: The Wintertime Southern Hemisphere Split Jet: Structure,
Variability, and Evolution, J. Climate, 14, 4191–4215, 2001.
Barnes, E. A. and Hartmann, D. L.: Detection of Rossby wave breaking and its
response to shifts of the midlatitude jet with climate change: WAVE BREAKING
AND CLIMATE CHANGE, J. Geophys. Res.-Atmos., 117, D09117, https://doi.org/10.1029/2012JD017469,
2012.
Boschat, G., Pezza, A., Simmonds, I., Perkins, S., Cowan, T., and Purich, A.:
Large scale and sub-regional connections in the lead up to summer heat wave
and extreme rainfall events in eastern Australia, Clim. Dynam., 44, 1823–1840,
https://doi.org/10.1007/s00382-014-2214-5, 2015.
Cai, W., van Rensch, P., Cowan T., and Hendon H. H.: Teleconnection Pathways
of ENSO and the IOD and the Mechanisms for Impacts on Australian Rainfall, J. Climate, 24, 3910–3923, https://doi.org/10.1175/2011JCLI4129.1,
2011.
Cai, W., Santoso, A., Wang, G., Weller, E., Wu, L., Ashok, K., Masumoto, Y.,
and Yamagata, T.: Increased frequency of extreme Indian Ocean Dipole
events due to greenhouse warming, Nature, 510, 254–258,
https://doi.org/10.1038/nature13327, 2014.
Ceppi, P., and Hartmann, D. L.: On the Speed of the Eddy-Driven Jet and the
Width of the Hadley Cell in the Southern Hemisphere, J. Climate, 26, 3450–3465,
https://doi.org/10.1175/JCLI-D-12-00414.1, 2013.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T.,
Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G.,
Shongwe, M., Tebaldi, C., Weaver, A. J., Wehner, M. F., Allen, M. R.,
Andrews, T., Beyerle, U., Bitz, C. M., Bony, S., and Booth, B. B. B.:
Long-term Climate Change: Projections, Commitments and Irreversibility, Climate Change 2013 – The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1029–1136, 2013.
Cullen, B. R., Johnson, I. R., Eckard, R. J., Lodge, G. M., Walker, R. G.,
Rawnsley, R. P., and McCaskill, M. R.: Climate change effects on pasture
systems in south-eastern Australia, Crop Pasture Sci., 60, 933,
https://doi.org/10.1071/CP09019, 2009.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., and Vitart, F.:
The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dowdy, A. J.: Climatological Variability of Fire Weather in Australia, J. Appl. Meteorol. Climatol., 57, 221–234, https://doi.org/10.1175/JAMC-D-17-0167.1, 2018.
ECMWF: ERA5, ECMWF [data set], https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, last access: 14 January 2022.
Fischer, E. M., Seneviratne, S. I., Lüthi, D., and Schär, C.:
Contribution of land-atmosphere coupling to recent European summer heat
waves, Geophys. Res. Lett., 34, L06707, https://doi.org/10.1029/2006GL029068, 2007.
Fogt, R. L. and Marshall, G. J.: The Southern Annular Mode: Variability,
trends, and climate impacts across the Southern Hemisphere, WIREs Climate Change, 11, e652,
https://doi.org/10.1002/wcc.652, 2020.
Gallant, A. J. E. and Lewis, S. C.: Stochastic and anthropogenic
influences on repeated record-breaking temperature extremes in Australian
spring of 2013 and 2014: CAUSES OF REPEATED TEMPERATURE RECORDS, Geophys. Res. Lett., 43, 2182–2191, https://doi.org/10.1002/2016GL067740, 2016.
Gibson, P. B., Pitman, A. J., Lorenz, R., and Perkins-Kirkpatrick, S. E.: The
Role of Circulation and Land Surface Conditions in Current and Future
Australian Heat Waves, J. Climate, 30, 9933–9948,
https://doi.org/10.1175/JCLI-D-17-0265.1, 2017.
Gillett, Z. E., Hendon, H. H., Arblaster, J. M., and Lim, E.-P.: Tropical and
Extratropical Influences on the Variability of the Southern Hemisphere
Wintertime Subtropical Jet, J. Climate, 34, 4009–4022,
https://doi.org/10.1175/JCLI-D-20-0460.1, 2021.
