Articles | Volume 3, issue 4
https://doi.org/10.5194/wcd-3-1311-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-3-1311-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A climate-change attribution retrospective of some impactful weather extremes of 2021
Laboratoire des Sciences du Climat et de l'Environnement, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, IPSL, 91191 Gif-sur-Yvette, France
London Mathematical Laboratory, 8 Margravine Gardens London, London W6 8RH, UK
LMD/IPSL, École Normale Supérieure, PSL Research University, Paris, France
Stella Bourdin
Laboratoire des Sciences du Climat et de l'Environnement, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, IPSL, 91191 Gif-sur-Yvette, France
Mireia Ginesta
Laboratoire des Sciences du Climat et de l'Environnement, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, IPSL, 91191 Gif-sur-Yvette, France
Meriem Krouma
Laboratoire des Sciences du Climat et de l'Environnement, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, IPSL, 91191 Gif-sur-Yvette, France
Robin Noyelle
Laboratoire des Sciences du Climat et de l'Environnement, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, IPSL, 91191 Gif-sur-Yvette, France
Flavio Pons
Laboratoire des Sciences du Climat et de l'Environnement, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, IPSL, 91191 Gif-sur-Yvette, France
Pascal Yiou
Laboratoire des Sciences du Climat et de l'Environnement, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, IPSL, 91191 Gif-sur-Yvette, France
Gabriele Messori
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Centre of Natural Hazards and Disaster Science (CNDS), Uppsala, Sweden
Department of Meteorology, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm, Sweden
Related authors
Robin Noyelle, Davide Faranda, Yoann Robin, Mathieu Vrac, and Pascal Yiou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3167, https://doi.org/10.5194/egusphere-2024-3167, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Extreme meteorological and climatological events properties are changing under human caused climate change. Extreme events attribution methods seek to estimate the contribution of global warming in the probability and intensity changes of extreme events. Here we propose a procedure to estimate these quantities for the flow analogues method which compare the observed event to similar events in the past.
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2809, https://doi.org/10.5194/egusphere-2024-2809, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Storm Daniel (2023) is one of the most catastrophic ones ever documented in the Mediterranean. Our results highlight the different dynamics and therefore the different predictability skill of precipitation, its extremes and impacts that have been produced in Greece and Libya, the two most affected countries. Our approach concerns a holistic analysis of the storm by articulating dynamics, weather prediction, hydrological and oceanographic implications, climate extremes and attribution theory.
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024, https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Short summary
We introduce ClimaMeter, a tool offering real-time insights into extreme-weather events. Our tool unveils how climate change and natural variability affect these events, affecting communities worldwide. Our research equips policymakers and the public with essential knowledge, fostering informed decisions and enhancing climate resilience. We analysed two distinct events, showcasing ClimaMeter's global relevance.
Ferran Lopez-Marti, Mireia Ginesta, Davide Faranda, Anna Rutgersson, Pascal Yiou, Lichuan Wu, and Gabriele Messori
EGUsphere, https://doi.org/10.5194/egusphere-2024-1711, https://doi.org/10.5194/egusphere-2024-1711, 2024
Short summary
Short summary
Explosive Cyclones and Atmospheric Rivers are two main drivers of extreme weather in Europe. In this study, we investigate their joint changes in future climates over the North Atlantic. Our results show that both the concurrence of these events and the intensity of atmospheric rivers increase by the end of the century across different future scenarios. Furthermore, explosive cyclones associated with atmospheric rivers are longer-lasting and deeper than those without atmospheric rivers.
Lucas Fery and Davide Faranda
Weather Clim. Dynam., 5, 439–461, https://doi.org/10.5194/wcd-5-439-2024, https://doi.org/10.5194/wcd-5-439-2024, 2024
Short summary
Short summary
In this study, we analyse warm-season derechos – a type of severe convective windstorm – in France between 2000 and 2022, identifying 38 events. We compare their frequency and features with other countries. We also examine changes in the associated large-scale patterns. We find that convective instability has increased in southern Europe. However, the attribution of these changes to natural climate variability, human-induced climate change or a combination of both remains unclear.
Emma Holmberg, Gabriele Messori, Rodrigo Caballero, and Davide Faranda
Earth Syst. Dynam., 14, 737–765, https://doi.org/10.5194/esd-14-737-2023, https://doi.org/10.5194/esd-14-737-2023, 2023
Short summary
Short summary
We analyse the duration of large-scale patterns of air movement in the atmosphere, referred to as persistence, and whether unusually persistent patterns favour warm-temperature extremes in Europe. We see no clear relationship between summertime heatwaves and unusually persistent patterns. This suggests that heatwaves do not necessarily require the continued flow of warm air over a region and that local effects could be important for their occurrence.
Flavio Maria Emanuele Pons and Davide Faranda
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 155–186, https://doi.org/10.5194/ascmo-8-155-2022, https://doi.org/10.5194/ascmo-8-155-2022, 2022
Short summary
Short summary
The objective motivating this study is the assessment of the impacts of winter climate extremes, which requires accurate simulation of snowfall. However, climate simulation models contain physical approximations, which result in biases that must be corrected using past data as a reference. We show how to exploit simulated temperature and precipitation to estimate snowfall from already bias-corrected variables, without requiring the elaboration of complex, multivariate bias adjustment techniques.
Miriam D'Errico, Flavio Pons, Pascal Yiou, Soulivanh Tao, Cesare Nardini, Frank Lunkeit, and Davide Faranda
Earth Syst. Dynam., 13, 961–992, https://doi.org/10.5194/esd-13-961-2022, https://doi.org/10.5194/esd-13-961-2022, 2022
Short summary
Short summary
Climate change is already affecting weather extremes. In a warming climate, we will expect the cold spells to decrease in frequency and intensity. Our analysis shows that the frequency of circulation patterns leading to snowy cold-spell events over Italy will not decrease under business-as-usual emission scenarios, although the associated events may not lead to cold conditions in the warmer scenarios.
Bérengère Dubrulle, François Daviaud, Davide Faranda, Louis Marié, and Brice Saint-Michel
Nonlin. Processes Geophys., 29, 17–35, https://doi.org/10.5194/npg-29-17-2022, https://doi.org/10.5194/npg-29-17-2022, 2022
Short summary
Short summary
Present climate models discuss climate change but show no sign of bifurcation in the future. Is this because there is none or because they are in essence too simplified to be able to capture them? To get elements of an answer, we ran a laboratory experiment and discovered that the answer is not so simple.
Davide Faranda, Mathieu Vrac, Pascal Yiou, Flavio Maria Emanuele Pons, Adnane Hamid, Giulia Carella, Cedric Ngoungue Langue, Soulivanh Thao, and Valerie Gautard
Nonlin. Processes Geophys., 28, 423–443, https://doi.org/10.5194/npg-28-423-2021, https://doi.org/10.5194/npg-28-423-2021, 2021
Short summary
Short summary
Machine learning approaches are spreading rapidly in climate sciences. They are of great help in many practical situations where using the underlying equations is difficult because of the limitation in computational power. Here we use a systematic approach to investigate the limitations of the popular echo state network algorithms used to forecast the long-term behaviour of chaotic systems, such as the weather. Our results show that noise and intermittency greatly affect the performances.
Gabriele Messori and Davide Faranda
Clim. Past, 17, 545–563, https://doi.org/10.5194/cp-17-545-2021, https://doi.org/10.5194/cp-17-545-2021, 2021
Short summary
Short summary
The palaeoclimate community must both analyse large amounts of model data and compare very different climates. Here, we present a seemingly very abstract analysis approach that may be fruitfully applied to palaeoclimate numerical simulations. This approach characterises the dynamics of a given climate through a small number of metrics and is thus suited to face the above challenges.
Gabriele Messori, Nili Harnik, Erica Madonna, Orli Lachmy, and Davide Faranda
Earth Syst. Dynam., 12, 233–251, https://doi.org/10.5194/esd-12-233-2021, https://doi.org/10.5194/esd-12-233-2021, 2021
Short summary
Short summary
Atmospheric jets are a key component of the climate system and of our everyday lives. Indeed, they affect human activities by influencing the weather in many mid-latitude regions. However, we still lack a complete understanding of their dynamical properties. In this study, we try to relate the understanding gained in idealized computer simulations of the jets to our knowledge from observations of the real atmosphere.
Flavio Maria Emanuele Pons and Davide Faranda
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-352, https://doi.org/10.5194/nhess-2020-352, 2020
Preprint withdrawn
Short summary
Short summary
The objective motivating this study is the assessment of the impacts of winter climate extremes, which requires accurate simulation of snowfall. However, climate simulation models contain physical approximations, which result in biases that must be corrected using past data as a reference. We show how to exploit simulated temperature and precipitation to estimate snowfall from already bias-corrected variables, without requiring the elaboration of complex, multivariate bias adjustment techniques.
Davide Faranda
Weather Clim. Dynam., 1, 445–458, https://doi.org/10.5194/wcd-1-445-2020, https://doi.org/10.5194/wcd-1-445-2020, 2020
Short summary
Short summary
Despite the global temperature rise caused by anthropogenic emissions, we still observe heavy snowfalls that cause casualties, transport disruptions and energy supply problems. The goal of this paper is to investigate recent trends in snowfalls from reanalysis and observational datasets. The analysis shows an evident discrepancy between trends in average and extreme snowfalls. The latter can only be explained by looking at atmospheric circulation.
Paolo De Luca, Gabriele Messori, Davide Faranda, Philip J. Ward, and Dim Coumou
Earth Syst. Dynam., 11, 793–805, https://doi.org/10.5194/esd-11-793-2020, https://doi.org/10.5194/esd-11-793-2020, 2020
Short summary
Short summary
In this paper we quantify Mediterranean compound temperature and precipitation dynamical extremes (CDEs) over the 1979–2018 period. The strength of the temperature–precipitation coupling during summer increased and is driven by surface warming. We also link the CDEs to compound hot–dry and cold–wet events during summer and winter respectively.
Davide Faranda, Yuzuru Sato, Gabriele Messori, Nicholas R. Moloney, and Pascal Yiou
Earth Syst. Dynam., 10, 555–567, https://doi.org/10.5194/esd-10-555-2019, https://doi.org/10.5194/esd-10-555-2019, 2019
Short summary
Short summary
We show how the complex dynamics of the jet stream at midlatitude can be described by a simple mathematical model. We match the properties of the model to those obtained by the jet data derived from observations.
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Davide Faranda, Gabriele Messori, M. Carmen Alvarez-Castro, and Pascal Yiou
Nonlin. Processes Geophys., 24, 713–725, https://doi.org/10.5194/npg-24-713-2017, https://doi.org/10.5194/npg-24-713-2017, 2017
Short summary
Short summary
We study the dynamical properties of the Northern Hemisphere atmospheric circulation by analysing the sea-level pressure, 2 m temperature, and precipitation frequency field over the period 1948–2013. The metrics are linked to the predictability and the persistence of the atmospheric flows. We study the dependence on the seasonal cycle and the fields corresponding to maxima and minima of the dynamical indicators.
Davide Faranda and Dimitri Defrance
Earth Syst. Dynam., 7, 517–523, https://doi.org/10.5194/esd-7-517-2016, https://doi.org/10.5194/esd-7-517-2016, 2016
Short summary
Short summary
We introduce a general technique to detect a climate change signal in the coherent and turbulent components of the atmospheric circulation. Our analysis suggests that the coherent components (atmospheric waves, long-term oscillations) will experience the greatest changes in future climate, proportionally to the greenhouse gas emission scenario considered.
