Articles | Volume 3, issue 2
https://doi.org/10.5194/wcd-3-645-2022
https://doi.org/10.5194/wcd-3-645-2022
Research article
 | 
15 Jun 2022
Research article |  | 15 Jun 2022

Relationship between southern hemispheric jet variability and forced response: the role of the stratosphere

Philipp Breul, Paulo Ceppi, and Theodore G. Shepherd

Related authors

The importance of stratocumulus clouds for projected warming patterns and circulation changes
Philipp Breul, Paulo Ceppi, and Peer Nowack
EGUsphere, https://doi.org/10.5194/egusphere-2025-221,https://doi.org/10.5194/egusphere-2025-221, 2025
Short summary
Revisiting the wintertime emergent constraint of the southern hemispheric midlatitude jet response to global warming
Philipp Breul, Paulo Ceppi, and Theodore G. Shepherd
Weather Clim. Dynam., 4, 39–47, https://doi.org/10.5194/wcd-4-39-2023,https://doi.org/10.5194/wcd-4-39-2023, 2023
Short summary

Cited articles

Barnes, E. A. and Hartmann, D. L.: Testing a Theory for the Effect of Latitude on the Persistence of Eddy-Driven Jets Using CMIP3 Simulations, Geophys. Res. Lett., 37, L15801, https://doi.org/10.1029/2010GL044144, 2010. a, b, c
Barnes, E. A. and Polvani, L.: Response of the Midlatitude Jets, and of Their Variability, to Increased Greenhouse Gases in the CMIP5 Models, J. Climate, 26, 7117–7135, https://doi.org/10.1175/JCLI-D-12-00536.1, 2013. a
Barnes, E. A. and Thompson, D. W. J.: Comparing the Roles of Barotropic versus Baroclinic Feedbacks in the Atmosphere's Response to Mechanical Forcing, J. Atmos. Sci., 71, 177–194, https://doi.org/10.1175/JAS-D-13-070.1, 2014. a, b, c
Barsugli, J. J. and Battisti, D. S.: The Basic Effects of Atmosphere – Ocean Thermal Coupling on Midlatitude Variability, J. Atmos. Sci., 55, 477–493, https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2, 1998. a
Breul, P.: WCD_2021-78_Code, figshare [code], https://doi.org/10.6084/m9.figshare.20051258.v1, 2022a. a
Download
Short summary
Understanding how the mid-latitude jet stream will respond to a changing climate is highly important. Unfortunately, climate models predict a wide variety of possible responses. Theoretical frameworks can link an internal jet variability timescale to its response. However, we show that stratospheric influence approximately doubles the internal timescale, inflating predicted responses. We demonstrate an approach to account for the stratospheric influence and recover correct response predictions.
Share