Gong, D. and Wang, S.: Definition of Antarctic Oscillation index, Geophys. Res. Lett., 26, 459–462, https://doi.org/10.1029/1999GL900003, 1999.
Harris, S., and Lucas, C.: Understanding the variability of Australian fire
weather between 1973 and 2017, PLoS ONE, 14, e0222328, https://doi.org/10.1371/journal.pone.0222328, 2019.
Hauser, S., Grams, C. M., Reeder, M. J., McGregor, S., Fink, A. H., and
Quinting, J. F.: A weather system perspective on winter–spring rainfall
variability in southeastern Australia during El Niño, Q. J. Roy. Meteorol. Soc., 146, 2614–2633,
https://doi.org/10.1002/qj.3808, 2020.
Hendon, H. H., Thompson, D. W. J., and Wheeler, M. C.: Australian Rainfall
and Surface Temperature Variations Associated with the Southern Hemisphere
Annular Mode, J. Climate, 20, 2452–2467, https://doi.org/10.1175/JCLI4134.1, 2007.
Hendon, H. H., Lim, E.-P., and Nguyen, H.: Seasonal Variations of Subtropical
Precipitation Associated with the Southern Annular Mode, J. Climate, 27, 3446–3460,
https://doi.org/10.1175/JCLI-D-13-00550.1, 2014.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., and Thépaut, J.: The
ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hirsch, A. L. and King, M. J.: Atmospheric and Land Surface Contributions
to Heatwaves: An Australian Perspective, J. Geophys. Res.-Atmos., 125,
https://doi.org/10.1029/2020JD033223, 2020.
Hirsch, A. L., Evans, J. P., Di Virgilio, G., Perkins-Kirkpatrick, S. E.,
Argüeso, D., Pitman, A. J., Carouge, C. C., Kala, J., Andrys, J.,
Petrelli, P., and Rockel, B.: Amplification of Australian Heatwaves via
Local Land-Atmosphere Coupling, J. Geophys. Res.-Atmos., 124, 13625–13647,
https://doi.org/10.1029/2019JD030665, 2019.
Hope, P. and Watterson, I.: Persistence of cool conditions after heavy rain
in Australia, J. Southern Hemisphere Earth Syst. Sci., 68, 41–64, https://doi.org/10.22499/3.6801.004, 2018.
Hope, P., Lim, E.-P., Wang, G., Hendon, H. H., and Arblaster, J. M.:
Contributors to the Record High Temperatures Across Australia in Late Spring
2014, B. Am. Meteorol. Soc., 96, S149–S153, 2015.
Hope, P., Wang, G., Lim, E.-P., Hendon, H. H., and Arblaster, J. M.: WHAT
CAUSED
THE RECORD-BREAKING HEAT ACROSS AUSTRALIA IN OCTOBER 2015?, in: Explaining
Extreme Events of 2015 from a Climate Perspective, B. Am. Meteorol. Soc., 96,
S1–S172, https://doi.org/10.1175/BAMS-D-15-00157.1, 2016.
Hoskins, B. J. and Karoly, D. J.: The Steady Linear Response of a Spherical
Atmosphere
to Thermal and Orographic Forcing, J. Atmos. Sci., 38, 1179–1196,
https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2, 1981.
Hoskins, B. J. and Ambrizzi, T.: Rossby wave propagation on a realistic
longitudinally varying flow, J. Atmos. Sci., 50, 1661–1671, 1993.
Huang, B., Peter, W., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.: Extended Reconstructed Sea Surface
Temperature version 5 (ERSSTv5), Upgrades, validations, and
intercomparisons, J. Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.
Hurrell, J., Meehl, G. A., Bader, D., Delworth, T. L., Kirtman, B., and
Wielicki, B.: A Unified Modeling Approach to Climate System Prediction, B. Am. Meteorol. Soc., 90, 1819–1832, https://doi.org/10.1175/2009BAMS2752.1, 2009.
