Articles | Volume 3, issue 3
https://doi.org/10.5194/wcd-3-1021-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-3-1021-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Supercell convective environments in Spain based on ERA5: hail and non-hail differences
Carlos Calvo-Sancho
CORRESPONDING AUTHOR
Department of Applied Mathematics, Faculty of Computer Engineering,
University of Valladolid, Segovia, Spain
Javier Díaz-Fernández
Department of Earth Physics and Astrophysics, Faculty of Physics,
Complutense University of Madrid, Madrid, Spain
Yago Martín
Department of Geography, Faculty of History and Philosophy, University Pablo de Olavide, Seville, Spain
Pedro Bolgiani
Department of Earth Physics and Astrophysics, Faculty of Physics,
Complutense University of Madrid, Madrid, Spain
Mariano Sastre
Department of Earth Physics and Astrophysics, Faculty of Physics,
Complutense University of Madrid, Madrid, Spain
Juan Jesús González-Alemán
State Meteorological Agency (AEMET), Madrid, Spain
Daniel Santos-Muñoz
Department of Research and Development, Danmarks Meteorologiske Institut, Copenhaguen, Denmark
José Ignacio Farrán
Department of Applied Mathematics, Faculty of Computer Engineering,
University of Valladolid, Segovia, Spain
María Luisa Martín
Department of Applied Mathematics, Faculty of Computer Engineering,
University of Valladolid, Segovia, Spain
Institute of Interdisciplinary Mathematics (IMI), Complutense
University of Madrid, Madrid, Spain
Related authors
Mauricio López-Reyes, María Luisa Martín-Pérez, Carlos Calvo-Sancho, and Juan Jesús González-Alemán
EGUsphere, https://doi.org/10.5194/egusphere-2025-3109, https://doi.org/10.5194/egusphere-2025-3109, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study explored why Hurricane Lidia rapidly intensified near Mexico’s Pacific coast. We found that specific upper-atmosphere weather patterns significantly boosted the hurricane’s strength. Identifying these early atmospheric signals can help predict rapid intensification more accurately, especially in regions with limited forecasting tools. Our method provides a cost-effective way to better anticipate hurricanes, potentially improving warnings and safety measures.
Florian Pantillon, Silvio Davolio, Elenio Avolio, Carlos Calvo-Sancho, Diego Saul Carrió, Stavros Dafis, Emanuele Silvio Gentile, Juan Jesus Gonzalez-Aleman, Suzanne Gray, Mario Marcello Miglietta, Platon Patlakas, Ioannis Pytharoulis, Didier Ricard, Antonio Ricchi, Claudio Sanchez, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 1187–1205, https://doi.org/10.5194/wcd-5-1187-2024, https://doi.org/10.5194/wcd-5-1187-2024, 2024
Short summary
Short summary
Cyclone Ianos of September 2020 was a high-impact but poorly predicted medicane (Mediterranean hurricane). A community effort of numerical modelling provides robust results to improve prediction. It is found that the representation of local thunderstorms controlled the interaction of Ianos with a jet stream at larger scales and its subsequent evolution. The results help us understand the peculiar dynamics of medicanes and provide guidance for the next generation of weather and climate models.
Kerry Emanuel, Tommaso Alberti, Stella Bourdin, Suzana J. Camargo, Davide Faranda, Emmanouil Flaounas, Juan Jesus Gonzalez-Aleman, Chia-Ying Lee, Mario Marcello Miglietta, Claudia Pasquero, Alice Portal, Hamish Ramsay, Marco Reale, and Romualdo Romero
Weather Clim. Dynam., 6, 901–926, https://doi.org/10.5194/wcd-6-901-2025, https://doi.org/10.5194/wcd-6-901-2025, 2025
Short summary
Short summary
Storms strongly resembling hurricanes are sometimes observed to form well outside the tropics, even in polar latitudes. They behave capriciously, developing very rapidly and then dying just as quickly. We show that strong dynamical processes in the atmosphere can sometimes cause it to become much colder locally than the underlying ocean, creating the conditions for hurricanes to form but only over small areas and for short times. We call the resulting storms "CYCLOPs".
