Articles | Volume 6, issue 3
https://doi.org/10.5194/wcd-6-741-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-6-741-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Diverse causes of extreme rainfall in November 2023 over Equatorial Africa
Laboratory for Environmental Modelling and Atmospheric Physics (LEMAP), Physics Department, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
Masilin Gudoshava
IGAD Climate Prediction and Applications Centre (ICPAC), Nairobi, Kenya
Roméo S. Tanessong
Department of Meteorology and Climatology, Higher Institute of Agriculture, Forestry, Water and Environment, University of Ebolowa, P.O. Box 118, Ebolowa, Cameroon
Laboratory for Environmental Modelling and Atmospheric Physics (LEMAP), Physics Department, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
Alain T. Tamoffo
Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany
Derbetini A. Vondou
Laboratory for Environmental Modelling and Atmospheric Physics (LEMAP), Physics Department, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
Related authors
Hermann N. Nana, Roméo S. Tanessong, Masilin Gudoshava, and Derbetini A. Vondou
EGUsphere, https://doi.org/10.5194/egusphere-2025-2656, https://doi.org/10.5194/egusphere-2025-2656, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
The results of this study reveal that the seasonal forecast model used here successfully reproduces the observed annual precipitation cycle and seasonal spatial pattern of rainfall over the region for both September and August initial conditions, with notably better skills for September, compared to August. In addition, the model effectively captures the teleconnections between rainfall and tropical sea surface temperature, including the Indian Ocean dipole and El Niño-Southern Oscillation.
Hermann N. Nana, Roméo S. Tanessong, Masilin Gudoshava, and Derbetini A. Vondou
EGUsphere, https://doi.org/10.5194/egusphere-2025-2656, https://doi.org/10.5194/egusphere-2025-2656, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
The results of this study reveal that the seasonal forecast model used here successfully reproduces the observed annual precipitation cycle and seasonal spatial pattern of rainfall over the region for both September and August initial conditions, with notably better skills for September, compared to August. In addition, the model effectively captures the teleconnections between rainfall and tropical sea surface temperature, including the Indian Ocean dipole and El Niño-Southern Oscillation.
Kevin Kenfack, Francesco Marra, Zéphirin Yepdo Djomou, Lucie Angennes Djiotang Tchotchou, Alain Tchio Tamoffo, and Derbetini Appolinaire Vondou
Weather Clim. Dynam., 5, 1457–1472, https://doi.org/10.5194/wcd-5-1457-2024, https://doi.org/10.5194/wcd-5-1457-2024, 2024
Short summary
Short summary
The results of this study show that moisture advection induced by horizontal wind anomalies and vertical moisture advection induced by vertical velocity anomalies were crucial mechanisms behind the anomalous October 2019 exceptional rainfall increase over western central Africa. The information we derive can be used to support risk assessment and management in the region and to improve our resilience to ongoing climate change.
Wilfran Moufouma-Okia, Debertini A. Vondou, and Richard JONES
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2020-38, https://doi.org/10.5194/wcd-2020-38, 2020
Preprint withdrawn
Short summary
Short summary
This work examines the fidelity to reproduce regional and global monsoons climatological features using the Met Office Unified Model (MetUM) third and fourth generations Global Atmosphere (GA3.0) and (GA4.0), two configurations of the HadGEM3 system developed for use across climate and weather time scales. GA3.0 largely captures global monsoon features, including the monsoon precipitation patterns. GA4.0 and GA3.0 results display a close similarity, and compares reasonably well against CMIP5.
Cited articles
Berhane, F. and Zaitchik, B.: Modulation of daily precipitation over East Africa by the Madden–Julian oscillation, J. Climate, 27, 6016–6034, https://doi.org/10.1175/jcli-d-13-00693.1, 2014.
Berhane, F. G.: Intraseasonal Precipitation Variability Over Tropical Africa, Ph. D., Johns Hopkins University, Baltimore, MD, USA, 2016.
Black, E.: The relationship between Indian Ocean sea–surface temperature and East African rainfall, Phil. Trans. R. Soc. A. 363, 43–47, https://doi.org/10.1098/rsta.2004.1474, 2005.
Chadwick, R., Good, P., and Willett, K.: A simple moisture advection model of specific humidity change over land in response to SST warming, J. Climate, 29, 7613–7632, https://doi.org/10.1175/jcli-d-16-0241.1, 2016.
