Articles | Volume 5, issue 2
https://doi.org/10.5194/wcd-5-703-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-5-703-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Meeting summary: Exploring cloud dynamics with Cloud Model 1 and 3D visualization – insights from a university modeling workshop
Lisa Schielicke
CORRESPONDING AUTHOR
Department Meteorology, Institute of Geosciences, University of Bonn, Auf dem Hügel 20, 53121 Bonn, Germany
Yidan Li
Department Meteorology, Institute of Geosciences, University of Bonn, Auf dem Hügel 20, 53121 Bonn, Germany
Jerome Schyns
Department Meteorology, Institute of Geosciences, University of Bonn, Auf dem Hügel 20, 53121 Bonn, Germany
Aaron Sperschneider
Department Meteorology, Institute of Geosciences, University of Bonn, Auf dem Hügel 20, 53121 Bonn, Germany
Jose Pablo Solano Marchini
Department Meteorology, Institute of Geosciences, University of Bonn, Auf dem Hügel 20, 53121 Bonn, Germany
Christoph Peter Gatzen
European Severe Storms Laboratory e.V. (ESSL), c/o DLR, Münchener Str. 20, 82234 Weßling, Germany
Related authors
Jannick Fischer, Pieter Groenemeijer, Alois Holzer, Monika Feldmann, Katharina Schröer, Francesco Battaglioli, Lisa Schielicke, Tomáš Púčik, Christoph Gatzen, Bogdan Antonescu, and the TIM Partners
EGUsphere, https://doi.org/10.5194/egusphere-2024-2798, https://doi.org/10.5194/egusphere-2024-2798, 2024
Short summary
Short summary
Strong thunderstorms have been studied mainly over flat terrain and in computer simulations in the past. However, they are particularly frequent near mountain ranges, which emphasizes the need to study storms near mountains. This article gives an overview about our existing knowledge on this topic and presents plans for a large European field campaign with the goals to fill these knowledge gaps, validate tools for thunderstorm warnings, and improve numerical weather prediction near mountains.
George Pacey, Stephan Pfahl, and Lisa Schielicke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2978, https://doi.org/10.5194/egusphere-2024-2978, 2024
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) in the warm-season, but the drivers and environments of cells at different locations relative to the front are not well-understood. We show that cells ahead of the surface front have the highest amount of environmental instability and moisture. Also, low-level lifting is maximised ahead of the surface front and upper-level lifting is particularly important for cell initiation behind the front.
George Pacey, Stephan Pfahl, Lisa Schielicke, and Kathrin Wapler
Nat. Hazards Earth Syst. Sci., 23, 3703–3721, https://doi.org/10.5194/nhess-23-3703-2023, https://doi.org/10.5194/nhess-23-3703-2023, 2023
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) and sometimes with hazards such as flooding, hail and lightning. We find that cold-frontal cell days are associated with higher cell frequency and cells are typically more intense. We also show both spatially and temporally where cells are most frequent depending on their cell-front distance. These results are an important step towards a deeper understanding of cold-frontal storm climatology and improved forecasting.
Lisa Schielicke and Stephan Pfahl
Weather Clim. Dynam., 3, 1439–1459, https://doi.org/10.5194/wcd-3-1439-2022, https://doi.org/10.5194/wcd-3-1439-2022, 2022
Short summary
Short summary
Projected future heatwaves in many European regions will be even warmer than the mean increase in summer temperature suggests. To identify the underlying thermodynamic and dynamic processes, we compare Lagrangian backward trajectories of airstreams associated with heatwaves in two time slices (1991–2000 and 2091–2100) in a large single-model ensemble (CEMS-LE). We find stronger future descent associated with adiabatic warming in some regions and increased future diabatic heating in most regions.