Japan Meteorological Agency/Japan, JRA-55: Japanese 55-year Reanalysis,
Daily 3-Hourly and 6-Hourly Data, Research
Data Archive at the National Center for Atmospheric Research, Computational
and Information Systems Laboratory, Boulder, Colo., (Updated monthly), https://doi.org/10.5065/D6HH6H41, 2013.
Jarvis, C., Darbyshire, R., Goodwin, I., Barlow, E. W. R., and Eckard, R.:
Advancement of winegrape maturity continuing for winegrowing regions in
Australia with variable evidence of compression of the harvest period:
Advancement of winegrape maturity, Aust. J. Grape Wine Res., 25, 101–108,
https://doi.org/10.1111/ajgw.12373, 2019.
Jones, D. and Trewin, B. C.: On the relationships between the El
Niño-Southern Oscillation and Australian land surface temperature, Int. J. Climatol.,
23, 697–719, 2000.
Jones, D., Wang, W., and Fawcett, R.: High-quality spatial climate data-sets
for Australia, Aust. Meteorol. Oceanogr. J., 58, 233–248, https://doi.org/10.22499/2.5804.003, 2009.
Koch, P., Wernli, H., and Davies, H. C.: An event-based jet-stream
climatology and typology, Int. J. Climatol., 26, 283–301, https://doi.org/10.1002/joc.1255,
2006.
L'Heureux, M. L. and Thompson, D. W. J.: Observed Relationships between the
El Niño–Southern Oscillation and the Extratropical Zonal-Mean
Circulation, J. Climate, 19, 276–287, https://doi.org/10.1175/JCLI3617.1, 2006.
Li, X., Holland, D. M., Gerber, E. P., and Yoo, C.: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice, Nature 505, 538–542, https://doi.org/10.1038/nature12945, 2014.
Li, X., Gerber, E. P., Holland, D. M., and Yoo, C.: A Rossby Wave Bridge from
the Tropical Atlantic to West Antarctica, J. Climate, 28, 2256–2273,
https://doi.org/10.1175/JCLI-D-14-00450.1, 2015a.
Li, X., Holland, D. M., Gerber, E. P., and Yoo, C.: Rossby Waves Mediate
Impacts of Tropical Oceans on West Antarctic Atmospheric Circulation in
Austral Winter, J. Climate, 28, 8151–8164,
https://doi.org/10.1175/JCLI-D-15-0113.1, 2015b.
Lim, E. P., Hendon, H. H., Arblaster, J. M., Chung, C., Moise, A. F., Hope,
P., Young, G., and Zhao, M.: Interaction of the recent 50 year SST trend and
La Niña 2010: amplification of the Southern Annular Mode and Australian
springtime rainfall, Clim. Dynam., 47, 2273–2291,
https://doi.org/10.1007/s00382-015-2963-9, 2016.
Lim, E.-P., Hendon, H., Hope, P., Chung, C., Delage, F., and McPhaden, M. J.:
Continuation of tropical Pacific Ocean temperature trend may weaken extreme
El Niño and its linkage to the Southern Annular Mode, Sci. Rep., 15, 17044,
https://doi.org/10.1038/s41598-019-53371-3, 2019a.
Lim, E.-P., Hendon, H. H., Boschat, G., Hudson, D., Thompson, D. W. J.,
Dowdy, A. J., and Arblaster, J. M.: Australian hot and dry extremes induced
by weakenings of the stratospheric polar vortex, Nat. Geosci., 12, 896–901, https://doi.org/10.1038/s41561-019-0456-x, 2019b.
Lim, E.-P., Hendon, H. H., Butler, A. H., Thompson, D. W. J., Lawrence, Z.
D., Scaife, A. A., Shepherd, T. G., Polichtchouk, I., Nakamura, H.,
Kobayashi, C., Comer, R., Coy, L., Dowdy, A., Garreaud, R. D., Newman, P.
A., and Wang, G.: The 2019 Southern Hemisphere Stratospheric Polar Vortex
Weakening and Its Impacts, B. Am. Meteorol. Soc., 102, E1150–E1171,
https://doi.org/10.1175/BAMS-D-20-0112.1, 2021a.