Chobo, J. S. and Huo, L.: The relationship between extreme precipitation events in East Africa during the short rainy season and Indian Ocean Sea surface temperature, J. Geosc. Env. Prot., 12, 1–16, https://doi.org/10.4236/gep.2024.129001, 2024.
Dezfuli, A. K. and Nicholson, S. E.: The relationship of rainfall variability in Western Equatorial Africa to the tropical oceans and atmospheric circulation. Part II: The Boreal Autumn, J. Climate, 26, 66–84, https://doi.org/10.1175/jcli-d-11-00686.1, 2013.
Fotso-Nguemo, T. C., Diallo, I., Diakhaté, M., Vondou, D. A., Mbaye, M. L., Haensler, A., Gaye, A. T., and Tchawoua, C.: Projected changes in the seasonal cycle of extreme rainfall events from CORDEX simulations over Central Africa, Climatic Change, 155, 339–357, https://doi.org/10.1007/s10584-019-02492-9, 2019.
Funk, C., Dettinger, M. D., Michaelsen, J. C., Verdin, J. P., Brown, M. E., Barlow, M., and Hoell, A.: Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development, P. Natl. Acad. Sci. USA, 105, 11081–11086, https://doi.org/10.1073/pnas.0708196105, 2008.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The climate hazards infrared precipitation with stations – a new environmental record for monitoring extremes, Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66, 2015.
Gudoshava, M., Misiani, H. O., Segele, Z. T., Jain, S., Ouma, J. O., Otieno, G., Anyah, R., Indasi, V. S., Endris, H. S., Osima, S., Lennard, C., Zaroug, M., Mwangi, E., Nimusiima, A., Kondowe, A., Ogwang, B., Artan, G., and Atheru, Z.: Projected effects of 1.5 °C and 2 °C global warming levels on the intra-seasonal rainfall characteristics over the Greater Horn of Africa, Environ. Res. Lett., 15, 034037, https://doi.org/10.1088/1748-9326/ab6b33, 2020.
Gudoshava, M., Nyinguro, P., Talib, J., Wainwright, C., Mwanthi, A., Hirons, L., de Andrade, F., Mutemi, J., Gitau, W., Thompson, E., Gacheru, J., Marsham, J., Endris, H. S., Woolnough, S., Segele, Z., Atheru, Z., and Artan, G.: Drivers of sub-seasonal extreme rainfall and their representation in ECMWF forecasts during the Eastern African March-to-May seasons of 2018–2020, Meterol. Appl., 31, e70000, https://doi.org/10.1002/met.70000, 2024.
Hastenrath, S., Polzin, D., and Mutai, C.: Diagnosing the droughts and floods in Equatorial East Africa during boreal autumn 2005–08, J. Climate, 23, 813–817, https://doi.org/10.1175/2009jcli3094.1, 2010.
Hastenrath, S., Polzin, D., and Mutai, C.: Circulation mechanisms of Kenya rainfall anomalies, J. Climate, 24, 404–412, https://doi.org/10.1175/2010jcli3599.1, 2011.
Herrnegger, M., Kray, P., Stecher, G., Cherono Kiplangat, N., Otieno, D., Olang, L., and Nicholson, S. E.: Paleohydrology repeating? Regional hydrological change may lead to an overflow and cross-mixing of an alkaline and a freshwater lake in East Africa, J. Hydrol., 55, 101951, https://doi.org/10.1016/j.ejrh.2024.101951, 2024.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.6860a573, 2023.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., and Zhang, H.-M.: Extended reconstructed sea surface temperature, version 5: Upgrades, validations, and intercomparisons, J. Climate, 30, 8179–8205, https://doi.org/10.1175/jcli-d-16-0836.1, 2017 (data available at: https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version5/.sst/, last access: 8 July 2025).
Ibebuchi, C. C.: Revisiting the 1992 severe drought episode in South Africa: The role of El Niño in the anomalies of atmospheric circulation types in Africa south of the equator, Theor. Appl. Climatol., 146, 723–740, https://doi.org/10.1007/s00704-021-03741-7, 2021.