Carola Detring, Annette Müller, Lisa Schielicke, Peter Névir, and Henning W. Rust
Weather Clim. Dynam., 2, 927–952, https://doi.org/10.5194/wcd-2-927-2021, https://doi.org/10.5194/wcd-2-927-2021, 2021
Short summary
Short summary
Stationary, long-lasting blocked weather patterns can lead to extreme conditions. Within this study the temporal evolution of the occurrence probability is analyzed, and the onset, decay and transition probabilities of blocking within the past 30 years are modeled. Using Markov models combined with logistic regression, we found large changes in summer, where the probability of transitions to so-called Omega blocks increases strongly, while the unblocked state becomes less probable.
L. Schielicke and P. Névir
Nonlin. Processes Geophys., 20, 47–57, https://doi.org/10.5194/npg-20-47-2013, https://doi.org/10.5194/npg-20-47-2013, 2013
Jannick Fischer, Pieter Groenemeijer, Alois Holzer, Monika Feldmann, Katharina Schröer, Francesco Battaglioli, Lisa Schielicke, Tomáš Púčik, Christoph Gatzen, Bogdan Antonescu, and the TIM Partners
EGUsphere, https://doi.org/10.5194/egusphere-2024-2798, https://doi.org/10.5194/egusphere-2024-2798, 2024
Short summary
Short summary
Strong thunderstorms have been studied mainly over flat terrain and in computer simulations in the past. However, they are particularly frequent near mountain ranges, which emphasizes the need to study storms near mountains. This article gives an overview about our existing knowledge on this topic and presents plans for a large European field campaign with the goals to fill these knowledge gaps, validate tools for thunderstorm warnings, and improve numerical weather prediction near mountains.
George Pacey, Stephan Pfahl, and Lisa Schielicke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2978, https://doi.org/10.5194/egusphere-2024-2978, 2024
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) in the warm-season, but the drivers and environments of cells at different locations relative to the front are not well-understood. We show that cells ahead of the surface front have the highest amount of environmental instability and moisture. Also, low-level lifting is maximised ahead of the surface front and upper-level lifting is particularly important for cell initiation behind the front.
George Pacey, Stephan Pfahl, Lisa Schielicke, and Kathrin Wapler
Nat. Hazards Earth Syst. Sci., 23, 3703–3721, https://doi.org/10.5194/nhess-23-3703-2023, https://doi.org/10.5194/nhess-23-3703-2023, 2023
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) and sometimes with hazards such as flooding, hail and lightning. We find that cold-frontal cell days are associated with higher cell frequency and cells are typically more intense. We also show both spatially and temporally where cells are most frequent depending on their cell-front distance. These results are an important step towards a deeper understanding of cold-frontal storm climatology and improved forecasting.
Lisa Schielicke and Stephan Pfahl
Weather Clim. Dynam., 3, 1439–1459, https://doi.org/10.5194/wcd-3-1439-2022, https://doi.org/10.5194/wcd-3-1439-2022, 2022
Short summary
Short summary
Projected future heatwaves in many European regions will be even warmer than the mean increase in summer temperature suggests. To identify the underlying thermodynamic and dynamic processes, we compare Lagrangian backward trajectories of airstreams associated with heatwaves in two time slices (1991–2000 and 2091–2100) in a large single-model ensemble (CEMS-LE). We find stronger future descent associated with adiabatic warming in some regions and increased future diabatic heating in most regions.
Carola Detring, Annette Müller, Lisa Schielicke, Peter Névir, and Henning W. Rust
Weather Clim. Dynam., 2, 927–952, https://doi.org/10.5194/wcd-2-927-2021, https://doi.org/10.5194/wcd-2-927-2021, 2021
Short summary
Short summary
Stationary, long-lasting blocked weather patterns can lead to extreme conditions. Within this study the temporal evolution of the occurrence probability is analyzed, and the onset, decay and transition probabilities of blocking within the past 30 years are modeled. Using Markov models combined with logistic regression, we found large changes in summer, where the probability of transitions to so-called Omega blocks increases strongly, while the unblocked state becomes less probable.
