Articles | Volume 1, issue 2
https://doi.org/10.5194/wcd-1-731-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-1-731-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impacts of the North Atlantic Oscillation on winter precipitations and storm track variability in southeast Canada and the northeast United States
Julien Chartrand
CORRESPONDING AUTHOR
Centre ESCER, Department of Earth and Atmospheric Sciences, University
of Quebec in Montreal, Montréal, QC, Canada
Francesco S. R. Pausata
Centre ESCER, Department of Earth and Atmospheric Sciences, University
of Quebec in Montreal, Montréal, QC, Canada
Related authors
No articles found.
Ricarda Winkelmann, Donovan P. Dennis, Jonathan F. Donges, Sina Loriani, Ann Kristin Klose, Jesse F. Abrams, Jorge Alvarez-Solas, Torsten Albrecht, David Armstrong McKay, Sebastian Bathiany, Javier Blasco Navarro, Victor Brovkin, Eleanor Burke, Gokhan Danabasoglu, Reik V. Donner, Markus Drüke, Goran Georgievski, Heiko Goelzer, Anna B. Harper, Gabriele Hegerl, Marina Hirota, Aixue Hu, Laura C. Jackson, Colin Jones, Hyungjun Kim, Torben Koenigk, Peter Lawrence, Timothy M. Lenton, Hannah Liddy, José Licón-Saláiz, Maxence Menthon, Marisa Montoya, Jan Nitzbon, Sophie Nowicki, Bette Otto-Bliesner, Francesco Pausata, Stefan Rahmstorf, Karoline Ramin, Alexander Robinson, Johan Rockström, Anastasia Romanou, Boris Sakschewski, Christina Schädel, Steven Sherwood, Robin S. Smith, Norman J. Steinert, Didier Swingedouw, Matteo Willeit, Wilbert Weijer, Richard Wood, Klaus Wyser, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1899, https://doi.org/10.5194/egusphere-2025-1899, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
The Tipping Points Modelling Intercomparison Project (TIPMIP) is an international collaborative effort to systematically assess tipping point risks in the Earth system using state-of-the-art coupled and stand-alone domain models. TIPMIP will provide a first global atlas of potential tipping dynamics, respective critical thresholds and key uncertainties, generating an important building block towards a comprehensive scientific basis for policy- and decision-making.
Iuri Gorenstein, Ilana Wainer, Francesco S. R. Pausata, Luciana F. Prado, Pedro L. S. Dias, Allegra N. LeGrande, Clay R. Tabor, and William R. Peltier
EGUsphere, https://doi.org/10.5194/egusphere-2025-921, https://doi.org/10.5194/egusphere-2025-921, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Using a new approach based on information theory we study climate variability in the tropical and South Atlantic by examining broad patterns in ocean and rainfall data at decadal scales. Four climate models under mid‐Holocene and pre‐industrial conditions show that shifts in vegetation and dust yield varied weather responses. Our findings indicate that incorporating large-scale patterns provides a framework for understanding long-term climate behavior, offering insights for improved predictions.
Zhihong Zhuo, Xinyue Wang, Yunqian Zhu, Ewa M. Bednarz, Eric Fleming, Peter R. Colarco, Shingo Watanabe, David Plummer, Georgiy Stenchikov, William Randel, Adam Bourassa, Valentina Aquila, Takashi Sekiya, Mark R. Schoeberl, Simone Tilmes, Wandi Yu, Jun Zhang, Paul J. Kushner, and Francesco S. R. Pausata
EGUsphere, https://doi.org/10.5194/egusphere-2025-1505, https://doi.org/10.5194/egusphere-2025-1505, 2025
Short summary
Short summary
The 2022 Hunga eruption caused unprecedented stratospheric water injection, triggering unique atmospheric impacts. This study combines observations and model simulations, projecting a stratospheric water vapor anomaly lasting 4–7 years, with significant temperature variations and ozone depletion in the upper atmosphere lasting 7–10 years. These findings offer critical insights into the role of stratospheric water vapor in shaping climate and atmospheric chemistry.
Aude Garin, Francesco S. R. Pausata, Mathieu Boudreault, and Roberto Ingrosso
EGUsphere, https://doi.org/10.5194/egusphere-2024-3435, https://doi.org/10.5194/egusphere-2024-3435, 2024
Short summary
Short summary
As tropical cyclones move poleward, they can transform into extratropical cyclones, a process known as extratropical transition. These storms can pose serious risks to human lives and cause damage to infrastructure along the northeastern coasts of the U.S. & Canada. Our study investigates the impacts of climate change on the frequency, intensity, and location of extratropical transitions, revealing that transitioning storms may become more destructive in the future but may not be more frequent.