M. Mihelich, D. Faranda, B. Dubrulle, and D. Paillard
Nonlin. Processes Geophys., 22, 187–196, https://doi.org/10.5194/npg-22-187-2015, https://doi.org/10.5194/npg-22-187-2015, 2015
Camille Cadiou and Pascal Yiou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3473, https://doi.org/10.5194/egusphere-2024-3473, 2024
Short summary
Short summary
Cold extremes significantly affect healthcare and energy systems. Global warming is expected to reduce these extremes. Our study indeed shows that very intense cold spells will become nearly impossible in France by the end of the 21st century for high levels of warming. However, we demonstrate that events as intense as the 1985 cold spell in France may still occur in the near future. These events are linked to specific atmospheric patterns that bring cold air from high latitudes into Europe.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
Robin Noyelle, Davide Faranda, Yoann Robin, Mathieu Vrac, and Pascal Yiou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3167, https://doi.org/10.5194/egusphere-2024-3167, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Extreme meteorological and climatological events properties are changing under human caused climate change. Extreme events attribution methods seek to estimate the contribution of global warming in the probability and intensity changes of extreme events. Here we propose a procedure to estimate these quantities for the flow analogues method which compare the observed event to similar events in the past.
Clare Marie Flynn, Julia Moemken, Joaquim G. Pinto, and Gabriele Messori
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-298, https://doi.org/10.5194/essd-2024-298, 2024
Preprint under review for ESSD
Short summary
Short summary
We created a new, publicly available database of the Top 50 most extreme European winter windstorms from each of four different meteorological input data sets covering the years 1995–2015. We found variability in all aspects of our database, from which storms were included in the Top 50 storms for each input to their spatial variability. We urge users of our database to consider the storms as identified from two or more input sources within our database, where possible.
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2809, https://doi.org/10.5194/egusphere-2024-2809, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Storm Daniel (2023) is one of the most catastrophic ones ever documented in the Mediterranean. Our results highlight the different dynamics and therefore the different predictability skill of precipitation, its extremes and impacts that have been produced in Greece and Libya, the two most affected countries. Our approach concerns a holistic analysis of the storm by articulating dynamics, weather prediction, hydrological and oceanographic implications, climate extremes and attribution theory.
Gabriele Messori, Antonio Segalini, and Alexandre M. Ramos
Earth Syst. Dynam., 15, 1207–1225, https://doi.org/10.5194/esd-15-1207-2024, https://doi.org/10.5194/esd-15-1207-2024, 2024
Short summary
Short summary
Simultaneous heatwaves or cold spells in remote geographical regions have potentially far-reaching impacts on society and the environment. Despite this, we have little knowledge of when and where these extreme events have occurred in the past decades. In this paper, we present a summary of past simultaneous heatwaves or cold spells and provide a computer program to enable other researchers to study them.
Marco Gaetani, Gabriele Messori, Francesco S. R. Pausata, Shivangi Tiwari, M. Carmen Alvarez Castro, and Qiong Zhang
Clim. Past, 20, 1735–1759, https://doi.org/10.5194/cp-20-1735-2024, https://doi.org/10.5194/cp-20-1735-2024, 2024
Short summary
Short summary
Palaeoclimate reconstructions suggest that, around 6000 years ago, a greening of the Sahara took place, accompanied by climate changes in the Northern Hemisphere at middle to high latitudes. In this study, a climate model is used to investigate how this drastic environmental change in the Sahara impacted remote regions. Specifically, climate simulations reveal significant modifications in atmospheric circulation over the North Atlantic, affecting North American and European climates.
Antonio Segalini, Jacopo Riboldi, Volkmar Wirth, and Gabriele Messori
Weather Clim. Dynam., 5, 997–1012, https://doi.org/10.5194/wcd-5-997-2024, https://doi.org/10.5194/wcd-5-997-2024, 2024
Short summary
Short summary
Planetary Rossby waves are created by topography and evolve in time. In this work, an analytical solution of this classical problem is proposed under the approximation of linear wave dynamics. The theory is able to describe reasonably well the evolution of the perturbation and compares well with full nonlinear simulations. Several relevant cases with single and double zonal jets are assessed with the theoretical framework
Michael K. Schutte, Alice Portal, Simon H. Lee, and Gabriele Messori
EGUsphere, https://doi.org/10.5194/egusphere-2024-2240, https://doi.org/10.5194/egusphere-2024-2240, 2024
Short summary
Short summary
Large-scale motions in the atmosphere, namely atmospheric waves, greatly impact the weather that we experience at the Earth's surface. Here we investigate how waves in the troposphere (the lower 10 km of the atmosphere) and the stratosphere (above the troposphere) interact to affect surface weather. We find that tropospheric waves that are reflected back down by the stratosphere change weather patterns and temperatures in North America. These changes can indirectly affect the weather in Europe.
Sebastian Sippel, Clair Barnes, Camille Cadiou, Erich Fischer, Sarah Kew, Marlene Kretschmer, Sjoukje Philip, Theodore G. Shepherd, Jitendra Singh, Robert Vautard, and Pascal Yiou
Weather Clim. Dynam., 5, 943–957, https://doi.org/10.5194/wcd-5-943-2024, https://doi.org/10.5194/wcd-5-943-2024, 2024
Short summary
Short summary
Winter temperatures in central Europe have increased. But cold winters can still cause problems for energy systems, infrastructure, or human health. Here we tested whether a record-cold winter, such as the one observed in 1963 over central Europe, could still occur despite climate change. The answer is yes: it is possible, but it is very unlikely. Our results rely on climate model simulations and statistical rare event analysis. In conclusion, society must be prepared for such cold winters.
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024, https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Short summary
We introduce ClimaMeter, a tool offering real-time insights into extreme-weather events. Our tool unveils how climate change and natural variability affect these events, affecting communities worldwide. Our research equips policymakers and the public with essential knowledge, fostering informed decisions and enhancing climate resilience. We analysed two distinct events, showcasing ClimaMeter's global relevance.
Ferran Lopez-Marti, Mireia Ginesta, Davide Faranda, Anna Rutgersson, Pascal Yiou, Lichuan Wu, and Gabriele Messori
EGUsphere, https://doi.org/10.5194/egusphere-2024-1711, https://doi.org/10.5194/egusphere-2024-1711, 2024
Short summary
Short summary
Explosive Cyclones and Atmospheric Rivers are two main drivers of extreme weather in Europe. In this study, we investigate their joint changes in future climates over the North Atlantic. Our results show that both the concurrence of these events and the intensity of atmospheric rivers increase by the end of the century across different future scenarios. Furthermore, explosive cyclones associated with atmospheric rivers are longer-lasting and deeper than those without atmospheric rivers.
Aleksa Stanković, Gabriele Messori, Joaquim G. Pinto, and Rodrigo Caballero
Weather Clim. Dynam., 5, 821–837, https://doi.org/10.5194/wcd-5-821-2024, https://doi.org/10.5194/wcd-5-821-2024, 2024
Short summary
Short summary
The article studies extreme winds near the surface over the North Atlantic Ocean. These winds are caused by storms that pass through this region. The strongest storms that have occurred in the winters from 1950–2020 are studied in detail and compared to weaker but still strong storms. The analysis shows that the storms associated with the strongest winds are preceded by another older storm that travelled through the same region and made the conditions suitable for development of extreme winds.
Derrick Muheki, Axel A. J. Deijns, Emanuele Bevacqua, Gabriele Messori, Jakob Zscheischler, and Wim Thiery
Earth Syst. Dynam., 15, 429–466, https://doi.org/10.5194/esd-15-429-2024, https://doi.org/10.5194/esd-15-429-2024, 2024
Short summary
Short summary
Climate change affects the interaction, dependence, and joint occurrence of climate extremes. Here we investigate the joint occurrence of pairs of river floods, droughts, heatwaves, crop failures, wildfires, and tropical cyclones in East Africa under past and future climate conditions. Our results show that, across all future warming scenarios, the frequency and spatial extent of these co-occurring extremes will increase in this region, particularly in areas close to the Nile and Congo rivers.
Lucas Fery and Davide Faranda
Weather Clim. Dynam., 5, 439–461, https://doi.org/10.5194/wcd-5-439-2024, https://doi.org/10.5194/wcd-5-439-2024, 2024
Short summary
Short summary
In this study, we analyse warm-season derechos – a type of severe convective windstorm – in France between 2000 and 2022, identifying 38 events. We compare their frequency and features with other countries. We also examine changes in the associated large-scale patterns. We find that convective instability has increased in southern Europe. However, the attribution of these changes to natural climate variability, human-induced climate change or a combination of both remains unclear.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 2347–2358, https://doi.org/10.5194/gmd-17-2347-2024, https://doi.org/10.5194/gmd-17-2347-2024, 2024
Short summary
Short summary
In the last decades, weather forecasting up to 15 d into the future has been dominated by physics-based numerical models. Recently, deep learning models have challenged this paradigm. However, the latter models may struggle when forecasting weather extremes. In this article, we argue for deep learning models specifically designed to handle extreme events, and we propose a foundational framework to develop such models.
Camille Cadiou and Pascal Yiou
EGUsphere, https://doi.org/10.5194/egusphere-2024-612, https://doi.org/10.5194/egusphere-2024-612, 2024
Short summary
Short summary
Extreme winter cold temperatures in Europe have huge societal impacts. This study focuses on very extreme cold events, such as the record of winter 1963 in France, expected to become rarer due to climate change. We use a light and efficient rare event algorithm to simulate a large number of extreme cold winters over France, to analyse their characteristics. We find that despite fewer occurrences, their intensity remains steady. We analyse prevailing atmospheric circulation during these events.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Emma Holmberg, Gabriele Messori, Rodrigo Caballero, and Davide Faranda
Earth Syst. Dynam., 14, 737–765, https://doi.org/10.5194/esd-14-737-2023, https://doi.org/10.5194/esd-14-737-2023, 2023
Short summary
Short summary
We analyse the duration of large-scale patterns of air movement in the atmosphere, referred to as persistence, and whether unusually persistent patterns favour warm-temperature extremes in Europe. We see no clear relationship between summertime heatwaves and unusually persistent patterns. This suggests that heatwaves do not necessarily require the continued flow of warm air over a region and that local effects could be important for their occurrence.
Meriem Krouma, Riccardo Silini, and Pascal Yiou
Earth Syst. Dynam., 14, 273–290, https://doi.org/10.5194/esd-14-273-2023, https://doi.org/10.5194/esd-14-273-2023, 2023
Short summary
Short summary
We present a simple system to forecast the Madden–Julian Oscillation (MJO). We use atmospheric circulation as input to our system. We found a good-skill forecast of the MJO amplitude within 40 d using this methodology. Comparing our results with ECMWF and machine learning forecasts confirmed the good skill of our system.
Axel Kleidon, Gabriele Messori, Somnath Baidya Roy, Ira Didenkulova, and Ning Zeng
Earth Syst. Dynam., 14, 241–242, https://doi.org/10.5194/esd-14-241-2023, https://doi.org/10.5194/esd-14-241-2023, 2023
Patrick Johannes Stoll, Rune Grand Graversen, and Gabriele Messori
Weather Clim. Dynam., 4, 1–17, https://doi.org/10.5194/wcd-4-1-2023, https://doi.org/10.5194/wcd-4-1-2023, 2023
Short summary
Short summary
The atmosphere is in motion and hereby transporting warm, cold, moist, and dry air to different climate zones. In this study, we investigate how this transport of energy organises in different manners. Outside the tropics, atmospheric waves of sizes between 2000 and 8000 km, which we perceive as cyclones from the surface, transport most of the energy and moisture poleward. In the winter, large-scale weather situations become very important for transporting energy into the polar regions.
Elliott Michael Sainsbury, Reinhard K. H. Schiemann, Kevin I. Hodges, Alexander J. Baker, Len C. Shaffrey, Kieran T. Bhatia, and Stella Bourdin
Weather Clim. Dynam., 3, 1359–1379, https://doi.org/10.5194/wcd-3-1359-2022, https://doi.org/10.5194/wcd-3-1359-2022, 2022
Short summary
Short summary
Post-tropical cyclones (PTCs) can bring severe weather to Europe. By tracking and identifying PTCs in five global climate models, we investigate how the frequency and intensity of PTCs may change across Europe by 2100. We find no robust change in the frequency or intensity of Europe-impacting PTCs in the future. This study indicates that large uncertainties surround future Europe-impacting PTCs and provides a framework for evaluating PTCs in future generations of climate models.