L. Schielicke and P. Névir
Nonlin. Processes Geophys., 20, 47–57, https://doi.org/10.5194/npg-20-47-2013, https://doi.org/10.5194/npg-20-47-2013, 2013
Related subject area
Other aspects of weather and climate dynamics
ClimaMeter: contextualizing extreme weather in a changing climate
Large-ensemble assessment of the Arctic stratospheric polar vortex morphology and disruptions
Elevation-dependent warming: observations, models, and energetic mechanisms
Waviness of the Southern Hemisphere wintertime polar and subtropical jets
The importance of regional sea-ice variability for the coastal climate and near-surface temperature gradients in Northeast Greenland
Decadal variability and trends in extratropical Rossby wave packet amplitude, phase, and phase speed
Stratospheric intrusion depth and its effect on surface cyclogenetic forcing: an idealized potential vorticity (PV) inversion experiment
Supercell convective environments in Spain based on ERA5: hail and non-hail differences
Trends in the tropospheric general circulation from 1979 to 2022
A characterisation of Alpine mesocyclone occurrence
Intraseasonal variability of ocean surface wind waves in the western South Atlantic: the role of cyclones and the Pacific South American pattern
A dynamical adjustment perspective on extreme event attribution
The signature of the tropospheric gravity wave background in observed mesoscale motion
Increasing frequency in off-season tropical cyclones and its relation to climate variability and change
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024, https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Short summary
We introduce ClimaMeter, a tool offering real-time insights into extreme-weather events. Our tool unveils how climate change and natural variability affect these events, affecting communities worldwide. Our research equips policymakers and the public with essential knowledge, fostering informed decisions and enhancing climate resilience. We analysed two distinct events, showcasing ClimaMeter's global relevance.
Ales Kuchar, Maurice Öhlert, Roland Eichinger, and Christoph Jacobi
Weather Clim. Dynam., 5, 895–912, https://doi.org/10.5194/wcd-5-895-2024, https://doi.org/10.5194/wcd-5-895-2024, 2024
Short summary
Short summary
Exploring the polar vortex's impact on climate, the study evaluates model simulations against the ERA5 reanalysis data. Revelations about model discrepancies in simulating disruptive stratospheric warmings and vortex behavior highlight the need for refined model simulations of past climate. By enhancing our understanding of these dynamics, the research contributes to more reliable climate projections of the polar vortex with the impact on surface climate.
Michael P. Byrne, William R. Boos, and Shineng Hu
Weather Clim. Dynam., 5, 763–777, https://doi.org/10.5194/wcd-5-763-2024, https://doi.org/10.5194/wcd-5-763-2024, 2024
Short summary
Short summary
In this study we investigate why climate change is amplified in mountain regions, a phenomenon known as elevation-dependent warming (EDW). We examine EDW using observations and models and assess the roles of radiative forcing vs. internal variability in driving the historical signal. Using a forcing–feedback framework we also quantify for the first time the processes driving EDW on large scales. Our results have important implications for understanding future climate change in mountain regions.
Jonathan E. Martin and Taylor Norton
Weather Clim. Dynam., 4, 875–886, https://doi.org/10.5194/wcd-4-875-2023, https://doi.org/10.5194/wcd-4-875-2023, 2023
Short summary
Short summary
The polar and subtropical jets are important weather-producing features and influential governors of regional climate. This study considers trends in the waviness of the two jets in Southern Hemisphere winter using three data sets and reveals three important results: (1) the waviness of both jets has increased since about 1960, (2) only the maximum speed of the subtropical jet has increased, and (3) both the polar and subtropical jets have been shifting poleward over the last several decades.
Sonika Shahi, Jakob Abermann, Tiago Silva, Kirsty Langley, Signe Hillerup Larsen, Mikhail Mastepanov, and Wolfgang Schöner
Weather Clim. Dynam., 4, 747–771, https://doi.org/10.5194/wcd-4-747-2023, https://doi.org/10.5194/wcd-4-747-2023, 2023
Short summary
Short summary
This study highlights how the sea ice variability in the Greenland Sea affects the terrestrial climate and the surface mass changes of peripheral glaciers of the Zackenberg region (ZR), Northeast Greenland, combining model output and observations. Our results show that the temporal evolution of sea ice influences the climate anomaly magnitude in the ZR. We also found that the changing temperature and precipitation patterns due to sea ice variability can affect the surface mass of the ice cap.