Marco Gaetani, Gabriele Messori, Francesco S. R. Pausata, Shivangi Tiwari, M. Carmen Alvarez Castro, and Qiong Zhang
Clim. Past, 20, 1735–1759, https://doi.org/10.5194/cp-20-1735-2024, https://doi.org/10.5194/cp-20-1735-2024, 2024
Short summary
Short summary
Palaeoclimate reconstructions suggest that, around 6000 years ago, a greening of the Sahara took place, accompanied by climate changes in the Northern Hemisphere at middle to high latitudes. In this study, a climate model is used to investigate how this drastic environmental change in the Sahara impacted remote regions. Specifically, climate simulations reveal significant modifications in atmospheric circulation over the North Atlantic, affecting North American and European climates.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Benjamin Ward, Francesco S. R. Pausata, and Nicola Maher
Earth Syst. Dynam., 12, 975–996, https://doi.org/10.5194/esd-12-975-2021, https://doi.org/10.5194/esd-12-975-2021, 2021
Short summary
Short summary
Using the largest ensemble of a climate model currently available, the Max Planck Institute Grand Ensemble (MPI-GE), we investigated the impact of the spatial distribution of volcanic aerosols on the El Niño–Southern Oscillation (ENSO) response. By selecting three eruptions with different aerosol distributions, we found that the shift of the Intertropical Convergence Zone (ITCZ) is the main driver of the ENSO response, while other mechanisms commonly invoked seem less important in our model.
Francesco S. R. Pausata, Gabriele Messori, Jayoung Yun, Chetankumar A. Jalihal, Massimo A. Bollasina, and Thomas M. Marchitto
Clim. Past, 17, 1243–1271, https://doi.org/10.5194/cp-17-1243-2021, https://doi.org/10.5194/cp-17-1243-2021, 2021
Short summary
Short summary
Far-afield changes in vegetation such as those that occurred over the Sahara during the middle Holocene and the consequent changes in dust emissions can affect the intensity of the South Asian Monsoon (SAM) rainfall and the lengthening of the monsoon season. This remote influence is mediated by anomalies in Indian Ocean sea surface temperatures and may have shaped the evolution of the SAM during the termination of the African Humid Period.
Samuel Dandoy, Francesco S. R. Pausata, Suzana J. Camargo, René Laprise, Katja Winger, and Kerry Emanuel
Clim. Past, 17, 675–701, https://doi.org/10.5194/cp-17-675-2021, https://doi.org/10.5194/cp-17-675-2021, 2021
Short summary
Short summary
This study analyzes the impacts of changing vegetation and atmospheric dust concentrations over an area that is currently desert (the Sahara) to investigate their impacts on tropical cyclone activity during a warm climate state, the mid-Holocene. Our results suggest a significant change in Atlantic TC frequency, intensity and seasonality when considering the effects of a warmer climate in a greener world. They also highlight the importance of considering these factors in future climate studies.
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model:
Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, Boulder, Colorado, https://doi.org/10.7289/V5C8276M, 2009.
Anstey, J. A., Davini, P., Gray, L. J., Woollings, T. J., Butchart, N., Cagnazzo, C., Christiansen, B., Hardiman, S. C., Osprey, S. M., and Yang, S.: Multi-model analysis of Northern Hemisphere winter blocking: Model biases and the role of resolution, J. Geophys. Res.-Atmos., 118, 3956–3971, https://doi.org/10.1002/jgrd.50231, 2013.
Archambault, H. M., Bosart, L. F., Keyser, D., and Aiyyer, A. R.: Influence of large-scale flow regimes on cool-season precipitation in the northeastern
United States, Mon.Weather Rev., 136, 2945–2963, https://doi.org/10.1175/2007MWR2308.1, 2008.
Auger, J. D., Birkel, S. D., Maasch, K. A., Mayewski, P. A., and Schuenemann, K. C.: Examination of precipitation variability in Southern Greenland, J. Geophys. Res.-Atmos., 122, 6202–6216, https://doi.org/10.1002/2016JD026377, 2017.
Black, J., Johnson, N. C., Baxter, S., Feldstein, S. B., Harnos, D. S., and
L'Heureux, M. L.: The predictors and forecast skill of Northern Hemisphere
teleconnection patterns for lead times of 3–4 weeks, Mon. Weather Rev., 145, 2855–2877, https://doi.org/10.1175/MWR-D-16-0394.1, 2017.
Bonsal, B. and Shabbar, A.: Impacts of large-scale circulation variability
on low streamflows over Canada: a review, Can. Water Resour. J., 33, 137–154, https://doi.org/10.4296/cwrj3302137, 2008.
