Articles | Volume 1, issue 2
Weather Clim. Dynam., 1, 657–674, 2020
https://doi.org/10.5194/wcd-1-657-2020
Weather Clim. Dynam., 1, 657–674, 2020
https://doi.org/10.5194/wcd-1-657-2020
Research article
27 Oct 2020
Research article | 27 Oct 2020

Mechanisms and predictability of sudden stratospheric warming in winter 2018

Irina A. Statnaia et al.

Related authors

Boundary-layer height and surface stability at Hyytiälä, Finland, in ERA5 and observations
Victoria Anne Sinclair, Jenna Ritvanen, Gabin Urbancic, Irina Statnaia, Yurii Batrak, Dmitri Moisseev, and Mona Kurppa
Atmos. Meas. Tech., 15, 3075–3103, https://doi.org/10.5194/amt-15-3075-2022,https://doi.org/10.5194/amt-15-3075-2022, 2022
Short summary

Related subject area

Atmospheric teleconnections incl. stratosphere–troposphere coupling
Tropical influence on heat-generating atmospheric circulation over Australia strengthens through spring
Roseanna C. McKay, Julie M. Arblaster, and Pandora Hope
Weather Clim. Dynam., 3, 413–428, https://doi.org/10.5194/wcd-3-413-2022,https://doi.org/10.5194/wcd-3-413-2022, 2022
Short summary
Sudden stratospheric warmings during El Niño and La Niña: sensitivity to atmospheric model biases
Nicholas L. Tyrrell, Juho M. Koskentausta, and Alexey Yu. Karpechko
Weather Clim. Dynam., 3, 45–58, https://doi.org/10.5194/wcd-3-45-2022,https://doi.org/10.5194/wcd-3-45-2022, 2022
Short summary
Minimal impact of model biases on Northern Hemisphere El Niño–Southern Oscillation teleconnections
Nicholas L. Tyrrell and Alexey Yu. Karpechko
Weather Clim. Dynam., 2, 913–925, https://doi.org/10.5194/wcd-2-913-2021,https://doi.org/10.5194/wcd-2-913-2021, 2021
Short summary
Stationary Waves and Upward Troposphere-Stratosphere Coupling in S2S Models
Chen Schwartz, Chaim I. Garfinkel, Priyanka Yadav, Wen Chen, and Daniela Domeisen
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-58,https://doi.org/10.5194/wcd-2021-58, 2021
Revised manuscript accepted for WCD
Short summary
Resampling of ENSO teleconnections: accounting for cold-season evolution reduces uncertainty in the North Atlantic
Martin P. King, Camille Li, and Stefan Sobolowski
Weather Clim. Dynam., 2, 759–776, https://doi.org/10.5194/wcd-2-759-2021,https://doi.org/10.5194/wcd-2-759-2021, 2021
Short summary

Cited articles

Albers, J. R. and Birner, T.: Vortex Preconditioning due to Planetary and Gravity Waves prior to Sudden Stratospheric Warmings, J. Atmos. Sci., 71, 4028–4054, https://doi.org/10.1175/jas-d-14-0026.1, 2014. 
Australian Bureau of Meteorology: Madden-Julian Oscillation (MJO), available at: http://www.bom.gov.au/climate/mjo/, last access: 23 October 2020. 
Ayarzagüena, B., Barriopedro, D., Garrido-Perez, J. M., Abalos, M., de la Cámara, A., García-Herrera, R., Calvo, N., and Ordóñez, C.: Stratospheric Connection to the Abrupt End of the 2016/2017 Iberian Drought, Geophys. Res. Lett., 45, 12639–12646, https://doi.org/10.1029/2018GL079802, 2018. 
Baldwin, M. P. and Dunkerton, T. J.: Propagation of the Arctic Oscillation from the stratosphere to the troposphere, J. Geophys. Res.-Atmos., 104, 30937–30946, https://doi.org/10.1029/1999JD900445, 1999. 
Barrett, B. S.: Connections between the Madden–Julian Oscillation and surface temperatures in winter 2018 over eastern North America, Atmos. Sci. Lett., 20, 1–8, https://doi.org/10.1002/asl.869, 2019. 
Download
Short summary
In this paper we investigate the role of the tropospheric forcing in the occurrence of the sudden stratospheric warming (SSW) that took place in February 2018, its predictability and teleconnection with the Madden–Julian oscillation (MJO) by analysing the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecast. The purpose of the paper is to present the results of the analysis of the atmospheric circulation before and during the SSW and clarify the driving mechanisms.