Georgios Fragkoulidis
Weather Clim. Dynam., 3, 1381–1398, https://doi.org/10.5194/wcd-3-1381-2022, https://doi.org/10.5194/wcd-3-1381-2022, 2022
Short summary
Short summary
Assessing the seasonal distributions of local Rossby wave packet (RWP) amplitude, phase, and phase speed on reanalysis data of the 1979–2019 period reveals that patterns of robust trends emerge and vary substantially between seasons and regions. While an absence of covariance is evident between RWP amplitude and phase speed at decadal scales, the frequency of DJF large-amplitude quasi-stationary RWPs increases in several areas of the N Pacific and N America during 1999–2019.
Michael A. Barnes, Thando Ndarana, Michael Sprenger, and Willem A. Landman
Weather Clim. Dynam., 3, 1291–1309, https://doi.org/10.5194/wcd-3-1291-2022, https://doi.org/10.5194/wcd-3-1291-2022, 2022
Short summary
Short summary
Stratospheric air can intrude into the troposphere and is associated with cyclonic development throughout the atmosphere. Through a highly idealized systematic approach, the effect that different intrusion characteristics have on surface cyclogenetic forcing is investigated. The proximity of stratospheric intrusions to the surface is shown to be the main factor in surface cyclogenetic forcing, whilst its width is an additional contributing factor.
Carlos Calvo-Sancho, Javier Díaz-Fernández, Yago Martín, Pedro Bolgiani, Mariano Sastre, Juan Jesús González-Alemán, Daniel Santos-Muñoz, José Ignacio Farrán, and María Luisa Martín
Weather Clim. Dynam., 3, 1021–1036, https://doi.org/10.5194/wcd-3-1021-2022, https://doi.org/10.5194/wcd-3-1021-2022, 2022
Short summary
Short summary
Supercells are among the most complex and dangerous severe convective storms due to their associated phenomena (lightning, strong winds, large hail, flash floods, or tornadoes). In this survey we study the supercell synoptic configurations and convective environments in Spain using the atmospheric reanalysis ERA5. Supercells are grouped into hail (greater than 5 cm) and non-hail events in order to compare and analyze the two events. The results reveal statistically significant differences.
Adrian J. Simmons
Weather Clim. Dynam., 3, 777–809, https://doi.org/10.5194/wcd-3-777-2022, https://doi.org/10.5194/wcd-3-777-2022, 2022
Short summary
Short summary
This study of changes in temperature and wind since 1979 met its twin aims of (i) increasing confidence in some findings of the latest IPCC assessment and (ii) identifying changes that had received little or no previous attention. It reports a small overall intensification and shift in position of the North Atlantic jet stream and associated storms, and a strengthening of tropical upper-level easterlies. Increases in low-level winds over tropical and southern hemispheric oceans are confirmed.
Monika Feldmann, Urs Germann, Marco Gabella, and Alexis Berne
Weather Clim. Dynam., 2, 1225–1244, https://doi.org/10.5194/wcd-2-1225-2021, https://doi.org/10.5194/wcd-2-1225-2021, 2021
Short summary
Short summary
Mesocyclones are the rotating updraught of supercell thunderstorms that present a particularly hazardous subset of thunderstorms. A first-time characterisation of the spatiotemporal occurrence of mesocyclones in the Alpine region is presented, using 5 years of Swiss operational radar data. We investigate parallels to hailstorms, particularly the influence of large-scale flow, daily cycles and terrain. Improving understanding of mesocyclones is valuable for risk assessment and warning purposes.