Mauricio López-Reyes, María Luisa Martín-Pérez, Carlos Calvo-Sancho, and Juan Jesús González-Alemán
EGUsphere, https://doi.org/10.5194/egusphere-2025-3109, https://doi.org/10.5194/egusphere-2025-3109, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study explored why Hurricane Lidia rapidly intensified near Mexico’s Pacific coast. We found that specific upper-atmosphere weather patterns significantly boosted the hurricane’s strength. Identifying these early atmospheric signals can help predict rapid intensification more accurately, especially in regions with limited forecasting tools. Our method provides a cost-effective way to better anticipate hurricanes, potentially improving warnings and safety measures.
Florian Pantillon, Silvio Davolio, Elenio Avolio, Carlos Calvo-Sancho, Diego Saul Carrió, Stavros Dafis, Emanuele Silvio Gentile, Juan Jesus Gonzalez-Aleman, Suzanne Gray, Mario Marcello Miglietta, Platon Patlakas, Ioannis Pytharoulis, Didier Ricard, Antonio Ricchi, Claudio Sanchez, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 1187–1205, https://doi.org/10.5194/wcd-5-1187-2024, https://doi.org/10.5194/wcd-5-1187-2024, 2024
Short summary
Short summary
Cyclone Ianos of September 2020 was a high-impact but poorly predicted medicane (Mediterranean hurricane). A community effort of numerical modelling provides robust results to improve prediction. It is found that the representation of local thunderstorms controlled the interaction of Ianos with a jet stream at larger scales and its subsequent evolution. The results help us understand the peculiar dynamics of medicanes and provide guidance for the next generation of weather and climate models.
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104, https://doi.org/10.5194/acp-24-4083-2024, https://doi.org/10.5194/acp-24-4083-2024, 2024
Short summary
Short summary
During February–March (FM) 2020–2022, unusually intense dust storms from northern Africa hit the western Euro-Mediterranean (WEM). Using dust products from satellites and atmospheric reanalysis for 2003–2022, results show that cut-off lows and European blocking are key drivers of FM dust intrusions over the WEM. A higher frequency of cut-off lows associated with subtropical ridges is observed in the late 2020–2022 period.
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
Nat. Hazards Earth Syst. Sci., 23, 2273–2287, https://doi.org/10.5194/nhess-23-2273-2023, https://doi.org/10.5194/nhess-23-2273-2023, 2023
Short summary
Short summary
The combined use of meteorological and ocean models enabled the analysis of extreme sea conditions driven by Medicane Ianos, which hit the western coast of Greece on 18 September 2020, flooding and damaging the coast. The large spread associated with the ensemble highlighted the high model uncertainty in simulating such an extreme weather event. The different simulations have been used for outlining hazard scenarios that represent a fundamental component of the coastal risk assessment.
Shunya Koseki, Priscilla A. Mooney, William Cabos, Miguel Ángel Gaertner, Alba de la Vara, and Juan Jesus González-Alemán
Nat. Hazards Earth Syst. Sci., 21, 53–71, https://doi.org/10.5194/nhess-21-53-2021, https://doi.org/10.5194/nhess-21-53-2021, 2021
Short summary
Short summary
This study investigated one case of a tropical-like cyclone over the Mediterranean Sea under present and future climate conditions with a regional climate model. A pseudo global warming (PGW) technique is employed to simulate the cyclone under future climate, and our simulation showed that the cyclone is moderately strengthened by warmer climate. Other PGW simulations where only ocean and atmosphere are warmed reveal the interesting results that both have counteracting effects on the cyclone.
Martin Dörenkämper, Bjarke T. Olsen, Björn Witha, Andrea N. Hahmann, Neil N. Davis, Jordi Barcons, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Mariano Sastre-Marugán, Tija Sīle, Wilke Trei, Mark Žagar, Jake Badger, Julia Gottschall, Javier Sanz Rodrigo, and Jakob Mann
Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, https://doi.org/10.5194/gmd-13-5079-2020, 2020
Short summary
Short summary
This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the microscale downscaling for generating the climatology. A comprehensive evaluation of each component of the NEWA model chain is presented using observations from a large set of tall masts located all over Europe.