Gabriele Messori, Marlene Kretschmer, Simon H. Lee, and Vivien Wendt
Weather Clim. Dynam., 3, 1215–1236, https://doi.org/10.5194/wcd-3-1215-2022, https://doi.org/10.5194/wcd-3-1215-2022, 2022
Short summary
Short summary
Over 10 km above the ground, there is a region of the atmosphere called the stratosphere. While there is very little air in the stratosphere itself, its interactions with the lower parts of the atmosphere – where we live – can affect the weather. Here we study a specific example of such an interaction, whereby processes occurring at the boundary of the stratosphere can lead to a continent-wide drop in temperatures in North America during winter.
Valerio Lembo, Federico Fabiano, Vera Melinda Galfi, Rune Grand Graversen, Valerio Lucarini, and Gabriele Messori
Weather Clim. Dynam., 3, 1037–1062, https://doi.org/10.5194/wcd-3-1037-2022, https://doi.org/10.5194/wcd-3-1037-2022, 2022
Short summary
Short summary
Eddies in mid-latitudes characterize the exchange of heat between the tropics and the poles. This exchange is largely uneven, with a few extreme events bearing most of the heat transported across latitudes in a season. It is thus important to understand what the dynamical mechanisms are behind these events. Here, we identify recurrent weather regime patterns associated with extreme transports, and we identify scales of mid-latitudinal eddies that are mostly responsible for the transport.
Stella Bourdin, Sébastien Fromang, William Dulac, Julien Cattiaux, and Fabrice Chauvin
Geosci. Model Dev., 15, 6759–6786, https://doi.org/10.5194/gmd-15-6759-2022, https://doi.org/10.5194/gmd-15-6759-2022, 2022
Short summary
Short summary
When studying tropical cyclones in a large dataset, one needs objective and automatic procedures to detect their specific pattern. Applying four different such algorithms to a reconstruction of the climate, we show that the choice of the algorithm is crucial to the climatology obtained. Mainly, the algorithms differ in their sensitivity to weak storms so that they provide different frequencies and durations. We review the different options to consider for the choice of the tracking methodology.
Flavio Maria Emanuele Pons and Davide Faranda
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 155–186, https://doi.org/10.5194/ascmo-8-155-2022, https://doi.org/10.5194/ascmo-8-155-2022, 2022
Short summary
Short summary
The objective motivating this study is the assessment of the impacts of winter climate extremes, which requires accurate simulation of snowfall. However, climate simulation models contain physical approximations, which result in biases that must be corrected using past data as a reference. We show how to exploit simulated temperature and precipitation to estimate snowfall from already bias-corrected variables, without requiring the elaboration of complex, multivariate bias adjustment techniques.
Meriem Krouma, Pascal Yiou, Céline Déandreis, and Soulivanh Thao
Geosci. Model Dev., 15, 4941–4958, https://doi.org/10.5194/gmd-15-4941-2022, https://doi.org/10.5194/gmd-15-4941-2022, 2022
Short summary
Short summary
We evaluated the skill of a stochastic weather generator (SWG) to forecast precipitation at different time scales and in different areas of western Europe from analogs of Z500 hPa. The SWG has the skill to simulate precipitation for 5 and 10 d. We found that forecast weaknesses can be associated with specific weather patterns. The comparison with ECMWF forecasts confirms the skill of our model. This work is important because it provides information about weather forecasts over specific areas.
Miriam D'Errico, Flavio Pons, Pascal Yiou, Soulivanh Tao, Cesare Nardini, Frank Lunkeit, and Davide Faranda
Earth Syst. Dynam., 13, 961–992, https://doi.org/10.5194/esd-13-961-2022, https://doi.org/10.5194/esd-13-961-2022, 2022
Short summary
Short summary
Climate change is already affecting weather extremes. In a warming climate, we will expect the cold spells to decrease in frequency and intensity. Our analysis shows that the frequency of circulation patterns leading to snowy cold-spell events over Italy will not decrease under business-as-usual emission scenarios, although the associated events may not lead to cold conditions in the warmer scenarios.
Assaf Hochman, Francesco Marra, Gabriele Messori, Joaquim G. Pinto, Shira Raveh-Rubin, Yizhak Yosef, and Georgios Zittis
Earth Syst. Dynam., 13, 749–777, https://doi.org/10.5194/esd-13-749-2022, https://doi.org/10.5194/esd-13-749-2022, 2022
Short summary
Short summary
Gaining a complete understanding of extreme weather, from its physical drivers to its impacts on society, is important in supporting future risk reduction and adaptation measures. Here, we provide a review of the available scientific literature, knowledge gaps and key open questions in the study of extreme weather events over the vulnerable eastern Mediterranean region.
Linh N. Luu, Robert Vautard, Pascal Yiou, and Jean-Michel Soubeyroux
Earth Syst. Dynam., 13, 687–702, https://doi.org/10.5194/esd-13-687-2022, https://doi.org/10.5194/esd-13-687-2022, 2022
Short summary
Short summary
This study downscales climate information from EURO-CORDEX (approx. 12 km) output to a higher horizontal resolution (approx. 3 km) for the south of France. We also propose a matrix of different indices to evaluate the high-resolution precipitation output. We find that a higher resolution reproduces more realistic extreme precipitation events at both daily and sub-daily timescales. Our results and approach are promising to apply to other Mediterranean regions and climate impact studies.
Bérengère Dubrulle, François Daviaud, Davide Faranda, Louis Marié, and Brice Saint-Michel
Nonlin. Processes Geophys., 29, 17–35, https://doi.org/10.5194/npg-29-17-2022, https://doi.org/10.5194/npg-29-17-2022, 2022
Short summary
Short summary
Present climate models discuss climate change but show no sign of bifurcation in the future. Is this because there is none or because they are in essence too simplified to be able to capture them? To get elements of an answer, we ran a laboratory experiment and discovered that the answer is not so simple.
Pascal Yiou and Nicolas Viovy
Earth Syst. Dynam., 12, 997–1013, https://doi.org/10.5194/esd-12-997-2021, https://doi.org/10.5194/esd-12-997-2021, 2021
Short summary
Short summary
This paper presents a model of tree ruin as a response to drought hazards. This model is inspired by a standard model of ruin in the insurance industry. We illustrate how ruin can occur in present-day conditions and the sensitivity of ruin and time to ruin to hazard statistical properties. We also show how tree strategies to cope with hazards can affect their long-term reserves and the probability of ruin.
Davide Faranda, Mathieu Vrac, Pascal Yiou, Flavio Maria Emanuele Pons, Adnane Hamid, Giulia Carella, Cedric Ngoungue Langue, Soulivanh Thao, and Valerie Gautard
Nonlin. Processes Geophys., 28, 423–443, https://doi.org/10.5194/npg-28-423-2021, https://doi.org/10.5194/npg-28-423-2021, 2021
Short summary
Short summary
Machine learning approaches are spreading rapidly in climate sciences. They are of great help in many practical situations where using the underlying equations is difficult because of the limitation in computational power. Here we use a systematic approach to investigate the limitations of the popular echo state network algorithms used to forecast the long-term behaviour of chaotic systems, such as the weather. Our results show that noise and intermittency greatly affect the performances.
Francesco S. R. Pausata, Gabriele Messori, Jayoung Yun, Chetankumar A. Jalihal, Massimo A. Bollasina, and Thomas M. Marchitto
Clim. Past, 17, 1243–1271, https://doi.org/10.5194/cp-17-1243-2021, https://doi.org/10.5194/cp-17-1243-2021, 2021
Short summary
Short summary
Far-afield changes in vegetation such as those that occurred over the Sahara during the middle Holocene and the consequent changes in dust emissions can affect the intensity of the South Asian Monsoon (SAM) rainfall and the lengthening of the monsoon season. This remote influence is mediated by anomalies in Indian Ocean sea surface temperatures and may have shaped the evolution of the SAM during the termination of the African Humid Period.
Gabriele Messori and Davide Faranda
Clim. Past, 17, 545–563, https://doi.org/10.5194/cp-17-545-2021, https://doi.org/10.5194/cp-17-545-2021, 2021
Short summary
Short summary
The palaeoclimate community must both analyse large amounts of model data and compare very different climates. Here, we present a seemingly very abstract analysis approach that may be fruitfully applied to palaeoclimate numerical simulations. This approach characterises the dynamics of a given climate through a small number of metrics and is thus suited to face the above challenges.
Gabriele Messori, Nili Harnik, Erica Madonna, Orli Lachmy, and Davide Faranda
Earth Syst. Dynam., 12, 233–251, https://doi.org/10.5194/esd-12-233-2021, https://doi.org/10.5194/esd-12-233-2021, 2021
Short summary
Short summary
Atmospheric jets are a key component of the climate system and of our everyday lives. Indeed, they affect human activities by influencing the weather in many mid-latitude regions. However, we still lack a complete understanding of their dynamical properties. In this study, we try to relate the understanding gained in idealized computer simulations of the jets to our knowledge from observations of the real atmosphere.
Assaf Hochman, Sebastian Scher, Julian Quinting, Joaquim G. Pinto, and Gabriele Messori
Earth Syst. Dynam., 12, 133–149, https://doi.org/10.5194/esd-12-133-2021, https://doi.org/10.5194/esd-12-133-2021, 2021
Short summary
Short summary
Skillful forecasts of extreme weather events have a major socioeconomic relevance. Here, we compare two approaches to diagnose the predictability of eastern Mediterranean heat waves: one based on recent developments in dynamical systems theory and one leveraging numerical ensemble weather forecasts. We conclude that the former can be a useful and cost-efficient complement to conventional numerical forecasts for understanding the dynamics of eastern Mediterranean heat waves.
Peter Pfleiderer, Aglaé Jézéquel, Juliette Legrand, Natacha Legrix, Iason Markantonis, Edoardo Vignotto, and Pascal Yiou
Earth Syst. Dynam., 12, 103–120, https://doi.org/10.5194/esd-12-103-2021, https://doi.org/10.5194/esd-12-103-2021, 2021
Short summary
Short summary
In 2016, northern France experienced an unprecedented wheat crop loss. This crop loss was likely due to an extremely warm December 2015 and abnormally high precipitation during the following spring season. Using stochastic weather generators we investigate how severe the metrological conditions leading to the crop loss could be in current climate conditions. We find that December temperatures were close to the plausible maximum but that considerably wetter springs would be possible.
Flavio Maria Emanuele Pons and Davide Faranda
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-352, https://doi.org/10.5194/nhess-2020-352, 2020
Preprint withdrawn
Short summary
Short summary
The objective motivating this study is the assessment of the impacts of winter climate extremes, which requires accurate simulation of snowfall. However, climate simulation models contain physical approximations, which result in biases that must be corrected using past data as a reference. We show how to exploit simulated temperature and precipitation to estimate snowfall from already bias-corrected variables, without requiring the elaboration of complex, multivariate bias adjustment techniques.
Davide Faranda
Weather Clim. Dynam., 1, 445–458, https://doi.org/10.5194/wcd-1-445-2020, https://doi.org/10.5194/wcd-1-445-2020, 2020
Short summary
Short summary
Despite the global temperature rise caused by anthropogenic emissions, we still observe heavy snowfalls that cause casualties, transport disruptions and energy supply problems. The goal of this paper is to investigate recent trends in snowfalls from reanalysis and observational datasets. The analysis shows an evident discrepancy between trends in average and extreme snowfalls. The latter can only be explained by looking at atmospheric circulation.
Paolo De Luca, Gabriele Messori, Davide Faranda, Philip J. Ward, and Dim Coumou
Earth Syst. Dynam., 11, 793–805, https://doi.org/10.5194/esd-11-793-2020, https://doi.org/10.5194/esd-11-793-2020, 2020
Short summary
Short summary
In this paper we quantify Mediterranean compound temperature and precipitation dynamical extremes (CDEs) over the 1979–2018 period. The strength of the temperature–precipitation coupling during summer increased and is driven by surface warming. We also link the CDEs to compound hot–dry and cold–wet events during summer and winter respectively.