Dalton K. Sasaki, Carolina B. Gramcianinov, Belmiro Castro, and Marcelo Dottori
Weather Clim. Dynam., 2, 1149–1166, https://doi.org/10.5194/wcd-2-1149-2021, https://doi.org/10.5194/wcd-2-1149-2021, 2021
Short summary
Short summary
Extratropical cyclones are relevant in the western South Atlantic and influence the climate of ocean surface wave. Propagating atmospheric features from the South Pacific to the South Atlantic are relevant to the cyclones and waves, and its intensified westerlies lead to more cyclones and, as a consequence, to higher wave heights. The opposite happens with its weakening. These features are similar to the so-called Pacific South American patterns and present periods between 30 and 180 d.
Laurent Terray
Weather Clim. Dynam., 2, 971–989, https://doi.org/10.5194/wcd-2-971-2021, https://doi.org/10.5194/wcd-2-971-2021, 2021
Short summary
Short summary
Attribution of the causes of extreme temperature events has become active research due to the wide-ranging impacts of recent heat waves and cold spells. Here we show that a purely observational approach based on atmospheric circulation analogues and resampling provides a robust quantification of the various dynamic and thermodynamic contributions to specific extreme temperature events. The approach can easily be integrated in the toolbox of any real-time extreme event attribution system.
Claudia Christine Stephan and Alexis Mariaccia
Weather Clim. Dynam., 2, 359–372, https://doi.org/10.5194/wcd-2-359-2021, https://doi.org/10.5194/wcd-2-359-2021, 2021
Short summary
Short summary
Vertical motion on horizontal scales of a few hundred kilometers can influence cloud properties. This motion is difficult to measure directly but can be inferred from the area-averaged mass divergence. The latter can be derived from horizontal wind measurements at the area’s perimeter. This study derives vertical properties of area-averaged divergence from an extensive network of atmospheric soundings and proposes an explanation for the variation of divergence magnitudes with area size.
José J. Hernández Ayala and Rafael Méndez-Tejeda
Weather Clim. Dynam., 1, 745–757, https://doi.org/10.5194/wcd-1-745-2020, https://doi.org/10.5194/wcd-1-745-2020, 2020
Short summary
Short summary
This study focused on exploring if off-season tropical cyclones, those that develop outside of the peak months, have been increasing over time in the Atlantic Ocean and Pacific Ocean basins and if that higher frequency could be explained by climate variability or change. We found that off-season tropical cyclones are exhibiting an increase in total numbers by decade in the North Atlantic and East Pacific ocean basins and that climate change explained much of the increasing trends over time.
Cited articles
Ahrens, J., Geveci, B., and Law, C.: ParaView: An End-User Tool for Large-Data Visualization, in: Visualization Handbook, edited by: Johnson, C. R. and Hansen, C. D., Elsevier, 717–731, https://doi.org/10.1016/B978-012387582-2/50038-1, 2005. a
Ayachit, U.: The paraview guide: a parallel visualization application, Kitware, Inc., NY, USA, 276 pp., ISBN 978-1-930934-30-6, 2015. a
Bryan, G. H. and Fritsch, J. M.: A benchmark simulation for moist nonhydrostatic numerical models, Mon. Weather Rev., 130, 2917–2928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2, 2002. a, b
Coiffier, J.: Fundamentals of numerical weather prediction, Cambridge University Press, ISBN 9781107001039, 2011. a
Copernicus Climate Change Service: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023. a
DWD – Deutscher Wetterdienst: Open Data, German Weather Service (Deutscher Wetterdienst DWD), https://www.dwd.de/DE/leistungen/opendata/opendata.html (last access: 28 April 2024), 2024. a
Handlos, Z. J., Davenport, C., and Kopacz, D.: The “State” of Active Learning in the Atmospheric Sciences: Strategies Instructors Use and Directions for Future Research, B. Am. Meteorol. Soc., 103, E1197–E1212, 2022. a