Nikolaos Schetakis, Rodrigo Crespo, José Luis Vázquez-Poletti, Mariano Sastre, Luis Vázquez, and Alessio Di Iorio
Geosci. Instrum. Method. Data Syst., 9, 407–415, https://doi.org/10.5194/gi-9-407-2020, https://doi.org/10.5194/gi-9-407-2020, 2020
Short summary
Short summary
In this paper, we present a compilation of the different radiation transport codes for the Martian surface that are currently used by various space agencies and institutions. In addition, as the execution of the tasks necessary to process all of these radiation data requires a high computational processing capacity, we link it to cloud computing, which is found to be an appropriate tool regarding the required resources.
Raphael Portmann, Juan Jesús González-Alemán, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 1, 597–615, https://doi.org/10.5194/wcd-1-597-2020, https://doi.org/10.5194/wcd-1-597-2020, 2020
Short summary
Short summary
In September 2018 an intense Mediterranean cyclone with structural similarities to a hurricane, a so-called medicane, caused severe damage in Greece. Its development was uncertain, even just a few days in advance. The reason for this was uncertainties in the jet stream over the North Atlantic 3 d prior to cyclogenesis that propagated into the Mediterranean. They led to an uncertain position of the upper-level disturbance and, as a result, of the position and thermal structure of the cyclone.
Cited articles
Antonescu, B., Schultz, D. M., Holzer, A., and Groenemeijer, P.: Tornadoes in Europe: An underestimated threat, B. Am. Meteorol. Soc., 98, 713–728, 2017.
Bedka, K., Murillo, E. M., Homeyer, C. R., Scarino, B., and Mersiovsky, H.:
The above-anvil cirrus plume: An important severe weather indicator in
visible and infrared satellite imagery, Weather Forecast., 33,
1159–1181, 2018.
Blair, S. F., Deroche, D. R., Boustead, J. M., Leighton, J. W., Barjenbruch,
B. L., and Gargan, W. P.: A radar-based assessment of the detectability of
giant hail, E-Journal of Severe Storms Meteorology, 6, 1–30, 2011.
Blair, S. F., Laflin, J. M., Cavanaugh, D. E., Sanders, K. J., Currens, S. R., Pullin, J. I., Cooper, D. T., and Mallinson, H. M.: High-resolution hail observations: Implications for NWS warning operations, Weather Forecast., 32, 1101–1119, 2017.
Bolgiani, P., Santos-Muñoz, D., Fernández-González, S., Sastre,
M., Valero, F., and Martín, M. L.: Microburst detection with the WRF
model: Effective resolution and forecasting indices, J. Geophys. Res.-Atmos., 125, e2020JD032883, https://doi.org/10.1029/2020JD032883, 2020.
Brooks, H. E., Lee, J. W., and Craven, J. P.: The spatial distribution of
severe thunderstorm and tornado environments from global reanalysis data,
Atmos. Res., 67, 73–94, 2003.
Brooks, H. E., Anderson, A. R., Riemann, K., Ebbers, I., and Flachs, H.:
Climatological aspects of convective parameters from the NCAR/NCEP
reanalysis, Atmos. Res., 83, 294–305, 2007.
Brooks, H. E., Doswell III, C. A., Zhang, X., Chernokulsky, A. A., Tochimoto, E., Hanstrum, B., Nascimento, E., Sills, D. M. L., Antonescu, B., and Barrett, B.: A century of progress in
severe convective storm research and forecasting, Meteor. Mon.,
59, 18.1–18.41, 2019.
Browning, K. A.: Cellular structure of convective storm, Meteorol. Mag., 91, 341–350, 1962.
Bunkers, M. J., Klimowski, B. A., and Zeitler, J. W.: The importance of parcel choice and the measure of vertical wind shear in evaluating the convective environment, Preprints, 21st Conf. Severe Local Storms, 11–16 August 2002, San Antonio, USA, American Meteorological Society, J117–J120, 11–16, https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47319.htm (last access: 1 September 2022), 2002.
Calvo-Sancho, C.: Caracterización de los ambientes convectivos que
favorecen el desarrollo de la convección organizada en España:
exploración y evolución en el período 1979-2019 mediante
reanálisis ERA5, Final Master Thesis, Universidad de Zaragoza, https://doi.org/10.13140/RG.2.2.25129.31841, 2021.
Calvo-Sancho, C. and Martín, Y.: Supercell Pre-convective Environments in Spain: a dynamic downscaling of ERA-5 Reanalysis, EGU General Assembly 2021, online, 19–30 April 2021, EGU21-2967, https://doi.org/10.5194/egusphere-egu21-2967, 2021.