Florentin Breton, Mathieu Vrac, Pascal Yiou, Pradeebane Vaittinada Ayar, and Aglaé Jézéquel
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-26, https://doi.org/10.5194/esd-2020-26, 2020
Revised manuscript not accepted
Short summary
Short summary
We investigate North Atlantic weather seasonality over 1979–2100 by classifying year-round fields of 500 hPa geopotential height from one reanalysis dataset and 12 climate models. Generally, models have seasonal structures similar to the reanalyses. Historical winter (summer) conditions decrease (increase), due to uniform Z500 increase (i.e. uniform warming). However, relative to the increasing Z500 seasonal cycle, future seasonality (spatial patterns, seasonal cycle) appears almost stationary.
Paolo De Luca, Gabriele Messori, Robert L. Wilby, Maurizio Mazzoleni, and Giuliano Di Baldassarre
Earth Syst. Dynam., 11, 251–266, https://doi.org/10.5194/esd-11-251-2020, https://doi.org/10.5194/esd-11-251-2020, 2020
Short summary
Short summary
We show that floods and droughts can co-occur in time across remote regions on the globe and introduce metrics that can help in quantifying concurrent wet and dry hydrological extremes. We then link wet–dry extremes to major modes of climate variability (i.e. ENSO, PDO, and AMO) and provide their spatial patterns. Such concurrent extreme hydrological events may pose risks to regional hydropower production and agricultural yields.
Pascal Yiou and Aglaé Jézéquel
Geosci. Model Dev., 13, 763–781, https://doi.org/10.5194/gmd-13-763-2020, https://doi.org/10.5194/gmd-13-763-2020, 2020
Short summary
Short summary
This paper presents an adaptation of a method of "importance sampling" to simulate large ensembles of extreme heat waves (i.e., the most extreme heat waves that could be), given a fixed returned period. We illustrate how this algorithm works for European heat waves and investigate the atmospheric features of such ensembles of events. We argue that such an algorithm can be used to simulate other types of events, including cold spells or prolonged episodes of precipitation.
Giulia Carella, Mathieu Vrac, Hélène Brogniez, Pascal Yiou, and Hélène Chepfer
Earth Syst. Sci. Data, 12, 1–20, https://doi.org/10.5194/essd-12-1-2020, https://doi.org/10.5194/essd-12-1-2020, 2020
Short summary
Short summary
Observations of relative humidity for ice clouds over the tropical oceans from a passive microwave sounder are downscaled by incorporating the high-resolution variability derived from simultaneous co-located cloud profiles from a lidar. By providing a method to generate pseudo-observations of relative humidity at high spatial resolution, this work will help revisit some of the current key barriers in atmospheric science.
Sebastian Scher and Gabriele Messori
Nonlin. Processes Geophys., 26, 381–399, https://doi.org/10.5194/npg-26-381-2019, https://doi.org/10.5194/npg-26-381-2019, 2019
Short summary
Short summary
Neural networks are a technique that is widely used to predict the time evolution of physical systems. For this the past evolution of the system is shown to the neural network – it is
trained– and then can be used to predict the evolution in the future. We show some limitations in this approach for certain systems that are important to consider when using neural networks for climate- and weather-related applications.
Davide Faranda, Yuzuru Sato, Gabriele Messori, Nicholas R. Moloney, and Pascal Yiou
Earth Syst. Dynam., 10, 555–567, https://doi.org/10.5194/esd-10-555-2019, https://doi.org/10.5194/esd-10-555-2019, 2019
Short summary
Short summary
We show how the complex dynamics of the jet stream at midlatitude can be described by a simple mathematical model. We match the properties of the model to those obtained by the jet data derived from observations.
Sebastian Scher and Gabriele Messori
Geosci. Model Dev., 12, 2797–2809, https://doi.org/10.5194/gmd-12-2797-2019, https://doi.org/10.5194/gmd-12-2797-2019, 2019
Short summary
Short summary
Currently, weather forecasts are mainly produced by using computer models based on physical equations. It is an appealing idea to use neural networks and “deep learning” for weather forecasting instead. We successfully test the possibility of using deep learning for weather forecasting by considering climate models as simplified versions of reality. Our work therefore is a step towards potentially using deep learning to replace or accompany current weather forecasting models.
Robert Vautard, Geert Jan van Oldenborgh, Friederike E. L. Otto, Pascal Yiou, Hylke de Vries, Erik van Meijgaard, Andrew Stepek, Jean-Michel Soubeyroux, Sjoukje Philip, Sarah F. Kew, Cecilia Costella, Roop Singh, and Claudia Tebaldi
Earth Syst. Dynam., 10, 271–286, https://doi.org/10.5194/esd-10-271-2019, https://doi.org/10.5194/esd-10-271-2019, 2019
Short summary
Short summary
The effect of human activities on the probability of winter wind storms like the ones that occurred in Western Europe in January 2018 is analysed using multiple model ensembles. Despite a significant probability decline in observations, we find no significant change in probabilities due to human influence on climate so far. However, such extreme events are likely to be slightly more frequent in the future. The observed decrease in storminess is likely to be due to increasing roughness.
Pascal Yiou and Céline Déandréis
Geosci. Model Dev., 12, 723–734, https://doi.org/10.5194/gmd-12-723-2019, https://doi.org/10.5194/gmd-12-723-2019, 2019
Short summary
Short summary
We devised a system that simulates large ensembles of forecasts for European temperatures and the North Atlantic Oscillation index. This system is based on a stochastic weather generator that samples analogs of SLP. This paper provides statistical tests of temperature and NAO forecasts for timescales of days to months. We argue that the forecast skill of the system is significantly positive and could be used as a baseline for numerical weather forecast.
Yoann Robin, Mathieu Vrac, Philippe Naveau, and Pascal Yiou
Hydrol. Earth Syst. Sci., 23, 773–786, https://doi.org/10.5194/hess-23-773-2019, https://doi.org/10.5194/hess-23-773-2019, 2019
Short summary
Short summary
Bias correction methods are used to calibrate climate model outputs with respect to observations. In this article, a non-stationary, multivariate and stochastic bias correction method is developed based on optimal transport, accounting for inter-site and inter-variable correlations. Optimal transport allows us to construct a joint distribution that minimizes energy spent in bias correction. Our methodology is tested on precipitation and temperatures over 12 locations in southern France.
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Davide Faranda, Gabriele Messori, M. Carmen Alvarez-Castro, and Pascal Yiou
Nonlin. Processes Geophys., 24, 713–725, https://doi.org/10.5194/npg-24-713-2017, https://doi.org/10.5194/npg-24-713-2017, 2017
Short summary
Short summary
We study the dynamical properties of the Northern Hemisphere atmospheric circulation by analysing the sea-level pressure, 2 m temperature, and precipitation frequency field over the period 1948–2013. The metrics are linked to the predictability and the persistence of the atmospheric flows. We study the dependence on the seasonal cycle and the fields corresponding to maxima and minima of the dynamical indicators.
Yoann Robin, Pascal Yiou, and Philippe Naveau
Nonlin. Processes Geophys., 24, 393–405, https://doi.org/10.5194/npg-24-393-2017, https://doi.org/10.5194/npg-24-393-2017, 2017
Short summary
Short summary
If climate is viewed as a chaotic dynamical system, its trajectories yield on an object called an attractor. Being perturbed by an external forcing, this attractor could be modified. With Wasserstein distance, we estimate on a derived Lorenz model the impact of a forcing similar to climate change. Our approach appears to work with small data sizes. We have obtained a methodology quantifying the deformation of well-known attractors, coherent with the size of data available.
Pascal Yiou, Aglaé Jézéquel, Philippe Naveau, Frederike E. L. Otto, Robert Vautard, and Mathieu Vrac
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 17–31, https://doi.org/10.5194/ascmo-3-17-2017, https://doi.org/10.5194/ascmo-3-17-2017, 2017
Short summary
Short summary
The attribution of classes of extreme events, such as heavy precipitation or heatwaves, relies on the estimate of small probabilities (with and without climate change). Such events are connected to the large-scale atmospheric circulation. This paper links such probabilities with properties of the atmospheric circulation by using a Bayesian decomposition. We test this decomposition on a case of extreme precipitation in the UK, in January 2014.
Davide Faranda and Dimitri Defrance
Earth Syst. Dynam., 7, 517–523, https://doi.org/10.5194/esd-7-517-2016, https://doi.org/10.5194/esd-7-517-2016, 2016
Short summary
Short summary
We introduce a general technique to detect a climate change signal in the coherent and turbulent components of the atmospheric circulation. Our analysis suggests that the coherent components (atmospheric waves, long-term oscillations) will experience the greatest changes in future climate, proportionally to the greenhouse gas emission scenario considered.
M. Mihelich, D. Faranda, B. Dubrulle, and D. Paillard
Nonlin. Processes Geophys., 22, 187–196, https://doi.org/10.5194/npg-22-187-2015, https://doi.org/10.5194/npg-22-187-2015, 2015
F. S. R. Pausata, M. Gaetani, G. Messori, S. Kloster, and F. J. Dentener
Atmos. Chem. Phys., 15, 1725–1743, https://doi.org/10.5194/acp-15-1725-2015, https://doi.org/10.5194/acp-15-1725-2015, 2015
Short summary
Short summary
our study suggests that future aerosol abatement may be the primary driver of increased blocking events over the western Mediterranean. This modification of the atmospheric circulation over the Euro-Atlantic sector leads to more stagnant weather conditions that favour air pollutant accumulation especially in the western Mediterranean sector. Changes in atmospheric circulation should therefore be included in future air pollution mitigation assessments.
M.-S. Deroche, M. Choux, F. Codron, and P. Yiou
Nat. Hazards Earth Syst. Sci., 14, 981–993, https://doi.org/10.5194/nhess-14-981-2014, https://doi.org/10.5194/nhess-14-981-2014, 2014
P. Yiou, M. Boichu, R. Vautard, M. Vrac, S. Jourdain, E. Garnier, F. Fluteau, and L. Menut
Clim. Past, 10, 797–809, https://doi.org/10.5194/cp-10-797-2014, https://doi.org/10.5194/cp-10-797-2014, 2014
P. Yiou
Geosci. Model Dev., 7, 531–543, https://doi.org/10.5194/gmd-7-531-2014, https://doi.org/10.5194/gmd-7-531-2014, 2014
G. A. Schmidt, J. D. Annan, P. J. Bartlein, B. I. Cook, E. Guilyardi, J. C. Hargreaves, S. P. Harrison, M. Kageyama, A. N. LeGrande, B. Konecky, S. Lovejoy, M. E. Mann, V. Masson-Delmotte, C. Risi, D. Thompson, A. Timmermann, L.-B. Tremblay, and P. Yiou
Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, https://doi.org/10.5194/cp-10-221-2014, 2014
Related subject area
Role of atmospheric dynamics in climate change projections
Could an extremely cold central European winter such as 1963 happen again despite climate change?
Impact of climate change on persistent cold-air pools in an alpine valley during the 21st century
Future changes in North Atlantic winter cyclones in CESM-LE – Part 2: A Lagrangian analysis
Atmospheric bias teleconnections in boreal winter associated with systematic sea surface temperature errors in the tropical Indian Ocean
The relationship between extra-tropical cyclone intensity and precipitation in idealised current and future climates
Future changes in the mean and variability of extreme rainfall indices over the Guinea coast and role of the Atlantic equatorial mode
Warm conveyor belts in present-day and future climate simulations – Part 1: Climatology and impacts
Warm conveyor belts in present-day and future climate simulations – Part 2: Role of potential vorticity production for cyclone intensification
The response of tropical cyclone intensity to changes in environmental temperature
Relationship between southern hemispheric jet variability and forced response: the role of the stratosphere
Storm track response to uniform global warming downstream of an idealized sea surface temperature front
Future changes in North Atlantic winter cyclones in CESM-LE – Part 1: Cyclone intensity, potential vorticity anomalies, and horizontal wind speed
Impact of climate change on wintertime European atmospheric blocking
Twenty-first-century Southern Hemisphere impacts of ozone recovery and climate change from the stratosphere to the ocean
Future summer warming pattern under climate change is affected by lapse-rate changes
The importance of horizontal model resolution on simulated precipitation in Europe – from global to regional models
Future wintertime meridional wind trends through the lens of subseasonal teleconnections
Decomposing the response of the stratospheric Brewer–Dobson circulation to an abrupt quadrupling in CO2
The substructure of extremely hot summers in the Northern Hemisphere
Sebastian Sippel, Clair Barnes, Camille Cadiou, Erich Fischer, Sarah Kew, Marlene Kretschmer, Sjoukje Philip, Theodore G. Shepherd, Jitendra Singh, Robert Vautard, and Pascal Yiou
Weather Clim. Dynam., 5, 943–957, https://doi.org/10.5194/wcd-5-943-2024, https://doi.org/10.5194/wcd-5-943-2024, 2024
Short summary
Short summary
Winter temperatures in central Europe have increased. But cold winters can still cause problems for energy systems, infrastructure, or human health. Here we tested whether a record-cold winter, such as the one observed in 1963 over central Europe, could still occur despite climate change. The answer is yes: it is possible, but it is very unlikely. Our results rely on climate model simulations and statistical rare event analysis. In conclusion, society must be prepared for such cold winters.