Hengl, T., Leal Parente, L., Krizan, J., and Bonannella, C.: Continental Europe Digital Terrain Model at 30 M Resolution Based on GEDI, Icesat-2, AW3D, GLO-30, EUDEM, MERIT DEM and Background Layers, Zenodo [data set], https://doi.org/10.5281/zenodo.4724549, 2020. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Li, S., Jaroszynski, S., Pearse, S., Orf, L., and Clyne, J.: VAPOR: A visualization package tailored to analyze simulation data in earth system science, Atmosphere, 10, 488, https://doi.org/10.3390/atmos10090488, 2019. a
Limbach, S., Sprenger, M., Schömer, E., and Wernli, H.: IWAL – an interactive weather analysis laboratory, B. Am. Meteorol. Soc., 96, 903–909, 2015. a
Nakaegawa, T.: High-Performance Computing in Meteorology under a Context of an Era of Graphical Processing Units, Computers, 11, 114, https://doi.org/10.3390/computers11070114, 2022. a
Orf, L., Wilhelmson, R., Lee, B., Finley, C., and Houston, A.: Evolution of a long-track violent tornado within a simulated supercell, B. Am.Meteorol. Soc., 98, 45–68, https://doi.org/10.1175/BAMS-D-15-00073.1, 2017. a
Pierce, D. W.: Ncview, https://cirrus.ucsd.edu/ncview/ (last access: 30 August 2023), 2021. a
Rautenhaus, M., Böttinger, M., Siemen, S., Hoffman, R., Kirby, R. M., Mirzargar, M., Röber, N., and Westermann, R.: Visualization in meteorology – a survey of techniques and tools for data analysis tasks, IEEE T. Visualiz. Comput. Graph., 24, 3268–3296, https://doi.org/10.1109/TVCG.2017.2779501, 2017. a
Schielicke, L.: Cloud Model 1 & Visualization – A Block course (Version of 7-Nov-2023), ResearchGate [code], https://doi.org/10.13140/RG.2.2.30017.12642, 2024. a, b, c, d
sgpearse, Li, S., clyne, StasJ, CoreCode, Daves, J., Hallock, K., Eroglu, O., Poplawski, O., and Lacroix, R.: NCAR/VAPOR: Vapor 3.8.1 (3.8.1), Zenodo [code], https://doi.org/10.5281/zenodo.7779648, 2023. a
Sperschneider, A. and Bott, A.: Influence of the Orography of West-Central European Low Mountain Ranges on the Intensity of Deep Moist Convection, in: 11th European Conference on Severe Storms, 8–12 May 2023, Bucharest, Romania, ECSS2023-89, https://doi.org/10.5194/ecss2023-89, 2023. a
Steeneveld, G.-J. and de Arellano, J. V.-G.: Teaching atmospheric modeling at the graduate level: 15 years of using mesoscale models as educational tools in an active learning environment, B. Am. Meteorol. Soc., 100, 2157–2174, 2019. a
VanZanten, M. C., Stevens, B., Nuijens, L., Siebesma, A. P., Ackerman, A., Burnet, F., Cheng, A., Couvreux, F., Jiang, H., Khairoutdinov, M., et al.: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO, J. Adv. Model. Earth Syst., 3, M06001, https://doi.org/10.1029/2011MS000056, 2011. a
Vourlioti, P., Kotsopoulos, S., Mamouka, T., Agrafiotis, A., Nieto, F. J., Sánchez, C. F., Llerena, C. G., and García González, S.: Maximizing the potential of numerical weather prediction models: lessons learned from combining high-performance computing and cloud computing, Adv. Sci. Research, 20, 1–8, https://doi.org/10.5194/asr-20-1-2023, 2023. a
Weisman, M. L. and Klemp, J. B.: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy, Mon. Weather Rev., 110, 504–520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2, 1982. a
Wilke, R. R.: The effect of active learning on student characteristics in a human physiology course for nonmajors, Adv. Physiol. Educ., 27, 207–223, 2003. a
Short summary
We present course contents and results of a 2-week educational block course with a focus on Cloud Model 1 (CM1) and 3D visualization. Through hands-on experience, students gained skills in setting up and customizing the model and visualizing its output in 3D. The research aimed to bridge the gap between classroom learning and practical applications, fostering a deeper understanding of convective processes and preparing students for future careers in the field.
We present course contents and results of a 2-week educational block course with a focus on...