Castro, A., Sánchez, J. L., and Fraile, R.: Statistical
comparison of the properties of thunderstorms in different areas around the
Ebro-Valley (Spain), Atmos. Res., 28, 237–257, 1992.
Chernokulsky, A., Kurgansky, M., Mokhov, I., Shikhov, A., Azhigov, I., Selezneva, E., Zakharchenko, D., Antonescu, B., and Kühne, T.: Tornadoes in northern Eurasia: From the middle age to the information era, Mon. Weather Rev., 148, 3081–3110, 2020.
Coffer, B. E., Taszarek, M., and Parker, M. D.: Near-Ground Wind Profiles of
Tornadic and Nontornadic Environments in the United States and Europe from
ERA5 Reanalyses, Weather Forecast., 35, 2621–2638, https://doi.org/10.1175/WAF-D-20-0153.1, 2020.
Consorcio de Compensación de Seguros: Estadística de Riesgos
Extraordinarios, Serie 1971–220, http://www.consorseguros.es/web/documents/10184/44193/Estadistica_Riesgos_Extraordinarios_1971_2014/14ca6778-2081-4060-a86d-728d9a17c522 (last access: 30 January 2022), 2020.
Dahl, J. M. L.: Supercells – Their dynamics and prediction, MSc thesis, Dept. of Theoretical Meteorology, Free University of Berlin, 121 pp., http://www.estofex.org/files/dahl_thesis.pdf (last access: 28 June 2022), 2006.
Davenport, C. E.: Environmental Evolution of Long-Lived Supercell Thunderstorms in the Great Plains, Weather Forecast., 36, 2187–2209. 2021.
Davis-Jones, R., Burgess, D. W., and Foster, M.: Test of helicity as a
forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis
Park, AB, Canada, Amer. Meteor. Soc., 588–592, 1990.
Doswell III, C. A. and Rasmussen, E. N.: The effect of neglecting the virtual temperature correction on CAPE calculations, Weather Forecast., 9, 625–629, https://doi.org/10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2, 1994.
Dotzek, N., Groenemeijer, P., Feuerstein, B., and Holzer, A. M.: Overview of
ESSL's severe convective storms research using the European Severe Weather
Database ESWD, Atmos. Res., 93, 575–586, 2009.
Duda, J. D. and Gallus, W. A.: Spring and summer midwestern severe weather
reports in supercells compared to other morphologies, Weather Forecast., 25, 190–206, https://doi.org/10.1175/2009WAF2222338.1, 2010.
Edwards, R., Allen, J. T., and Carbin, G. W.: Reliability and climatological
impacts of convective wind estimations, J. Appl. Meteorol. Clim., 57, 1825–1845, 2018.
Elmore, K. L., Flamig, Z. L., Lakshmanan, V., Kaney, B. T., Farmer, V.,
Reeves, H. D., and Rothfusz, L. P.: mPING: Crowd-sourcing weather reports
for research, B. Am. Meteorol. Soc., 95, 1335–1342, 2014.
Galanaki, E., Lagouvardos, K., Kotroni, V., Flaounas, E., and Argiriou, A.:
Thunderstorm climatology in the Mediterranean using cloud-to-ground
lightning observations, Atmos. Res., 207, 136–144, 2018.
García-Ortega, E., Merino, A., López, L., and Sánchez, J. L.:
Role of mesoscale factors at the onset of deep convection on hailstorm days
and their relation to the synoptic patterns, Atmos. Res., 114,
91–106, 2012.
Gascón, E., Merino, A., Sánchez, J. L., Fernández-González,
S., García-Ortega, E., López, L., and Hermida, L.: Spatial
distribution of thermodynamic conditions of severe storms in southwestern
Europe, Atmos. Res., 164, 194–209, 2015.
Gatzen, C. P., Fink, A. H., Schultz, D. M., and Pinto, J. G.: An 18-year climatology of derechos in Germany, Nat. Hazards Earth Syst. Sci., 20, 1335–1351, https://doi.org/10.5194/nhess-20-1335-2020, 2020.
Gayà, M.: Tornadoes and severe storms in Spain, Atmos. Res., 100, 334–343, https://doi.org/10.1016/j.Atmosres.2010.10.019, 2011.