Sara Bacer, Julien Beaumet, Martin Ménégoz, Hubert Gallée, Enzo Le Bouëdec, and Chantal Staquet
Weather Clim. Dynam., 5, 211–229, https://doi.org/10.5194/wcd-5-211-2024, https://doi.org/10.5194/wcd-5-211-2024, 2024
Short summary
Short summary
A model chain is used to downscale outputs from a climate model to the Grenoble valley atmosphere over the 21st century in order to study the impact of climate change on persistent cold-air pool episodes. We find that the atmosphere in the Grenoble valleys during these episodes tends to be slightly less stable in the future under the SSP5–8.5 scenario, and statistically unchanged under the SSP2–4.5 scenario but that very stable persistent cold-air pool episodes can still form.
Edgar Dolores-Tesillos and Stephan Pfahl
Weather Clim. Dynam., 5, 163–179, https://doi.org/10.5194/wcd-5-163-2024, https://doi.org/10.5194/wcd-5-163-2024, 2024
Short summary
Short summary
In a warmer climate, the winter extratropical cyclones over the North Atlantic basin are expected to have a larger footprint of strong winds. Dynamical changes at different altitudes are responsible for these wind changes. Based on backward trajectories using the CESM-LE simulations, we show that the diabatic processes gain relevance as the planet warms. For instance, changes in the radiative processes will play an important role in the upper-level cyclone dynamics.
Yuan-Bing Zhao, Nedjeljka Žagar, Frank Lunkeit, and Richard Blender
Weather Clim. Dynam., 4, 833–852, https://doi.org/10.5194/wcd-4-833-2023, https://doi.org/10.5194/wcd-4-833-2023, 2023
Short summary
Short summary
Coupled climate models have significant biases in the tropical Indian Ocean (TIO) sea surface temperature (SST). Our study shows that the TIO SST biases can affect the simulated global atmospheric circulation and its spatio-temporal variability on large scales. The response of the spatial variability is related to the amplitude or phase of the circulation bias, depending on the flow regime and spatial scale, while the response of the interannual variability depends on the sign of the SST bias.
Victoria A. Sinclair and Jennifer L. Catto
Weather Clim. Dynam., 4, 567–589, https://doi.org/10.5194/wcd-4-567-2023, https://doi.org/10.5194/wcd-4-567-2023, 2023
Short summary
Short summary
We studied the relationship between the strength of mid-latitude cyclones and their precipitation, how this may change in the future, and whether it depends of the type of cyclone. The relationship between cyclone strength and precipitation increases in warmer climates and depends strongly on the type of cyclone. For some cyclone types there is no relation between cyclone strength and precipitation. For all cyclone types, precipitation increases with uniform warming and polar amplification.
Koffi Worou, Thierry Fichefet, and Hugues Goosse
Weather Clim. Dynam., 4, 511–530, https://doi.org/10.5194/wcd-4-511-2023, https://doi.org/10.5194/wcd-4-511-2023, 2023
Short summary
Short summary
The Atlantic equatorial mode (AEM) of variability is partly responsible for the year-to-year rainfall variability over the Guinea coast. We used the current climate models to explore the present-day and future links between the AEM and the extreme rainfall indices over the Guinea coast. Under future global warming, the total variability of the extreme rainfall indices increases over the Guinea coast. However, the future impact of the AEM on extreme rainfall events decreases over the region.
Hanna Joos, Michael Sprenger, Hanin Binder, Urs Beyerle, and Heini Wernli
Weather Clim. Dynam., 4, 133–155, https://doi.org/10.5194/wcd-4-133-2023, https://doi.org/10.5194/wcd-4-133-2023, 2023
Short summary
Short summary
Warm conveyor belts (WCBs) are strongly ascending, cloud- and precipitation-forming airstreams in extratropical cyclones. In this study we assess their representation in a climate simulation and their changes under global warming. They become moister, become more intense, and reach higher altitudes in a future climate, implying that they potentially have an increased impact on the mid-latitude flow.
Hanin Binder, Hanna Joos, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 4, 19–37, https://doi.org/10.5194/wcd-4-19-2023, https://doi.org/10.5194/wcd-4-19-2023, 2023
Short summary
Short summary
Warm conveyor belts (WCBs) are the main cloud- and precipitation-producing airstreams in extratropical cyclones. The latent heat release that occurs during cloud formation often contributes to the intensification of the associated cyclone. Based on the Community Earth System Model Large Ensemble coupled climate simulations, we show that WCBs and associated latent heating will become stronger in a future climate and be even more important for explosive cyclone intensification than in the present.
James M. Done, Gary M. Lackmann, and Andreas F. Prein
Weather Clim. Dynam., 3, 693–711, https://doi.org/10.5194/wcd-3-693-2022, https://doi.org/10.5194/wcd-3-693-2022, 2022
Short summary
Short summary
We know that warm oceans generally favour tropical cyclones (TCs). Less is known about the role of air temperature above the oceans extending into the lower stratosphere. Our global analysis of historical records and computer simulations suggests that TCs strengthen in response to historical temperature change while also being influenced by other environmental factors. Ocean warming drives much of the strengthening, with relatively small contributions from temperature changes aloft.
Philipp Breul, Paulo Ceppi, and Theodore G. Shepherd
Weather Clim. Dynam., 3, 645–658, https://doi.org/10.5194/wcd-3-645-2022, https://doi.org/10.5194/wcd-3-645-2022, 2022
Short summary
Short summary
Understanding how the mid-latitude jet stream will respond to a changing climate is highly important. Unfortunately, climate models predict a wide variety of possible responses. Theoretical frameworks can link an internal jet variability timescale to its response. However, we show that stratospheric influence approximately doubles the internal timescale, inflating predicted responses. We demonstrate an approach to account for the stratospheric influence and recover correct response predictions.
Sebastian Schemm, Lukas Papritz, and Gwendal Rivière
Weather Clim. Dynam., 3, 601–623, https://doi.org/10.5194/wcd-3-601-2022, https://doi.org/10.5194/wcd-3-601-2022, 2022
Short summary
Short summary
Much of the change in our daily weather patterns is due to the development and intensification of extratropical cyclones. The response of these systems to climate change is an important topic of ongoing research. This study is the first to reproduce the changes in the North Atlantic circulation and extratropical cyclone characteristics found in fully coupled Earth system models under high-CO2 scenarios, but in an idealized, reduced-complexity simulation with uniform warming.
Edgar Dolores-Tesillos, Franziska Teubler, and Stephan Pfahl
Weather Clim. Dynam., 3, 429–448, https://doi.org/10.5194/wcd-3-429-2022, https://doi.org/10.5194/wcd-3-429-2022, 2022
Short summary
Short summary
Strong winds caused by extratropical cyclones represent a costly hazard for European countries. Here, based on CESM-LENS coupled climate simulations, we show that future changes of such strong winds are characterized by an increased magnitude and extended footprint southeast of the cyclone center. This intensification is related to a combination of increased diabatic heating and changes in upper-level wave dynamics.
Sara Bacer, Fatima Jomaa, Julien Beaumet, Hubert Gallée, Enzo Le Bouëdec, Martin Ménégoz, and Chantal Staquet
Weather Clim. Dynam., 3, 377–389, https://doi.org/10.5194/wcd-3-377-2022, https://doi.org/10.5194/wcd-3-377-2022, 2022
Short summary
Short summary
We study the impact of climate change on wintertime atmospheric blocking over Europe. We focus on the frequency, duration, and size of blocking events. The blocking events are identified via the weather type decomposition methodology. We find that blocking frequency, duration, and size are mostly stationary over the 21st century. Additionally, we compare the blocking size results with the size of the blocking events identified via a different approach using a blocking index.
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171, https://doi.org/10.5194/wcd-3-139-2022, https://doi.org/10.5194/wcd-3-139-2022, 2022
Short summary
Short summary
Greenhouse gas concentrations continue to increase, while the Antarctic ozone hole is expected to recover during the twenty-first century. We separate the effects of ozone recovery and of greenhouse gases on the Southern Hemisphere atmospheric and oceanic circulation, and we find that ozone recovery is generally reducing the impact of greenhouse gases, with the exception of certain regions of the stratosphere during spring, where the two effects reinforce each other.
Roman Brogli, Silje Lund Sørland, Nico Kröner, and Christoph Schär
Weather Clim. Dynam., 2, 1093–1110, https://doi.org/10.5194/wcd-2-1093-2021, https://doi.org/10.5194/wcd-2-1093-2021, 2021
Short summary
Short summary
In a warmer future climate, climate simulations predict that some land areas will experience excessive warming during summer. We show that the excessive summer warming is related to the vertical distribution of warming within the atmosphere. In regions characterized by excessive warming, much of the warming occurs close to the surface. In other regions, most of the warming is redistributed to higher levels in the atmosphere, which weakens the surface warming.
Gustav Strandberg and Petter Lind
Weather Clim. Dynam., 2, 181–204, https://doi.org/10.5194/wcd-2-181-2021, https://doi.org/10.5194/wcd-2-181-2021, 2021
Short summary
Short summary
Precipitation is a key climate variable with a large impact on society but also difficult to simulate as it depends largely on temporal and spatial scales. We look here at the effect of model resolution on precipitation in Europe, from coarse-scale global model to small-scale regional models. Higher resolution improves simulated precipitation generally, but individual models may over- or underestimate precipitation even at higher resolution.
Dor Sandler and Nili Harnik
Weather Clim. Dynam., 1, 427–443, https://doi.org/10.5194/wcd-1-427-2020, https://doi.org/10.5194/wcd-1-427-2020, 2020
Short summary
Short summary
The circumglobal teleconnection pattern (CTP) is a wavy pattern of wintertime midlatitude subseasonal flow. It is also linked to various extreme weather events. The CTP is predicted to play a prominent role in future climate. We find that for future projections, most CMIP5 models predict that the CTP will develop a
preferredphase. Our work establishes that the CTP-like climate change signature is in fact comprised of several regional effects, partly due to shifts in CTP phase distributions.
Andreas Chrysanthou, Amanda C. Maycock, and Martyn P. Chipperfield
Weather Clim. Dynam., 1, 155–174, https://doi.org/10.5194/wcd-1-155-2020, https://doi.org/10.5194/wcd-1-155-2020, 2020
Short summary
Short summary
We perform 50-year-long time-slice experiments using the Met Office HadGEM3 global climate model in order to decompose the Brewer–Dobson circulation (BDC) response to an abrupt quadrupling of CO2 in three distinct components, (a) the rapid adjustment, associated with CO2 radiative effects; (b) a global uniform sea surface temperature warming; and (c) sea surface temperature patterns. This demonstrates a potential for fast and slow timescales of the response of the BDC to greenhouse gas forcing.