Lim, E.-P., Hudson, D., Wheeler, M. C., Marshall, A. G., King, A., Zhu, H.,
Hendon, H. H., de Burgh-Day, C., Trewin, B., Griffiths, M., Ramchurn, A.,
and Young, G.: Why Australia was not wet during spring 2020 despite La
Niña, Sci. Rep., 11, 18423, https://doi.org/10.1038/s41598-021-97690-w, 2021b.
Liu, Z. and Alexander, M.: Atmospheric bridge, oceanic tunnel, and global
climatic teleconnections, Rev. Geophys., 45, RG2005,
https://doi.org/10.1029/2005RG000172, 2007.
Loughran, T. F., Pitman, A. J., and Perkins-Kirkpatrick, S. E.: The El Niño-Southern Oscillation’s effect on summer heatwave development mechanisms in Australia, Clim. Dynam., 52, 6279–6300, https://doi.org/10.1007/s00382-018-4511-x, 2019.
Marshall, A., Hudson, D., Wheeler, M., Alves, O., Hendon, H., Pook, M., and
Risbey, J.: Intra-seasonal drivers of extreme heat over Australia in
observations and POAMA-2, Clim. Dynam., 43, 1915–1937,
https://doi.org/10.1007/s00382-013-2016-1, 2014.
Marshall, A. G., Hudson, D., Wheeler, M. C., Hendon, H. H., and Alves, O.:
Simulation and prediction of the Southern Annular Mode and its influence on
Australian intra-seasonal climate in POAMA, Clim. Dynam., 38,
2483–2502, https://doi.org/10.1007/s00382-011-1140-z, 2012.
Marshall, A. G., Gregory, P. A., de Burgh-Day, C. O., and Griffiths, M.: Subseasonal drivers
of extreme fire weather in Australia and its prediction in ACCESS-S1 during
spring and summer, Clim. Dynam., 58, 523–553,
https://doi.org/10.1007/s00382-021-05920-8, 2022.
McIntosh, P. C. and Hendon, H. H.: Understanding Rossby wave trains forced
by the Indian Ocean Dipole, Clim. Dynam., 50, 2783–2798,
https://doi.org/10.1007/s00382-017-3771-1, 2018.
McKay, R. C., Arblaster, J. M., Hope, P., and Lim, E.-P.: Exploring
atmospheric circulation leading to three anomalous Australian spring heat
events, Clim. Dynam., 56, 2181–2198, https://doi.org/10.1007/s00382-020-05580-0,
2021.
Meehl, G. A., Richter, J. H., Teng, H., Capotondi, A., Cobb, K.,
Doblas-Reyes, F., Donat, M. G., England, M. H., Fyfe, J. C., Han, W., Kim,
H., Kirtman, B. P., Kushnir, Y., Lovenduski, N. S., Mann, M. E., Merryfield,
W. J., Nieves, V., Pegion, K., Rosenbloom, N., and Xie, S.-P.:
Initialized Earth System prediction from subseasonal to decadal timescales, Nat. Rev. Earth Environ., 2, 340–357, https://doi.org/10.1038/s43017-021-00155-x, 2021.
Meyers, G., McIntosh, P., Pigot, L., and Pook, M.: The Years of El Niño,
La Niña, and Interactions with the Tropical Indian Ocean, J. Climate, 20,
2872–2880, https://doi.org/10.1175/JCLI4152.1, 2007.
Min, S.-K., Cai, W., and Whetton, P.: Influence of climate variability on
seasonal extremes over Australia: SEASONAL EXTREMES OVER AUSTRALIA, J. Geophys. Res.-Atmos.,
118, 643–654, https://doi.org/10.1002/jgrd.50164, 2013.
Nairn, J. and Fawcett, R.: The Excess Heat Factor: A Metric for Heatwave
Intensity and Its Use in Classifying Heatwave Severity, Int. J. Environ. Res. Pub. Health, 12, 227–253,
https://doi.org/10.3390/ijerph120100227, 2014.
Nicholls, N.: Sea surface temperature and Australian winter rainfall, J.
Climate, 2, 965–973, 1989.