Gensini, V. A., Converse, C., Ashley, W. S., and Taszarek, M.: Machine
Learning Classification of Significant Tornadoes and Hail in the United
States Using ERA5 Proximity Soundings, Weather Forecast., 36,
2143–2160, 2021.
Groenemeijer, P., Púčik, T., Holzer, A. M., Antonescu, B., Riemann-Campe, K., Schultz, D. M., Kühne, T., Feuerstein, B., Brooks, H. E., Doswel III, C. A., Koppert, H. J., and Sausen, R.: Severe convective
storms in Europe: Ten years of research and education at the European Severe
Storms Laboratory, B. Am. Meteorol. Soc., 98, 2641–2651, 2017.
Gropp, M. E. and Davenport, C. E.: The impact of the nocturnal transition
on the lifetime and evolution of supercell thunderstorms in the Great
Plains, Weather Forecast., 33, 1045–1061, 2018.
Gutierrez, R. E. and Kumjian, M. R.: Environmental and Radar
Characteristics of Gargantuan Hail–Producing Storms, Mon. Weather Rev., 149, 2523–2538, 2021.
Hannesen, R., Dotzek, N., Gysi, H., and Beheng, K. D.: Case study of a
tornado in the Upper Rhine valley, Meteorol. Z., 7,
163–170, 1998.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. R. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Kahraman, A., Kadioglu, M., and Markowski, P. M.: Severe convective storm
environments in Turkey, Mon. Weather Rev., 145, 4711–4725, 2017.
Kaltenböck, R.: The outbreak of severe storms along convergence lines
northeast of the Alps. Case study of the 3 August 2001 mesoscale convective
system with a pronounced bow echo, Atmos. Res., 70, 55–75, 2004.
Kaltenböck, R., Diendorfer, G., and Dotzek, N.: Evaluation of thunderstorm indices from ECMWF analyses, lightning data and severe storm reports, Atmos. Res., 93, 381–396, 2009.
Kotroni, V. and Lagouvardos, K.: Lightning in the Mediterranean and its
relation with sea-surface temperature, Environ. Res. Lett.,
11, 034006, https://doi.org/10.1088/1748-9326/11/3/034006, 2016.
Krennert, T., Pistotnik, G., Kaltenberger, R., and Csekits, C.: Crowdsourcing of weather observations at national meteorological and hydrological services in Europe, Adv. Sci. Res., 15, 71–76, https://doi.org/10.5194/asr-15-71-2018, 2018.
Kunz, M., Blahak, U., Handwerker, J., Schmidberger, M., Punge, H. J., Mohr, S., Fluck, E., and Bedka, K. M.: The severe hailstorm in southwest Germany on 28 July 2013: Characteristics, impacts and meteorological conditions, Q.
J. Roy. Meteor. Soc., 144, 231–250, 2018.
Kunz, M., Wandel, J., Fluck, E., Baumstark, S., Mohr, S., and Schemm, S.: Ambient conditions prevailing during hail events in central Europe, Nat. Hazards Earth Syst. Sci., 20, 1867–1887, https://doi.org/10.5194/nhess-20-1867-2020, 2020.
Li, F., Chavas, D. R., Reed, K. A., and Dawson II, D. T.: Climatology of
severe local storm environments and synoptic-scale features over North
America in ERA5 reanalysis and CAM6 simulation, J. Climate, 33,
8339–8365, 2020.
López, L. and Sánchez, J. L.: Discriminant methods for radar
detection of hail, Atmos. Res., 93, 358–368, 2009.
Mann, H. B. and Whitney, D. R.: On a test of whether one of two random
variables is stochastically larger than the other, Ann. Math. Stat., 50–60, 1947.
Manzato, A.: Hail in northeast Italy: Climatology and bivariate analysis
with the sounding-derived indices, J. Appl. Meteorol. Clim., 51, 449–467, 2012.
Markowski, P. and Richardson, Y.: Mesoscale meteorology in midlatitudes, vol. 2, John Wiley and Sons, ISBN 0470742135, 2011.
Markowski, P. M. and Dotzek, N.: A numerical study of the effects of
orography on supercells, Atmos. Res., 100, 457–478, 2011.
Martín, Y., Cívica, M., and Pham, E.: Constructing a Supercell
Database in Spain Using Publicly Available Two-Dimensional Radar Images and
Citizen Science, Ann. Am. Assoc. Geogr., 111, 1346–1366, https://doi.org/10.1080/24694452.2020.1812371, 2020.