Matthias Röthlisberger, Michael Sprenger, Emmanouil Flaounas, Urs Beyerle, and Heini Wernli
Weather Clim. Dynam., 1, 45–62, https://doi.org/10.5194/wcd-1-45-2020, https://doi.org/10.5194/wcd-1-45-2020, 2020
Short summary
Short summary
In this study we quantify how much the coldest, middle and hottest third of all days during extremely hot summers contribute to their respective seasonal mean anomaly. This
extreme-summer substructurevaries substantially across the Northern Hemisphere and is directly related to the local physical drivers of extreme summers. Furthermore, comparing re-analysis (i.e. measurement-based) and climate model extreme-summer substructures reveals a remarkable level of agreement.
Cited articles
AEMET: La ola de calor del puente de agosto'21 y los récords de temperaturas en España, Spanish State Meteorological Agency, https://aemetblog.es/2021/08/18/la-ola-de-calor-del-puente-de-agosto21-y-los-records-de-temperaturas-en-espana/
(last access: 27 January 2022), 2021a. a
AEMET: Noviembre de 2021, un mes muy frío, Spanish State Meteorological Agency https://www.aemet.es/es/noticias/2021/12/resumen_clima_noviembre_2021,
last access: 14 January 2022. a
Alberoni, P., Nanni, S., Crespi, M., and Monai, M.: The supercell thunderstorm on 8 June 1990: mesoscale analysis and radar observations, Meteorol. Atmos. Phys., 58, 123–138, 1996. a
Ali, E., Cramer, W., Carnicer, J., Georgopoulou, E., Hilmi, N., Cozannet, G. L., and P. Lionello, P.: Cross-Chapter Paper 4: Mediterranean Region, in: Climate Change 2022: Impacts, Adaptation and Vulnerability, Contribution of
Working Group II to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge University Press Cambridge, UK and New York, NY, USA, 2233–2272, 2022. a
Anderson, T. W.: On the distribution of the two-sample Cramer-von Mises
criterion, Ann. Math. Stat., 33, 1148–1159, 1962. a
Antonescu, B., Schultz, D. M., Holzer, A., and Groenemeijer, P.: Tornadoes in
Europe: An underestimated threat, B. Am. Meteorol. Soc., 98, 713–728, 2017. a
Aon: Global Catastrophe Recap, http://thoughtleadership.aon.com/documents/20210209_analytics-if-january-global-recap.pdf,
last access: 20 January 2021. a
Baker, A. J., Hodges, K. I., Schiemann, R. K., and Vidale, P. L.: Historical variability and lifecycles of North Atlantic midlatitude cyclones originating
in the tropics, J. Geophys. Res.-Atmos., 126,
e2020JD033924, https://doi.org/10.1029/2020JD033924, 2021. a
Bala, G., Caldeira, K., and Nemani, R.: Fast versus slow response in climate change: implications for the global hydrological cycle, Clim. Dynam., 35,
423–434, 2010. a
BBC: Polar vortex death toll rises to 21 as US cold snap continues,
https://www.bbc.com/news/world-us-canada-47088684, last access:
14 January 2022. a
Berkovic, S. and Raveh-Rubin, S.: Persistent warm and dry extremes over the eastern Mediterranean during winter: The role of North Atlantic blocking and
central Mediterranean cyclones, Q. J. Roy. Meteor. Soc., 148, 2384–2409, 2022. a
Bernes, C.: En varmare värld: Växthuseffekten och klimatets förändringar – Tredje upplagan, NATURVÅRDSVERKET, Stockholm, 184 pp., ISBN: 978-91-620-1300-4, 2017. a
Blackport, R. and Screen, J. A.: Weakened evidence for mid-latitude impacts of Arctic warming, Nat. Clim. Change, 10, 1065–1066, 2020. a
Brooks, H. E., Carbin, G. W., and Marsh, P. T.: Increased variability of
tornado occurrence in the United States, Science, 346, 349–352, 2014. a
Business Insurance: Recent floods cause nearly $12 billion damage in Belgium,
https://www.businessinsurance.com/article/00010101/STORY/912343432/Recent-floods-cause-nearly-$12-billion-damage-in-Belgium, last access: 27 January 2022. a
Casson, N. J., Contosta, A. R., Burakowski, E. A., Campbell, J. L., Crandall, M. S., Creed, I. F., Eimers, M. C., Garlick, S., Lutz, D. A., Morison, M. Q., Morzillo, A. T., and Nelson, S. J.: Winter weather whiplash: Impacts of meteorological events misaligned with natural and human Systems in Seasonally Snow-Covered Regions, Earth's Future, 7, 1434–1450, 2019. a
Cavicchia, L., von Storch, H., and Gualdi, S.: A long-term climatology of
medicanes, Clim. Dynam., 43, 1183–1195, 2014a. a
Cavicchia, L., von Storch, H., and Gualdi, S.: Mediterranean tropical-like
cyclones in present and future climate, J. Climate, 27, 7493–7501,
2014b. a
CEMS: Fire in Castilla y Leon, Spain, COPERNICUS Emergency Management Service,
https://emergency.copernicus.eu/mapping/list-of-components/EMSR538
(last access: 31 January 2022), 2021a. a
CEMS: Fire in Var, France, COPERNICUS Emergency Management Service,
https://emergency.copernicus.eu/mapping/list-of-components/EMSR541
(last access: 31 January 2022), 2021b. a
CEMS: The Copernicus Emergency Management Service monitors fire events in the Mediterranean region, COPERNICUS Emergency Management Service,
https://emergency.copernicus.eu/mapping/ems/copernicus-emergency-management-service-monitors-fire-events-mediterranean-region
(last access: 31 January 2022), 2021c. a
Cohen, J., Jones, J., Furtado, J. C., and Tziperman, E.: Warm Arctic, cold
continents: A common pattern related to Arctic sea ice melt, snow advance,
and extreme winter weather, Oceanography, 26, 150–160, 2013. a
Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J., Tayler, P. C., Lee, S., Laliberte, F., and Feldstein, S.: Arctic change and possible
influence on mid-latitude climate and weather: a US CLIVAR White
Paper, US CLIVAR, https://doi.org/10.5065/d6th8kgw, 2018. a
Coumou, D. and Rahmstorf, S.: A decade of weather extremes, Nat. Clim. Change, 2, 491–496, 2012. a
D'Errico, M., Pons, F., Yiou, P., Tao, S., Nardini, C., Lunkeit, F., and Faranda, D.: Present and future synoptic circulation patterns associated with cold and snowy spells over Italy, Earth Syst. Dynam., 13, 961–992, https://doi.org/10.5194/esd-13-961-2022, 2022. a
DieWelt: Hochwasser aktuell: Zahl der Toten in Rheinland-Pfalz steigt auf 135
– Mindestens 184 Opfer durch Flut in Deutschland,
https://www.welt.de/vermischtes/article232577293/Hochwasser-Mindestens-166-Tote-in-NRW-Rheinland-Pfalz-und-Bayern.html, last access: 22 July 2021. a
Dosio, A.: Projections of climate change indices of temperature and
precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX
regional climate models, J. Geophys. Res.-Atmos., 121,
5488–5511, 2016. a
Doss-Gollin, J., Farnham, D. J., Lall, U., and Modi, V.: How unprecedented was the February 2021 Texas cold snap?, Environ. Res. Lett., 16,
064056, https://doi.org/10.1088/1748-9326/ac0278, 2021. a
Doswell III, C. A., Brooks, H. E., and Dotzek, N.: On the implementation of the enhanced Fujita scale in the USA, Atmos. Res., 93, 554–563, 2009. a
Easterling, D. R., Kunkel, K. E., Wehner, M. F., and Sun, L.: Detection and attribution of climate extremes in the observed record, Weather and Climate Extremes, 11, 17–27, 2016. a
Elsner, J. B., Elsner, S. C., and Jagger, T. H.: The increasing efficiency of
tornado days in the United States, Clim. Dynam., 45, 651–659, 2015. a
Elsner, J. B., Fricker, T., and Schroder, Z.: Increasingly powerful tornadoes
in the United States, Geophys. Res. Lett., 46, 392–398, 2019. a
Faranda, D.: An attempt to explain recent changes in European snowfall extremes, Weather Clim. Dynam., 1, 445–458, https://doi.org/10.5194/wcd-1-445-2020, 2020. a
Faranda, D.: Attractor Local Dimension and Local Persistence
computation, version 1.0.0, Matlab © matlab central fileexchange [code],
https://fr.
mathworks.com/matlabcentral/fileexchange/95768-attractor-
local-dimension-and-local-persistence-computation, last access: 25 October 2022. a
Faranda, D., Messori, G., and Yiou, P.: Dynamical proxies of North Atlantic
predictability and extremes, Sci. Rep., 7, 41278, https://doi.org/10.1038/srep41278,
2017. a, b, c, d
Faranda, D., Alvarez-Castro, M. C., Messori, G., Rodrigues, D., and Yiou, P.:
The hammam effect or how a warm ocean enhances large scale atmospheric
predictability, Nat. Commun., 10, 1–7, 2019a. a
Faranda, D., Messori, G., and Vannitsem, S.: Attractor dimension of time-averaged climate observables: insights from a low-order ocean-atmosphere
model, Tellus A, 71, 1–11, 2019b. a
Faranda, D., Vrac, M., Yiou, P., Jézéquel, A., and Thao, S.: Changes in
future synoptic circulation patterns: consequences for extreme event
attribution, Geophys. Res. Lett., 47, e2020GL088002, https://doi.org/10.1029/2020GL088002, 2020. a, b
Flannigan, M. D., Stocks, B. J., and Wotton, B. M.: Climate change and forest
fires, Sci. Total Environ., 262, 221–229, 2000. a
Fraedrich, K.: European grosswetter during the warm and cold extremes of the El Niñco/Southern Oscillation, Int. J. Climatol., 10, 21–31, 1990. a
Fraedrich, K.: An ENSO impact on Europe?, Tellus A, 46, 541–552, 1994. a
Freitas, A. C. M., Freitas, J. M., and Todd, M.: Hitting time statistics and
extreme value theory, Probab. Theory Rel., 147, 675–710,
2010. a
Freitas, A. C. M., Freitas, J. M., and Todd, M.: Extreme value laws in
dynamical systems for non-smooth observations, J. Stat. Phys., 142, 108–126, 2011. a
Freitas, A. C. M., Freitas, J. M., and Vaienti, S.: Extreme Value Laws for sequences of intermittent maps, arXiv [preprint], https://doi.org/10.48550/arXiv.1605.06287, 20 May 2016. a
González-Alemán, J. J., Pascale, S., Gutierrez-Fernandez, J., Murakami, H., Gaertner, M. A., and Vecchi, G. A.: Potential increase in hazard from Mediterranean hurricane activity with global warming, Geophys. Res. Lett., 46, 1754–1764, 2019. a
Gordon, L. J., Steffen, W., Jönsson, B. F., Folke, C., Falkenmark, M., and Johannessen, Å.: Human modification of global water vapor flows from the land surface, P. Natl. Acad. Sci. USA, 102,
7612–7617, 2005. a
Grillakis, M. G.: Increase in severe and extreme soil moisture droughts for
Europe under climate change, Sci. Total Environ., 660,
1245–1255, 2019. a
Guerreiro, S. B., Dawson, R. J., Kilsby, C., Lewis, E., and Ford, A.: Future
heat-waves, droughts and floods in 571 European cities, Environ. Res. Lett., 13, 034009, https://doi.org/10.1088/1748-9326/aaaad3, 2018. a
Haarsma, R.: European Windstorm Risk of Post-Tropical Cyclones and the Impact
of Climate Change, Geophys. Res. Lett., 48, e2020GL091483, https://doi.org/10.1029/2020GL091483, 2021. a
Hanchey, A., Schnall, A., Bayleyegn, T., et al.: Notes from the Field: Deaths Related to Hurricane Ida Reported by Media – Nine States, August 29–September 9, 2021, MMWR Morb Mortal Wkly Rep, 70, 1385–1386, https://doi.org/10.15585/mmwr.mm7039a3, 2021. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D.:
The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020. a
Het Laatste Nieuws: Een van de twee laatste vermiste personen na
overstromingen in ons land teruggevonden,
https://www.hln.be/binnenland/een-van-de-twee-laatste-
vermiste-personen-na-overstromingen-in-ons-land-teruggevonden~a4a4c681/,
last access: 29 July 2021. a
Hochman, A., Alpert, P., Harpaz, T., Saaroni, H., and Messori, G.: A new
dynamical systems perspective on atmospheric predictability: Eastern
Mediterranean weather regimes as a case study, Science Advances, 5, eaau0936, https://doi.org/10.1126/sciadv.aau0936, 2019. a
Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E., and Raymond, C.: A review of recent advances in research on extreme heat events, Current Climate Change Reports, 2, 242–259, 2016. a
Hoskins, B. and Woollings, T.: Persistent extratropical regimes and climate
extremes, Current Climate Change Reports, 1, 115–124, 2015. a
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended
reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades,
validations, and intercomparisons, J. Climate, 30, 8179–8205, 2017. a
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 3–32, 2021. a, b, c, d
jbarisk: Hurricane-like storm causes flooding in the Mediterranean, October
2021, https://www.jbarisk.com/flood-services/event-response/medicane-apollo
(last access: 1 February 2022), 2021. a
Jézéquel, A., Cattiaux, J., Naveau, P., Radanovics, S., Ribes, A., Vautard, R., Vrac, M., and Yiou, P.: Trends of atmospheric circulation during singular hot days in Europe, Environ. Res. Lett., 13, 054007,
https://doi.org/10.1088/1748-9326/aab5da, 2018a. a
Jézéquel, A., Dépoues, V., Guillemot, H., Trolliet, M., Vanderlinden, J.-P., and Yiou, P.: Behind the veil of extreme event attribution, Climatic Change, 149, 367–383, https://doi.org/10.1007/s10584-018-2252-9, 2018b. a, b
Jolly, E., D’Andrea, F., Rivière, G., and Fromang, S.: Linking warm Arctic winters, Rossby waves and Cold Spells: an idealized numerical study, J. Atmos. Sci., 78, 2783–2799, https://doi.org/10.1175/JAS-D-20-0088.1, 2021. a
Junghänel, T., Bissolli, P., Daßler, J., Fleckenstein, R., Imbery, F., Janssen, W., Kaspar, F., Lengfeld, K., Leppelt, T., Rauthe, M., Dietze, M., Bell, R., Ozturk, U., Cook, K. L., Andermann, C., Beer, A. R., Damm, B., Lucia, A., Fauer, F. S., Nissen, K. M., Sieg, T., and Thieken, A. H: Hydro-klimatologische Einordnung der Stark-und Dauerniederschläge in Teilen Deutschlands im Zusammenhang mit dem Tiefdruckgebiet “Bernd” vom 12. bis 19. Juli 2021, Deutscher Wetterdienst, https://www.dwd.de/DE/leistungen/besondereereignisse/niederschlag/20210721_bericht_starkniederschlaege_tief_bernd.pdf
(last access: 25 October 2022), 2021. a
Kautz, L.-A., Polichtchouk, I., Birner, T., Garny, H., and Pinto, J. G.: Enhanced extended-range predictability of the 2018 late-winter Eurasian cold
spell due to the stratosphere, Q. J. Roy. Meteor. Soc., 146, 1040–1055, 2020. a
Kennedy, D., Parker, T., Woollings, T., Harvey, B., and Shaffrey, L.: The
response of high-impact blocking weather systems to climate change,
Geophys. Res. Lett., 43, 7250–7258, 2016. a
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C. J.: The international best track archive for climate stewardship (IBTrACS)
unifying tropical cyclone data, B. Am. Meteorol. Soc., 91, 363–376, 2010. a
Knapp, K. R., Diamond, H. J., Kossin, J. P., Kruk, M. C., and Schreck III, C.