Bradbury, J. A., Dingman, S. L., and Keim, B. D.: New England drought and
relations with large scale atmospheric circulation patterns 1, J. Am. Water Resour. Assoc., 38, 1287–1299, https://doi.org/10.1111/j.1752-1688.2002.tb04348.x, 2002a.
Bradbury, J. A., Keim, B. D., and Wake, C. P.: US East Coast trough indices
at 500 hpa and New England winter climate variability, J. Climate, 15, 3509–3517, https://doi.org/10.1175/1520-0442(2002)015<3509:usecti>2.0.co;2, 2002b.
Bradbury, J. A., Keim, B. D., and Wake, C. P.: The influence of regional storm tracking and teleconnections on winter precipitation in the Northeastern United States, Ann. Assoc. Am. Geogr., 93, 544–556, https://doi.org/10.1111/1467-8306.9303002, 2003.
Davis, R. E., Demme, G., and Dolan, R.: Synoptic climatology of Atlantic
Coast north-easters, Int. J. Climatol., 13, 171–189, https://doi.org/10.1002/joc.3370130204, 1993.
Donaldson, N. and Stewart, R.: On the precipitation regions within two storms affecting Atlantic Canada, Atmos.-Ocean, 27, 108–129,
https://doi.org/10.1080/07055900.1989.9649330, 1989.
Hanley, J. and Caballero, R.: Objective identification and tracking of multicentre cyclones in the era-interim reanalysis dataset, Q. J. Roy. Meteorol. Soc., 138, 612–625, https://doi.org/10.1002/qj.948, 2012.
Hartley, S. and Keables, M. J.: Synoptic associations of winter climate and
snowfall variability in New England, usa, 1950–1992, Int. J. Climatol., 18, 281–298, https://doi.org/10.1002/(sici)1097-0088(19980315)18:3<281::aid-joc245>3.0.co;2-f, 1998.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Huntington, T. G., Hodgkins, G. A., Keim, B. D., and Dudley, R. W.: Changes
in the proportion of precipitation occurring as snow in New England (1949–2000), J. Climate, 17, 2626–2636,
https://doi.org/10.1175/1520-0442(2004)017<2626:citpop>2.0.co;2, 2004.
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation: regional
temperatures and precipitation, Science, 269, 676–679,
https://doi.org/10.1126/science.269.5224.676, 1995.
Hurrell, J. W. and Van Loon, H.: Decadal variations in climate associated with the North Atlantic Oscillation, in: Climatic change at high elevation
sites, Springer, Dordrecht, the Netherlands, 69–94, https://doi.org/10.1007/978-94-015-8905-5_4, 1997.
Hurrell, J. W. and National Center for Atmospheric Research Staff (Eds.):
The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index
(station-based), available at:
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based,
last access: 12 March 2020.
Johansson, Å.: Prediction skill of the NAO and PNA from daily to seasonal time scales, J. Climate, 20, 1957–1975, https://doi.org/10.1175/jcli4072.1, 2007.
Kocin, P. J. and Uccellini, L. W.: Northeast snowstorms (volume 1: Overview,
volume 2: The cases), American Meteorological Society, Massachusetts, USA, 2004.
Morin, J., Block, P., Rajagopalan, B., and Clark, M.: Identification of large scale climate patterns affecting snow variability in the Eastern United States, Int. J. Climatol., 28, 315–328, https://doi.org/10.1002/joc.1534, 2008.
Murray, R. J. and Simmonds, I.: A numerical scheme for tracking cyclone centres from digital data. part ii: Application to January and July general
circulation model simulations, Aust. Meteorol. Mag., 39, 167–180, 1991.
Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R., Caballero, R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich, K., Grieger, J., Gulev, S., Hanley, J., Hewson, T., Inatsu, M., Keay, K., Kew, S. F., Kindem, I., Leckebusch, G. C., Liberato, M. L. R., Lionello, P., Mokhov, I.
I., Pinto, J. G., Raible, C. C., Reale, M., Rudeva, I., Schuster, M., Simmonds, I., Sinclair, M., Sprenger, M., Tilinina, N. D., Trigo, I. F., Ulbrich, S., Ulbrich, U., Wang, X. L., and Wernli, H.: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms, B. Am. Meteorol. Soc., 94, 529–547, https://doi.org/10.1175/bams-d-11-00154.1, 2013.
Ning, L. and Bradley, R. S.: Winter climate extremes over the Northeastern
United States and Southeastern Canada and teleconnections with large-scale modes of climate variability, J. Climate, 28, 2475–2493, https://doi.org/10.1175/jcli-d-13-00750.1, 2015.
Notaro, M., Wang, W., and Gong, W.: Model and observational analysis of the
Northeast US regional climate and its relationship to the pna and nao patterns during early winter, Mon. Weather Rev., 134, 3479–3505,
https://doi.org/10.1175/mwr3234.1, 2006.