Melcón, P., Merino, A., Sánchez, J. L., López, L., and
García-Ortega, E.: Spatial patterns of thermodynamic conditions of
hailstorms in southwestern France, Atmos. Res., 189, 111–126, 2017.
Merino, A., García-Ortega, E., López, L., Sánchez, J. L., and
Guerrero-Higueras, A. M.: Synoptic environment, mesoscale configurations and
forecast parameters for hailstorms in Southwestern Europe, Atmos. Res., 122, 183–198, 2013.
Miglietta, M. M., Mazon, J. and Rotunno, R.: Numerical simulations of a
tornadic supercell over the Mediterranean, Weather Forecast., 32,
1209–1226, https://doi.org/10.1175/WAF-D-16-0223.1, 2017.
Mohr, S., Kunz, M., Richter, A., and Ruck, B.: Statistical characteristics of convective wind gusts in Germany, Nat. Hazards Earth Syst. Sci., 17, 957–969, https://doi.org/10.5194/nhess-17-957-2017, 2017.
Mora, M., Riesco, J., de Pablo Dávila, F., and Rivas Soriano, L.:
Atmospheric background associated with severe lightning thunderstorms in
Central Spain, Int. J. Climatol., 35, 558–569, 2015.
Mulholland, J. P., Peters, J. M., and Morrison, H.: How does LCL height
influence deep convective updraft width?, Geophys. Res. Lett.,
48, e2021GL093316, https://doi.org/10.1029/2021GL093316, 2021.
National Weather Service (NWS): Supercell structure and dynamics, https://www.weather.gov/lmk/supercell/dynamics (last access: 24 January 2022), 2019.
Nevius, D. S. and Evans, C.: The influence of vertical advection
discretization in the WRF-ARW Model on capping inversion representation in
warm-season, thunderstorm-supporting environments, Weather Forecast.,
33, 1639–1660, 2018.
Nisi, L., Martius, O., Hering, A., Kunz, M., and Germann, U.: Spatial and
temporal distribution of hailstorms in the Alpine region: a long-term, high
resolution, radar-based analysis, Q. J. Roy. Meteor. Soc., 142, 1590–1604, 2016.
Púčik, T., Groenemeijer, P., Rýva, D., and Kolář, M.:
Proximity soundings of severe and nonsevere thunderstorms in central
Europe, Mon. Weather Rev., 143, 4805–4821, 2015.
Quirantes Calvo, J. A., Riesco Martín, J., and Núñez Mora, J.
Á.: Características básicas de las supercélulas en
España, Agencia Estatal de Meteorología (AEMET), https://repositorio.aemet.es/bitstream/20.500.11765/709/10/Caracteristicas_supercelulas.pdf (last access: 28 June 2022), 2014.
Rasmussen, E. N. and Blanchard, D. O.: A baseline climatology of
sounding-derived supercell and tornado forecast parameters, Weather
Forecast., 13, 1148–1164, 1998.
Rodríguez, O. and Bech, J.: Sounding-derived parameters associated
with tornadic storms in Catalonia, Int. J. Climatol., 38, 2400–2414, 2018.
Rodríguez, O. and Bech, J.: Tornadic environments in the Iberian
Peninsula and the Balearic Islands based on ERA5 reanalysis, Int.
J. Climatol., 41, E1959–E1979, 2021.
Romero, R., Ramis, C., Alonso, S., Doswell III, C. A., and Stensrud, D. J.:
Mesoscale model simulations of three heavy precipitation events in the
western Mediterranean region, Mon. Weather Rev., 126, 1859–1881,
1998.
Shaltout, M. and Omstedt, A.: Recent sea surface temperature trends and
future scenarios for the Mediterranean Sea, Oceanologia, 56, 411–443,
2014.
Smith, B. T., Thompson, R. L., Grams, J. S., Broyles, C., and Brooks, H. E.:
Convective modes for significant severe thunderstorms in the contiguous
United States. Part I: Storm classification and climatology, Weather Forecast., 27, 1114–1135, 2012.
Taszarek, M., Brooks, H. E., and Czernecki, B.: Sounding-derived parameters
associated with convective hazards in Europe, Mon. Weather Rev.,
145, 1511–1528, 2017.