J.: International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4, NOAA National Centers for Environmental Information, https://doi.org/10.25921/82ty-9e16, 2018. a
Knutson, T., Kossin, J., Mears, C., Perlwitz, J., and Wehner, M.: Detection and attribution of climate change, in: Climate Science Special Report: A Sustained Assessment Activity of the U.S. Global Change Research Program, edited by: Wuebbles, D. J., Fahey, D. W., Hibbard, K. A., Dokken, D. J., Stewart, B. C., and Maycock, T. K., U.S. Global Change Research Program, Washington, DC, USA, 160–185, 2017. a
Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C.-H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical cyclones and climate change assessment: Part I: Detection and attribution, B. Am. Meteorol. Soc., 100, 1987–2007, 2019. a
Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C.-H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming, B. Am. Meteorol. Soc., 101, E303–E322, 2020. a
Kodra, E., Steinhaeuser, K., and Ganguly, A. R.: Persisting cold extremes under 21st-century warming scenarios, Geophys. Res. Lett., 38, L08705, https://doi.org/10.1029/2011GL047103, 2011. a
Kornhuber, K. and Tamarin-Brodsky, T.: Future changes in Northern Hemisphere
summer weather persistence linked to projected Arctic warming, Geophys. Res. Lett., 48, e2020GL091603, https://doi.org/10.1029/2020GL091603, 2021. a
Kral-O'Brien, K. C., O'Brien, P. L., and Harmon, J. P.: Need for false spring
research in the Northern Great Plains, USA, Agricultural & Environmental
Letters, 4, 190025, https://doi.org/10.2134/ael2019.07.0025, 2019. a
Kreienkamp, F., Philip, S. Y., Tradowsky, J. S., Kew, S. F., Lorenz, P., Arrighi, J., Belleflamme, A., Bettmann, T., Caluwaerts, S., Chan, S. C., Ciavarella, A., De Cruz, L., De Vries, H., Demuth, N., Ferrone, A., Fischer, E. M., Fowler, H. J., Görgen, K., Heinrich, D., Henrichs, Y., Lenderink, G., Kaspar, F., Nilson, E., Otto, F. E. L., Ragone, F., Seneviratne, S. I., Singh, R. K., Skålevåg, A., Termonia, P., Thalheimer, L., Van Aalst, M., Van den Bergh, J., Van de Vyver, H., Vannitsem, S., Van Oldenborgh, G. J., Van Schaeybroeck, B., Vautard, R., Vonk, D., and Wanders, N.: Rapid attribution of heavy rainfall events leading to the severe flooding in Western Europe during July 2021, World Weather Atribution, 1–51, https://www.worldweatherattribution.org/wp-content/uploads/Scientific-report-Western-Europe-floods-2021-attribution.pdf (last access: 25 October 2022), 2021. a, b, c
Kundzewicz, Z. W., Pińskwar, I., and Brakenridge, G. R.: Changes in river
flood hazard in Europe: a review, Hydrol. Res., 49, 294–302, 2018. a
Kundzewicz, Z. W., Szwed, M., and Pińskwar, I.: Climate variability and
floods – A global review, Water, 11, 1399, https://doi.org/10.3390/w11071399, 2019. a
LaChaineMeteo: Bilan climatique d'avril 2021: entre sécheresse et records de froid, https://actualite.lachainemeteo.com/actualite-meteo/2021-05-05/bilan-climatique-d-avril-2021-entre-secheresse-et-records-de-froid-59270
(last access: 1 February 2022), 2021. a
Lee, J.-Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J., Engelbrecht, F., Fischer, E., Fyfe, J., Jones, C., Maycock, A., Mutemi, J., Ndiaye, O., Panickal, S., and Zhou, T.: Future Global Climate: Scenario-Based Projections and Near-Term Information, in: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 553–672, 2021. a
Lee, S. H. and Butler, A. H.: The 2018–2019 Arctic stratospheric polar vortex, Weather, 75, 52–57, 2020. a
LeMonde: La vague de froid se poursuit en Europe et fait des dizaines de morts, https://www.lemonde.fr/climat/article/2018/02/28/la-vague-de-froid-se-poursuit-en-europe-et-fait-des-dizaines-de-morts_5263856_1652612.html
(last access: 14 January 2022), 2018. a
Liebovitch, L. S. and Toth, T.: A fast algorithm to determine fractal
dimensions by box counting, Phys. Lett. A, 141, 386–390, 1989. a
Lillo, S. P., Cavallo, S. M., Parsons, D. B., and Riedel, C.: The Role of a Tropopause Polar Vortex in the Generation of the January 2019 Extreme Arctic
Outbreak, J. Atmos. Sci., 78, 2801–2821, 2021. a
Lloyd, E. A. and Oreskes, N.: Climate Change Attribution: When Is It Appropriate to Accept New Methods?, Earth's Future, 6, 311–325,
2018. a
Lucarini, V., Faranda, D., and Wouters, J.: Universal behaviour of extreme
value statistics for selected observables of dynamical systems, J.