NOAA: Extended Reconstructed SST, NOAA [data set], https://www.ncei.noaa.gov/products/extended-reconstructed-sst, last access: 6 July 2020.
Pepler, A., Timbal, B., Rakich, C., and Coutts-Smith, A.: Indian Ocean Dipole
Overrides ENSO's Influence on Cool Season Rainfall across the Eastern
Seaboard of Australia, J. Climate, 27, 3816–3826,
https://doi.org/10.1175/JCLI-D-13-00554.1, 2014.
Pfahl, S., Schwierz, C., Croci-Maspoli, M., Grams, C. M., and Wernli, H.:
Importance of latent heat release in ascending air streams for atmospheric
blocking, Nat. Geosci., 8, 610–614, https://doi.org/10.1038/ngeo2487, 2015.
Power, S., Tseitkin, F., Torok, S., Lavery, B., Dahni, R., and McAvaney, B.:
Australian temperature, Australian rainfall and the Southern Oscillation,
1910–1992: coherent variability and recent changes, Aust.
Meteorol. Magazine, 47, 85–101, 1998.
Quinting, J. F. and Reeder, M. J.: Southeastern Australian Heat
Waves from a Trajectory Viewpoint, Mon. Weather Rev., 145, 4109–4125,
https://doi.org/10.1175/MWR-D-17-0165.1, 2017.
Risbey, J. S., Pook, M. J., McIntosh, P. C., Wheeler, M. C., and Hendon, H.
H.: On the Remote Drivers of Rainfall Variability in Australia, Mon. Weather Rev., 137,
3233–3253, https://doi.org/10.1175/2009MWR2861.1, 2009a.
Risbey, J. S., Pook, M. J., McIntosh, P. C., Ummenhofer, C. C., and Meyers,
G.: Characteristics and variability of synoptic features associated with cool
season rainfall in southeastern Australia, Int. J. Climatol., 29, 1595–1613,
https://doi.org/10.1002/joc.1775, 2009b.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.: A
dipole mode in the tropical Indian Ocean, Nature, 401, 360–363,
https://doi.org/10.1038/43854, 1999.
Saji, N. H., Ambrizzi, T., and Ferraz, S. E. T.: Indian Ocean Dipole mode
events and austral surface air temperature anomalies, Dynam. Atmos. Oceans, 39, 87–101,
https://doi.org/10.1016/j.dynatmoce.2004.10.015, 2005.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture–climate interactions in a changing climate: A review, Earth-Sci. Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
Simpkins, G. R., McGregor, S., Taschetto, A. S., Ciasto, L. M., and England,
M. H.: Tropical Connections to Climatic Change in the Extratropical Southern
Hemisphere: The Role of Atlantic SST Trends, J. Climate, 27, 4923–4936,
https://doi.org/10.1175/JCLI-D-13-00615.1, 2014.
Simmonds, I. and Hope, P.: Seasonal and regional responses to changes in Australian soil moisture conditions, Int. J. Climatol., 18, 1105–1139, https://doi.org/10.1002/(SICI)1097-0088(199808)18:10<1105::AID-JOC308>3.0.CO;2-G, 1998.
Student: The probable error of a mean, Biometrika, 6, 1–25, 1908.
Suarez-Gutierrez, L., Müller, W. A., Li, C., and Marotzke, J.: Dynamical
and thermodynamical drivers of variability in European summer heat extremes, Clim. Dynam., 54, 4351–4366, https://doi.org/10.1007/s00382-020-05233-2, 2020.
Takaya, K. and Nakamura, H.: A Formulation of a Phase-Independent
Wave-Activity Flux for Stationary and Migratory Quasigeostrophic Eddies on a
Zonally Varying Basic Flow, J. Atmos. Sci., 58, 608–627, 2001.
Taylor, C., Cullen, B., D'Occhio, M., Rickards, L., and Eckard, R.: Trends in
wheat yields under representative climate futures: Implications for climate
adaptation, Agr. Syst., 164, 1–10, https://doi.org/10.1016/j.agsy.2017.12.007, 2018.