Taszarek, M., Brooks, H. E., Czernecki, B., Szuster, P., and Fortuniak, K.:
Climatological aspects of convective parameters over Europe: A comparison of
ERA-interim and sounding data, J. Climate, 31, 4281–4308,
https://doi.org/10.1175/JCLI-D-17-0596.1, 2018.
Taszarek, M., Allen, J., Púčik, T., Groenemeijer, P., Czernecki, B., Kolendowicz, L., Lagouvardos, K., Kotroni, V., and Schulz, W.: A climatology of thunderstorms across Europe from a synthesis of multiple data sources, J. Climate, 32, 1813–1837, https://doi.org/10.1175/JCLI-D-18-0372.1, 2019.
Taszarek, M., Allen, J. T., Groenemeijer, P., Edwards, R., Brooks, H. E.,
Chmielewski, V., and Enno, S. E.: Severe convective storms across Europe and
the United States. Part I: Climatology of lightning, large hail, severe
wind, and tornadoes, J. Climate, 33, 10239–10261, https://doi.org/10.1175/JCLI-D-20-0345.1, 2020a.
Taszarek, M., Allen, J. T., Púčik, T., Hoogewind, K. A., and Brooks,
H. E.: Severe Convective Storms across Europe and the United States. Part II:
ERA5 Environments Associated with Lightning, Large Hail, Severe Wind, and
Tornadoes, J. Climate 33, 10263–10286, https://doi.org/10.1175/JCLI-D-20-0346.1, 2020b.
Taszarek, M., Pilguj, N., Allen, J. T., Gensini, V., Brooks, H. E., and
Szuster, P.: Comparison of convective parameters derived from ERA5 and
MERRA-2 with Rawinsonde data over Europe and North
America, J. Climate, 34, 3211–3237, 2021.
Thompson, R. L., Edwards, R., Hart, J. A., Elmore, K. L., and Markowski, P.:
Close proximity soundings within supercell environments obtained from the
Rapid Update Cycle, Weather Forecast., 18, 1243–1261, 2003.
Thompson, R. L., Mead, C. M., and Edwards, R.: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments, Weather Forecast., 22, 102–115, 2007.
Thompson, R. L., Smith, B. T., Grams, J. S., Dean, A. R., and Broyles, C.:
Convective modes for significant severe thunderstorms in the contiguous
United States. Part II: Supercell and QLCS tornado environments, Weather Forecast., 27, 1136–1154, 2012.
Tomas-Burguera, M., Beguería, S., and Vicente-Serrano, S. M.:
Climatology and trends of reference evapotranspiration in Spain,
Int. J. Climatol., 41, E1860–E1874, 2021.
Tullot, I. F.: Climatología de España y Portugal, vol. 76,
Universidad de Salamanca, ISBN 8478009442, 2000.
Vicente-Serrano, S. M., Azorin-Molina, C., Sanchez-Lorenzo, A., Revuelto, J., López-Moreno, J. I., González-Hidalgo, J. C., Moran-Tejeda, E., and Espejo, F.: Reference evapotranspiration variability and trends in Spain,
1961–2011, Global Planet. Change, 121, 26–40, 2014.
Weisman, M. L. and Klemp, J. B.: The dependence of numerically simulated
convective storms on vertical wind shear and buoyancy, Mon. Weather Rev., 110, 504–520, 1982.
Westermayer, A., Púčik, T., Groenemeijer, P., and Tijssen, L.: Comparison of sounding observations and reanalysis of thunderstorm environments, Eighth European Conf. on Severe Storms, 14–18 September 2015, Wiener Neustadt, Austria, European Severe Storms Laboratory, http://meetingorganizer.copernicus.org/ECSS2015/ECSS2015-136-1.pdf (last access: 28 June 2022), 2016.
Short summary
Supercells are among the most complex and dangerous severe convective storms due to their associated phenomena (lightning, strong winds, large hail, flash floods, or tornadoes). In this survey we study the supercell synoptic configurations and convective environments in Spain using the atmospheric reanalysis ERA5. Supercells are grouped into hail (greater than 5 cm) and non-hail events in order to compare and analyze the two events. The results reveal statistically significant differences.
Supercells are among the most complex and dangerous severe convective storms due to their...