Indeje, M., Semazzi, F. H. M., and Ogallo, L. J.: ENSO signals in East African rainfall seasons, Int. J. Climatol., 20, 19–46, https://doi.org/10.1002/(sici)1097-0088(200001)20:1<19::aid-joc449>3.0.co;2-0, 2000.
Ingeri, C., Wen, W., Sebaziga, J. N., Iyakaremye, V., Ekwacu, S., Ayabagabo, P., Twahirwa, A., and Kazora, J.: Potential driving systems associated with extreme rainfall across East Africa during october to december (OND) season 2019, J. Geosc. Env. Prot., 12, 25–49, https://doi.org/10.4236/gep.2024.127003, 2024.
Kenfack, K., Marra, F., Djomou, Z. Y., Tchotchou, L. A. D., Tamoffo, A. T., and Vondou, D. A.: Dynamic and thermodynamic contribution to the October 2019 exceptional rainfall in western central Africa, Weather Clim. Dynam., 5, 1457–1472, https://doi.org/10.5194/wcd-5-1457-2024, 2024.
Kilavi, M., MacLeod, D., Ambani, M., Robbins, J., Dankers, R., Graham, R., Titley, H., Salih, A., and Todd, M.: Extreme rainfall and flooding over central kenya including nairobi city during the long-rains season 2018: Causes, predictability, and potential for early warning and actions, Atmosphere, 9, 472, https://doi.org/10.3390/atmos9120472, 2018.
Kimani, M., Hoedjes, J. C. B., and Su, Z.: An assessment of MJO circulation influence on air–sea interactions for improved seasonal rainfall predictions over East Africa, J. Climate, 33, 8367–8379, https://doi.org/10.1175/jcli-d-19-0296.1, 2020.
Kuete, G., Pokam Mba, W., and Washington, R.: African Easterly Jet South: Control, maintenance mechanisms and link with Southern subtropical waves, Clim. Dynam., 54, 1539–1552, https://doi.org/10.1007/s00382-019-05072-w, 2019.
Kuete, G., Mba, W. P., James, R., Dyer, E., Annor, T., and Washington, R.: How do coupled models represent the African Easterly Jets and their associated dynamics over Central Africa during the September–November rainy season? Clim. Dynam., 60, 2907–2929, https://doi.org/10.1007/s00382-022-06467-y, 2022.
Li, C., Chai, Y., Yang, L., and Li, H.: Spatio-temporal distribution of flood disasters and analysis of influencing factors in Africa, Nat. Hazards, 82, 721–731, https://doi.org/10.1007/s11069-016-2181-8, 2016.
Longandjo, G.-N. T. and Rouault, M.: On the structure of the regional-scale circulation over Central Africa: Seasonal evolution, variability, and mechanisms, J. Climate, 33, 145–162, https://doi.org/10.1175/jcli-d-19-0176.1, 2020.
Longandjo, G.-N. T. and Rouault, M.: Revisiting the seasonal cycle of rainfall over Central Africa, J. Climate, 37, 1015–1032, https://doi.org/10.1175/jcli-d-23-0281.1, 2024.
Lüdecke, H.-J., Müller-Plath, G., Wallace, M. G., and Lüning, S.: Decadal and multidecadal natural variability of African rainfall, J. Hydrol., 34, 100795, https://doi.org/10.1016/j.ejrh.2021.100795, 2021.
Lutz, K., Jacobeit, J., and Rathmann, J.: Atlantic warm and cold water events and impact on African west coast precipitation, Int. J. Climatol., 35, 128–141, https://doi.org/10.1002/joc.3969, 2014.
Madden, R. A. and Julian, P. R.: Detection of a 40–50 d oscillation in the zonal wind in the Tropical Pacific, J. Atmos. Sci., 28, 702–708, https://doi.org/10.1175/1520-0469(1971)028<0702:doadoi>2.0.co;2, 1971.
Madden, R. A. and Julian, P. R.: Description of global-scale circulation cells in the Tropics with a 40–50 d period, J. Atmos. Sci., 29, 1109–1123, https://doi.org/10.1175/1520-0469(1972)029<1109:dogscc>2.0.co;2, 1972.
McHugh, M. J. and Rogers, J. C.: North atlantic oscillation influence on precipitation variability around the southeast african convergence zone, J. Climate, 14, 3631–3642, https://doi.org/10.1175/1520-0442(2001)014<3631:naoiop>2.0.co;2, 2001.