Timbal, B. and Hendon, H.: The role of tropical modes of variability
in recent rainfall deficits across the Murray-Darling Basin: TROPICAL
VARIABILITY AND RAINFALL DEFICIT IN THE MDB, Water Resour. Res., 47, W00G09,
https://doi.org/10.1029/2010WR009834, 2011.
Timbal, B., Power, S., Colman, R., Viviand, J., and Lirola, S.: Does
Soil Moisture Influence Climate Variability and Predictability over
Australia?, J. Climate, 15, 1230–1238,
https://doi.org/10.1175/1520-0442(2002)015<1230:dsmicv>2.0.co;2, 2002.
Ummenhofer, C. C., England, M. H., McIntosh, P. C., Meyers, G. A., Pook, M.
J., Risbey, J. S., Gupta, A. S., and Taschetto, A. S.: What causes southeast
Australia's worst droughts?, Geophys. Res. Lett., 36, L04706,
https://doi.org/10.1029/2008GL036801, 2009.
van Rensch, P., Arblaster, J., Gallant, A. J. E., Cai, W., Nicholls, N., and
Durack, P. J.: Mechanisms causing east Australian spring rainfall differences
between three strong El Niño events, Clim. Dynam., 53, 3641–3659,
https://doi.org/10.1007/s00382-019-04732-1, 2019.
Wang, G. and Hendon, H. H.: Impacts of the Madden – Julian Oscillation on
wintertime Australian minimum temperatures and Southern Hemisphere
circulation, Clim. Dynam., 55, 3087–3099,
https://doi.org/10.1007/s00382-020-05432-x, 2020.
Wang, G., Hendon, H. H., Arblaster, J. M., Lim, E.-P., Abhik, S., and van
Rensch, P.: Compounding tropical and stratospheric forcing of the record low
Antarctic sea-ice in 2016, Nat. Commun., 10, 1–9,
https://doi.org/10.1038/s41467-018-07689-7, 2019.
Watterson, I. G.: Relationships between southeastern Australian rainfall and
sea surface temperatures examined using a climate model, J. Geophys. Res., 115, D10108,
https://doi.org/10.1029/2009JD012120, 2010.
Watterson, I. G.: Australian Rainfall Anomalies in 2018–2019 Linked to
Indo-Pacific Driver Indices Using ERA5 Reanalyses, J. Geophys. Res.-Atmos., 125, e2020JD033041,
https://doi.org/10.1029/2020JD033041, 2020.
Wheeler, M. C. and Hendon, H. H.: An all-season real-time multivariate MJO
index:
Development of an index for monitoring and prediction, Mon. Weather
Rev., 132, 1917–1932, 2004.
Wheeler, M. C., Hendon, H. H., Cleland, S., Meinke, H., and Donald, A.:
Impacts of the Madden–Julian Oscillation on Australian Rainfall and
Circulation, J. Climate, 22, 1482–1498, https://doi.org/10.1175/2008JCLI2595.1, 2009.
White, C. J., Hudson, D., and Alves, O.: ENSO, the IOD and the intraseasonal
prediction of heat extremes across Australia using POAMA-2, Clim. Dynam., 43,
1791–1810, https://doi.org/10.1007/s00382-013-2007-2, 2014.
Wilson, E. A., Gordon, A. L., and Kim, D.: Observations of the Madden Julian
Oscillation during Indian Ocean Dipole events: IOD-MJO, J. Geophys. Res.-Atmos., 118, 2588–2599,
https://doi.org/10.1002/jgrd.50241, 2013.
Wirth, V.: Waveguidability of idealized midlatitude jets and the limitations of ray tracing theory, Weather Clim. Dynam., 1, 111–125, https://doi.org/10.5194/wcd-1-111-2020, 2020.
Short summary
Understanding what makes it hot in Australia in spring helps us better prepare for harmful impacts. We look at how the higher latitudes and tropics change the atmospheric circulation from early to late spring and how that changes maximum temperatures in Australia. We find that the relationship between maximum temperatures and the tropics is stronger in late spring than early spring. These findings could help improve forecasts of hot months in Australia in spring.
Understanding what makes it hot in Australia in spring helps us better prepare for harmful...