Stat. Phys., 147, 63–73, 2012. a
Lucarini, V., Faranda, D., Freitas, A. C. M., Freitas, J. M., Holland, M.,
Kuna, T., Nicol, M., Todd, M., and Vaienti, S.: Extremes and recurrence in
dynamical systems, John Wiley & Sons, ISBN 978-1-118-63219-2, 2016. a
Madsen, H., Lawrence, D., Lang, M., Martinkova, M., and Kjeldsen, T.: Review of trend analysis and climate change projections of extreme precipitation and
floods in Europe, J. Hydrol., 519, 3634–3650, 2014. a
Matthes, H., Rinke, A., and Dethloff, K.: Recent changes in Arctic temperature extremes: warm and cold spells during winter and summer, Environ. Res. Lett., 10, 114020, https://doi.org/10.1088/1748-9326/10/11/114020, 2015. a, b
Mazzoleni, M.: Cronaca meteo 3Bmeteo – Caldo storico in Sicilia, raggiunti i 49 ∘C: è il nuovo record Europeo, https://www.3bmeteo.com/giornale-meteo/cronaca-meteo—caldo-storico-in-sicilia–raggiunti-i-49-c—-il-nuovo-record-europeo-504610 (last access: 21 October 2022), 2021. a
Messori, G., Caballero, R., and Faranda, D.: A dynamical systems approach to
studying midlatitude weather extremes, Geophys. Res. Lett., 44,
3346–3354, 2017. a
Meteoweb: Medicane Apollo, Aeronautica: per la prima volta un consorzio di Paesi europei ha dato un nome ufficiale ad un evento meteorologico,
https://www.meteoweb.eu/2021/10/medicane-apollo-per-la-prima-volta-un-nome-ufficiale/1734332/
(last access: 27 January 2022), 2021. a
Michaelis, A. C. and Lackmann, G. M.: Climatological changes in the
extratropical transition of tropical cyclones in high-resolution global
simulations, J. Climate, 32, 8733–8753, 2019. a
Michelangeli, P.-A., Vautard, R., and Legras, B.: Weather regimes: Recurrence
and quasi stationarity, J. Atmos. Sci., 52, 1237–1256,
1995. a
Miller, B.: These US cities had the coldest morning in decades – with some reaching all-time record lows, CNN,
https://edition.cnn.com/2021/02/16/us/record-cold-weather-us-trnd/index.html,
last access: 14 January 2022. a
Mitchell, D., Heaviside, C., Vardoulakis, S., Huntingford, C., Masato, G.,
Guillod, B. P., Frumhoff, P., Bowery, A., Wallom, D., and Allen, M.:
Attributing human mortality during extreme heat waves to anthropogenic
climate change, Environ. Res. Lett., 11, 074006, https://doi.org/10.1088/1748-9326/11/7/074006, 2016. a
Molina, M., Sánchez, E., and Gutiérrez, C.: Future heat waves over the Mediterranean from an Euro-CORDEX regional climate model ensemble, Sci. Rep., 10, 1–10, 2020. a
Moloney, N. R., Faranda, D., and Sato, Y.: An overview of the extremal index,
Chaos, 29, 022101, https://doi.org/10.1063/1.5079656, 2019. a, b
Mori, M., Watanabe, M., Shiogama, H., Inoue, J., and Kimoto, M.: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades, Nat. Geosci., 7, 869–873, 2014. a
National Academies of Sciences, Engineering, and Medicine: Attribution of Extreme Weather Events in the Context of Climate Change, The National Academies Press, Washington, DC, https://doi.org/10.17226/21852, 2016. a
Naveau, P., Hannart, A., and Ribes, A.: Statistical methods for extreme event attribution in climate science, Annu. Rev. Stat. Appl., 7, 89–110, 2020. a
NCDC/NOAA: Billion-Dollar Weather and Climate Disasters,
https://www.ncdc.noaa.gov/billions/events/US/2021 (last access:
31 January 2022), 2021. a
NCEP/CPC: PSL Data: CPC Unified Gauge-Based Analysis of Daily Precipitation over CONUS RT: NOAA Physical Sciences Laboratory,
https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html, last access: 25 January 2022. a
NHC/NOAA: Costliest U.S. tropical cyclones tables updated,
https://www.nhc.noaa.gov/news/UpdatedCostliest.pdf (last access:
31 January 2022), 2018. a
NHC/NOAA: National Hurricane Center – Hurricane IDA Advisory Archive,
https://www.nhc.noaa.gov/archive/2021/IDA.shtml (last access: 31 January 2022), 2021. a
Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C., and Sanderson, B. M.:
Precipitation variability increases in a warmer climate, Sci. Rep.,
7, 1–9, 2017. a
Poli, V. and Stanzani, R.: Rapporto dell'evento meteorologico del 19 e 20 settembre 2021, Arpae Emilia-Romagna – Struttura Idro-Meteo-Clima, https://allertameteo.regione.emilia-romagna.it/documents/20181/437770/Evento+19-20+settembre+2021.pdf/ff3ed88f-773d-06e9-eb02-d0a306ae9121?t=1633503536867,
last access: 26 January 2022. a
Priestley, M. D. K. and Catto, J. L.: Future changes in the extratropical storm tracks and cyclone intensity, wind speed, and structure, Weather Clim. Dynam., 3, 337–360, https://doi.org/10.5194/wcd-3-337-2022, 2022. a
Román-Palacios, C. and Wiens, J. J.: Recent responses to climate change
reveal the drivers of species extinction and survival, P. Natl. Acad. Sci. USA, 117, 4211–4217, 2020. a
Romero, R. and Emanuel, K.: Climate change and Hurricane-like extratropical
cyclones: Projections for North Atlantic polar lows and medicanes based on
CMIP5 models, J. Climate, 30, 279–299, 2017. a
Sainsbury, E. M., Schiemann, R. K., Hodges, K. I., Shaffrey, L. C., Baker,
A. J., and Bhatia, K. T.: How important are post-tropical cyclones for
European windstorm risk?, Geophys. Res. Lett., 47, e2020GL089853, https://doi.org/10.1029/2020GL089853, 2020. a
Sarkar, N. and Chaudhuri, B. B.: An efficient differential box-counting approach to compute fractal dimension of image, IEEE T. syst. man cyb., 24, 115–120, 1994. a
Seneviratne, S., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Luca, A. D., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S., Wehner, M., and Zhou, B.: Weather and Climate Extreme Events in a Changing Climate., in: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1513–1766, 2021. a, b, c, d
Sharmila, S. and Walsh, K.: Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion, Nat. Clim. Change, 8, 730–736, 2018. a
Shepherd, T. G.: Atmospheric circulation as a source of uncertainty in climate change projections, Nat. Geosci., 7, 703–708, https://doi.org/10.1038/ngeo2253, 2014. a
Shepherd, T. G.: A Common Framework for Approaches to Extreme Event
Attribution, Current Climate Change Reports, 2, 28–38,
https://doi.org/10.1007/s40641-016-0033-y, 2016. a, b
Shepherd, T. G.: Storyline approach to the construction of regional climate
change information, P. Roy. Soc. A, 475, 20190013, https://doi.org/10.1098/rspa.2019.0013, 2019. a
SMHI: November 2021 – Nästan rekordkall avslutning,
https://www.smhi.se/klimat/klimatet-da-och-nu/manadens-vader-och-vatten-sverige/manadens-vader-i-sverige/november-2021-nastan-rekordkall-avslutning-1.176606,
last access: 14 January 2022a. a
SMHI: November 2021 – La Niña bidrog till översvämningar i sydvästra Kanada, https://www.smhi.se/klimat/klimatet-da-och-nu/manadens-vader-i-varlden/november-2021-la-nina-bidrog-till-oversvamningar-i-sydvastra-kanada-1.176603,
last access: 14 January 2022b. a
Spinoni, J., Barbosa, P., Bucchignani, E., Cassano, J., Cavazos, T., Christensen, J. H., Christensen, O. B., Coppola, E., Evans, J., Geyer, B., Giorgi, F., Hadjinicolaou, P., Jacob, D., Katzfey, J., Koenigk, T., Laprise, R., Lennard, C. J., Kurnaz, M. L., Li, D., Llopart, M., McCormick, N., Naumann, G., Nikulin, G., Ozturk, T., Panitz, H.-J., da Rocha, R. P., Rockel, B., Solman, S. A., Syktus, J., Tangang, F., Teichmann, C., Vautard, R., Vogt, J. V., Winger, K., Zittis, G., and Dosio, A.: Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data, J. Climate, 33, 3635–3661, https://doi.org/10.1175/JCLI-D-19-0084.1, 2020. a
Stefanon, M., D’Andrea, F., and Drobinski, P.: Heatwave classification over
Europe and the Mediterranean region, Environ. Res. Lett., 7,
014023, https://doi.org/10.1088/1748-9326/7/1/014023, 2012. a
Stendel, M., Francis, J., White, R., Williams, P. D., and Woollings, T.: The
jet stream and climate change, in: Climate Change, Elsevier, 327–357, https://doi.org/10.1016/B978-0-12-821575-3.00015-3, 2021. a, b
Süveges, M.: Likelihood estimation of the extremal index, Extremes, 10,
41–55, 2007. a
SVD: Oväder drar österut – flera trafikolyckor,
https://www.svd.se/fortsatta-snoproblem-i-soder, last access: 14 January 2022. a
SVT: Tågtrafik i Norrbotten ställs in – för kallt att köra,
https://www.svt.se/nyheter/lokalt/norrbotten/tagtrafik-i-norrbotten-stalls-in-for-kallt-att-kora,
last access: 14 January 2022. a
Tamarin-Brodsky, T., Hodges, K., Hoskins, B. J., and Shepherd, T. G.: A
Dynamical Perspective on Atmospheric Temperature Variability and
Its Response to Climate Change, J. Climate, 32, 1707–1724,
2019. a
Tous, M., Zappa, G., Romero, R., Shaffrey, L., and Vidale, P. L.: Projected
changes in medicanes in the HadGEM3 N512 high-resolution global climate
model, Clim. Dynam., 47, 1913–1924, 2016. a
Trenberth, K. E.: Attribution of climate variations and trends to human influences and natural variability, Wiley Interdisciplinary Reviews: Climate
Change, 2, 925–930, 2011. a
Trenberth, K. E., and Shea, D. J.: Atlantic hurricanes and natural variability in 2005, Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894, 2006. a
Trenberth, K. E., Fasullo, J. T., and Shepherd, T. G.: Attribution of climate
extreme events, Nature Clim. Change, 5, 725–730,
https://doi.org/10.1038/nclimate2657, 2015. a, b
Ulbrich, U., Leckebusch, G. C., and Pinto, J. G.: Extra-tropical cyclones in the present and future climate: a review, Theor. Appl. Climatol., 96, 117–131, 2009. a
Van Oldenborgh, G. J. and Van Ulden, A.: On the relationship between global warming, local warming in the Netherlands and changes in circulation in the
20th century, Int. J. Climatol., 23, 1711–1724, 2003. a
Van Oldenborgh, G. J., Van Urk, A., and Allen, M.: The absence of a role of
climate change in the 2011 Thailand floods, B. Am. Meteorol. Soc, 93,
1047–1049, 2012. a
Van Oldenborgh, G. J., Mitchell-Larson, E., Vecchi, G. A., De Vries, H.,
Vautard, R., and Otto, F.: Cold waves are getting milder in the northern
midlatitudes, Environ. Res. Lett., 14, 114004, https://doi.org/10.1088/1748-9326/ab4867, 2019. a
van Oldenborgh, G. J., van der Wiel, K., Kew, S., Philip, S., Otto, F., Vautard, R., King, A., Lott, F., Arrighi, J., Singh, R., and van Aalst, M.: Pathways and pitfalls in extreme event attribution, Climatic Change, 166, 1–27, 2021. a
Vautard, R. and Yiou, P.: ATTRIBUTION Robustness of warming attribution,
Nat. Clim. Change, 2, 26–27, 2012. a
Vautard, R., Yiou, P., Otto, F., Stott, P., Christidis, N., Oldenborgh, G. J. V., and Schaller, N.: Attribution of human-induced dynamical and thermodynamical contributions in extreme weather events, Environ. Res. Lett., 11, 114009, https://doi.org/10.1088/1748-9326/11/11/114009, 2016. a
Vautard, R., Colette, A., Van Meijgaard, E., Meleux, F., van Oldenborgh, G. J., Otto, F., Tobin, I., and Yiou, P.: Attribution of Wintertime Anticyclonic Stagnation Contributing to Air Pollution in Western Europe, B. Am. Meteorol. Soc., 99, S70–S75,
2018. a
Vautard, R., van Oldenborg, G., Bonnet, R., Li, S., Robin, Y., Kew, S., Philip, S., Soubeyroux, J., Dubuisson, B., N, V., Riechstein, M., and Otto, F.: Human influence on growing period frosts like the early april 2021 in Central France, World Weather Attribution, https://www.worldweatherattribution.org/wp-content/uploads/GrowingPeriodFrost2021.pdf
(last access: 31 January 2022), 2021. a, b
Walker, E., Mitchell, D., and Seviour, W.: The numerous approaches to tracking extratropical cyclones and the challenges they present, Weather, 75,
336–341, 2020. a
Wehrli, K., Hauser, M., and Seneviratne, S. I.: Storylines of the 2018 Northern Hemisphere heatwave at pre-industrial and higher global warming levels, Earth Syst. Dynam., 11, 855–873, https://doi.org/10.5194/esd-11-855-2020, 2020.
a
WMO: État du climat en 2021: des phénomènes météorologiques extrêmes et de lourdes conséquences, World Meteorological Organisation [data set],
https://public.wmo.int/fr/medias/communiques-de-presse/etat-du-climat-en-2021-des-phenomenes-meteorologiques-extremes-et-de
(last access: 27 January 2022), 2021. a
Ye, K. and Messori, G.: Two leading modes of wintertime atmospheric circulation drive the recent warm Arctic–cold Eurasia temperature pattern, J. Climate, 33, 5565–5587, 2020. a
Yiou, P., Jézéquel, A., Naveau, P., Otto, F. E. L., Vautard, R., and Vrac, M.: A statistical framework for conditional extreme event attribution, Adv. Stat. Clim. Meteorol. Oceanogr., 3, 17–31, https://doi.org/10.5194/ascmo-3-17-2017, 2017. a
Yiou, S., Balembois, F., Schaffers, K., and Georges, P.: Efficient laser
operation of an Yb:S-FAP crystal at 985 nm, Appl. Optics, 42,
4883–4886, 2003. a
Zappa, G., Shaffrey, L. C., Hodges, K. I., Sansom, P. G., and Stephenson, D. B.: A Multimodel Assessment of Future Projections of North Atlantic and
European Extratropical Cyclones in the CMIP5 Climate Models, J.
Climate, 26, 5846–5862, 2013. a
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton,
R. M., van den Hurk, B., AghaKouchak, A., Jézéquel, A., and Mahecha, M. D.:
A typology of compound weather and climate events, Nat. Rev. Earth Environ., 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020. a
Short summary
We analyze the atmospheric circulation leading to impactful extreme events for the calendar year 2021 such as the Storm Filomena, Westphalia floods, Hurricane Ida and Medicane Apollo. For some of the events, we find that climate change has contributed to their occurrence or enhanced their intensity; for other events, we find that they are unprecedented. Our approach underscores the importance of considering changes in the atmospheric circulation when performing attribution studies.
We analyze the atmospheric circulation leading to impactful extreme events for the calendar year...