Pausata, F. S. R., Gaetani, M., Messori, G., Kloster, S., and Dentener, F.
J.: The role of aerosol in altering North Atlantic atmospheric circulation in winter and its impact on air quality, Atmos. Chem. Phys., 15, 1725–1743, https://doi.org/10.5194/acp-15-1725-2015, 2015.
Pfahl, S. and Wernli, H.: Quantifying the relevance of cyclones for precipitation extremes, J. Climate, 25, 6770–6780,
https://doi.org/10.1175/jcli-d-11-00705.1, 2012.
Pinto, J. G., Zacharias, S., Fink, A. H., Leckebusch, G. C., and Ulbrich, U.: Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO, Clim. Dynam., 32, 711–737,
https://doi.org/10.1007/s00382-008-0396-4, 2009.
Resio, D. T. and Hayden, B. P.: Recent secular variations in mid-Atlantic
winter extratropical storm climate, J. Appl. Meteorol., 14, 1223–1234, https://doi.org/10.1175/1520-0450(1975)014<1223:rsvima>2.0.co;2, 1975.
Riviere, G. and Orlanski, I.: Characteristics of the atlantic storm-track
eddy activity and its relation with the North Atlantic Oscillation, J. Atmos. Sci., 64, 241–266, https://doi.org/10.1175/jas3850.1, 2007.
Rogers, J. C.: Patterns of low-frequency monthly sea level pressure
variability (1899–1986) and associated wave cyclone frequencies, J. Climate, 3, 1364–1379, https://doi.org/10.1175/1520-0442(1990)003<1364:polfms>2.0.co;2, 1990.
Scaife, A. A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R. T., Dunstone, N., Eade, R., Fereday, D., Folland, C. K., Gordon, M., Hermanson, L., Knight, J. R., Lea, D. J., MacLachlan, C., Maidens, A., Martin, M., Peterson, A. K., Smith, D., Vellinga, M., Wallace, E., Waters, J., and Williams, A.: Skillful long-range prediction of European and North American winters, Geophys. Res. Lett., 41, 2514–2519, https://doi.org/10.1002/2014gl059637, 2014.
Serreze, M. C., Carse, F., Barry, R. G., and Rogers, J. C.: Icelandic low
cyclone activity: Climatological features, linkages with the NAO, and
relationships with recent changes in the northern hemisphere circulation, J. Climate, 10, 453–464, https://doi.org/10.1175/1520-0442(1997)010<0453:ilcacf>2.0.co;2, 1997.
Shabbar, A., Huang, J., and Higuchi, K.: The relationship between the wintertime north Atlantic Oscillation and blocking episodes in the North
Atlantic, Int. J. Climatol., 21, 355–369, https://doi.org/10.1002/joc.612, 2001.
Stone, D. A., Weaver, A. J., and Zwiers, F. W.: Trends in Canadian precipitation intensity, Atmos.-Ocean, 38, 321–347,
https://doi.org/10.1080/07055900.2000.9649651, 2000.
Tibaldi, S. and Molteni, F.: On the operational predictability of blocking,
Tellus A, 42, 343–365, https://doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x, 1990.
Wang, X. L., Wan, H., and Swail, V. R.: Observed changes in cyclone activity
in Canada and their relationships to major circulation regimes, J. Climate, 19, 896–915, https://doi.org/10.1175/jcli3664.1, 2006.
Wettstein, J. J. and Mearns, L. O.: The influence of the North Atlantic–Arctic Oscillation on mean, variance, and extremes of temperature
in the Northeastern United States and Canada, J. Climate, 15, 3586–3600, https://doi.org/10.1175/1520-0442(2002)015<3586:tiotna>2.0.co;2, 2002.
Whan, K. and Zwiers, F.: The impact of ENSO and the NAO on extreme winter
precipitation in North America in observations and regional climate models,
Clim. Dynam., 48, 1401–1411, https://doi.org/10.1007/s00382-016-3148-x, 2017.
Woollings, T., Hoskins, B., Blackburn, M., and Berrisford, P.: A new Rossby
wave–breaking interpretation of the North Atlantic Oscillation, J. Atmos. Sci., 65, 609–626, https://doi.org/10.1175/2007jas2347.1, 2008.
Short summary
This study explores the relationship between the North Atlantic Oscillation and the winter climate of eastern North America using reanalysis data. Results show that negative phases are linked with an increase in frequency of winter storms developing on the east coast of the United States, resulting in much heavier snowfall over the eastern United States. On the contrary, an increase in cyclone activity over southeastern Canada results in slightly heavier precipitation during positive phases.
This study explores the relationship between the North Atlantic Oscillation and the winter...