Articles | Volume 1, issue 1
Weather Clim. Dynam., 1, 155–174, 2020
https://doi.org/10.5194/wcd-1-155-2020
Weather Clim. Dynam., 1, 155–174, 2020
https://doi.org/10.5194/wcd-1-155-2020

Research article 15 Apr 2020

Research article | 15 Apr 2020

Decomposing the response of the stratospheric Brewer–Dobson circulation to an abrupt quadrupling in CO2

Andreas Chrysanthou et al.

Related authors

The effect of atmospheric nudging on the stratospheric residual circulation in chemistry–climate models
Andreas Chrysanthou, Amanda C. Maycock, Martyn P. Chipperfield, Sandip Dhomse, Hella Garny, Douglas Kinnison, Hideharu Akiyoshi, Makoto Deushi, Rolando R. Garcia, Patrick Jöckel, Oliver Kirner, Giovanni Pitari, David A. Plummer, Laura Revell, Eugene Rozanov, Andrea Stenke, Taichu Y. Tanaka, Daniele Visioni, and Yousuke Yamashita
Atmos. Chem. Phys., 19, 11559–11586, https://doi.org/10.5194/acp-19-11559-2019,https://doi.org/10.5194/acp-19-11559-2019, 2019
Short summary

Related subject area

Role of atmospheric dynamics in climate change projections
The importance of horizontal model resolution on simulated precipitation in Europe – from global to regional models
Gustav Strandberg and Petter Lind
Weather Clim. Dynam., 2, 181–204, https://doi.org/10.5194/wcd-2-181-2021,https://doi.org/10.5194/wcd-2-181-2021, 2021
Short summary
Future wintertime meridional wind trends through the lens of subseasonal teleconnections
Dor Sandler and Nili Harnik
Weather Clim. Dynam., 1, 427–443, https://doi.org/10.5194/wcd-1-427-2020,https://doi.org/10.5194/wcd-1-427-2020, 2020
Short summary
The substructure of extremely hot summers in the Northern Hemisphere
Matthias Röthlisberger, Michael Sprenger, Emmanouil Flaounas, Urs Beyerle, and Heini Wernli
Weather Clim. Dynam., 1, 45–62, https://doi.org/10.5194/wcd-1-45-2020,https://doi.org/10.5194/wcd-1-45-2020, 2020
Short summary

Cited articles

Andrews, D. G. and McIntyre, M. E.: Planetary Waves in Horizontal and Vertical Shear: The Generalized Eliassen-Palm Relation and the Mean Zonal Acceleration, J. Atmos. Sci., 33, 2031–2048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2, 1976. 
Andrews, D. G. and Mcintyre, M. E.: An exact theory of nonlinear waves on a Lagrangian-mean flow, J. Fluid Mech., 89, 609–646, https://doi.org/10.1017/S0022112078002773, 1978. 
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, in: International Geophysical Series, Vol. 40, 1987. 
Banerjee, A., Maycock, A. C., Archibald, A. T., Abraham, N. L., Telford, P., Braesicke, P., and Pyle, J. A.: Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100, Atmos. Chem. Phys., 16, 2727–2746, https://doi.org/10.5194/acp-16-2727-2016, 2016. 
Birner, T. and Bönisch, H.: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere, Atmos. Chem. Phys., 11, 817–827, https://doi.org/10.5194/acp-11-817-2011, 2011. 
Download
Short summary
We perform 50-year-long time-slice experiments using the Met Office HadGEM3 global climate model in order to decompose the Brewer–Dobson circulation (BDC) response to an abrupt quadrupling of CO2 in three distinct components, (a) the rapid adjustment, associated with CO2 radiative effects; (b) a global uniform sea surface temperature warming; and (c) sea surface temperature patterns. This demonstrates a potential for fast and slow timescales of the response of the BDC to greenhouse gas forcing.