Articles | Volume 4, issue 1
https://doi.org/10.5194/wcd-4-189-2023
https://doi.org/10.5194/wcd-4-189-2023
Research article
 | 
02 Feb 2023
Research article |  | 02 Feb 2023

Vortex streets to the lee of Madeira in a kilometre-resolution regional climate model

Qinggang Gao, Christian Zeman, Jesus Vergara-Temprado, Daniela C. A. Lima, Peter Molnar, and Christoph Schär

Related authors

Evaporative controls on Antarctic precipitation: an ECHAM6 model study using innovative water tracer diagnostics
Qinggang Gao, Louise C. Sime, Alison J. McLaren, Thomas J. Bracegirdle, Emilie Capron, Rachael H. Rhodes, Hans Christian Steen-Larsen, Xiaoxu Shi, and Martin Werner
The Cryosphere, 18, 683–703, https://doi.org/10.5194/tc-18-683-2024,https://doi.org/10.5194/tc-18-683-2024, 2024
Short summary

Related subject area

Boundary-layer dynamics incl. coupling to land, ocean and ice
Forcing for varying boundary layer stability across Antarctica
Mckenzie J. Dice, John J. Cassano, and Gina C. Jozef
Weather Clim. Dynam., 5, 369–394, https://doi.org/10.5194/wcd-5-369-2024,https://doi.org/10.5194/wcd-5-369-2024, 2024
Short summary
Variations in boundary layer stability across Antarctica: a comparison between coastal and interior sites
Mckenzie J. Dice, John J. Cassano, Gina C. Jozef, and Mark Seefeldt
Weather Clim. Dynam., 4, 1045–1069, https://doi.org/10.5194/wcd-4-1045-2023,https://doi.org/10.5194/wcd-4-1045-2023, 2023
Short summary
Exploring the daytime boundary layer evolution based on Doppler spectrum width from multiple coplanar wind lidars during CROSSINN
Nevio Babić, Bianca Adler, Alexander Gohm, Manuela Lehner, and Norbert Kalthoff
EGUsphere, https://doi.org/10.5194/egusphere-2023-1977,https://doi.org/10.5194/egusphere-2023-1977, 2023
Short summary
Adverse impact of terrain steepness on thermally driven initiation of orographic convection
Matthias Göbel, Stefano Serafin, and Mathias W. Rotach
Weather Clim. Dynam., 4, 725–745, https://doi.org/10.5194/wcd-4-725-2023,https://doi.org/10.5194/wcd-4-725-2023, 2023
Short summary
Effects on early monsoon rainfall in West Africa due to recent deforestation in a convection-permitting ensemble
Julia Crook, Cornelia Klein, Sonja Folwell, Christopher M. Taylor, Douglas J. Parker, Adama Bamba, and Kouakou Kouadio
Weather Clim. Dynam., 4, 229–248, https://doi.org/10.5194/wcd-4-229-2023,https://doi.org/10.5194/wcd-4-229-2023, 2023
Short summary

Cited articles

Abramovich, F., Bailey, T. C., and Sapatinas, T.: Wavelet Analysis and its Statistical Applications, J. Roy. Stat. Soc. D-Sta, 49, 1–29, https://doi.org/10.1111/1467-9884.00216, 2000. a
Azevedo, C. C., Camargo, C. M. L., Alves, J., and Caldeira, R. M. A.: Convection and Heat Transfer in Island (Warm) Wakes, J. Phys. Oceanogr., 51, 1187–1203, https://doi.org/10.1175/jpo-d-20-0103.1, 2020. a, b
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. a
Ban, N., Schmidli, J., and Schär, C.: Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations, J. Geophys. Res.-Atmos., 119, 7889–7907, https://doi.org/10.1002/2014JD021478, 2014. a
Ban, N., Schmidli, J., and Schär, C.: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster?, Geophys. Res. Lett., 42, 1165–1172, https://doi.org/10.1002/2014GL062588, 2015. a
Download
Short summary
We developed a vortex identification algorithm for realistic atmospheric simulations. The algorithm enabled us to obtain a climatology of vortex shedding from Madeira Island for a 10-year simulation period. This first objective climatological analysis of vortex streets shows consistency with observed atmospheric conditions. The analysis shows a pronounced annual cycle with an increasing vortex shedding rate from April to August and a sudden decrease in September.