Moihamette, F., Pokam, W. M., Diallo, I., and Washington, R.: Extreme Indian Ocean dipole and rainfall variability over Central Africa, Int. J. Climatol., 42, 5255–5272, https://doi.org/10.1002/joc.7531, 2022.
Moihamette, F., Pokam, W. M., Diallo, I., and Washington, R.: Response of regional circulation features to the Indian Ocean dipole and influence on Central Africa climate, Clim. Dynam., 62, 1–21, https://doi.org/10.1007/s00382-024-07251-w, 2024.
Nana, H. N., Tanessong, R. S., Tchotchou, L. A. D., Tamoffo, A. T., Moihamette, F., and Vondou, D. A.: Influence of strong South Atlantic Ocean Dipole on the Central African rainfall's system, Clim. Dynam., 62, 1–16, https://doi.org/10.1007/s00382-023-06892-7, 2023.
Nana, H. N., Tamoffo, A. T., Kaissassou, S., Djiotang Tchotchou, L. A., Tanessong, R. S., Kamsu-Tamo, P. H., Kenfack, K., and Vondou, D. A.: Performance-based evaluation of NMME and C3S models in forecasting the June–August Central African rainfall under the influence of the South Atlantic Ocean Dipole, Int. J. Climatol., 44, 2462–2483, https://doi.org/10.1002/joc.8463, 2024.
Ngavom, Z., Fotso-Nguemo, T. C., Vondou, D. A., Fotso-Kamga, G., Zebaze, S., Yepdo, Z. D., and Diedhiou, A.: Projected changes in population exposure to extreme precipitation events over Central Africa under the global warming levels of 1.5 °C and 2 °C: Insights from CMIP6 simulations, Model. Earth Syst. Environ., 10, 5753–5769, https://doi.org/10.1007/s40808-024-02091-3, 2024.
Nicholson, S. E.: Long-term variability of the East African “short rains” and its links to large-scale factors, Int. J. Climatol., 35, 3979–3990, https://doi.org/10.1002/joc.4259, 2015.
Nicholson, S. E. and Grist, J. P.: The seasonal evolution of the atmospheric circulation over West Africa and Equatorial Africa, J. Climate, 16, 1013–1030, https://doi.org/10.1175/1520-0442(2003)016<1013:tseota>2.0.co;2, 2003.
Nicholson, S. E., Fink, A. H., Funk, C., Klotter, D. A., and Satheesh, A. R.: Meteorological causes of the catastrophic rains of October/November 2019 in equatorial Africa, Global. Planet. Change, 208, 103687, https://doi.org/10.1016/j.gloplacha.2021.103687, 2022.
NOAA/NCEI: NOAA National Centers for Environmental Information, Monthly Synoptic Discussion for November 2023, published online December 2023, retrieved on 9 July 2025, https://www.ncei.noaa.gov/access/monitoring/monthly-report/synoptic/202311 (last access: 26 November 2024), 2025.
Onyutha, C.: Geospatial trends and decadal anomalies in extreme rainfall over uganda, east africa, Adv. Meteorol., 2016, 15–15, https://doi.org/10.1155/2016/6935912, 2016.
Palmer, P. I., Wainwright, C. M., Dong, B., Maidment, R. I., Wheeler, K. G., Gedney, N., Hickman, J. E., Madani, N., Folwell, S. S., Abdo, G., Allan, R. P., Black, E. C. L., Feng, L., Gudoshava, M., Haines, K., Huntingford, C., Kilavi, M., Lunt, M. F., Shaaban, A., and Turner, A. G.: Drivers and impacts of Eastern African rainfall variability, Nat. Rev. Earth Environ., 4, 254–270, https://doi.org/10.1038/s43017-023-00397-x, 2023.
Pohl, B. and Camberlin, P.: Influence of the Madden–Julian Oscillation on East African rainfall. I: Intraseasonal variability and regional dependency, Q. J. Roy. Meteor. Soc., 132, 2521–2539, https://doi.org/10.1256/qj.05.104, 2006.
Pohl, B. and Matthews, A. J.: Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies, J. Climate, 20, 2659–2674, https://doi.org/10.1175/jcli4230.1, 2007.
Pokam, W. M., Djiotang, L. A. T., and Mkankam, F. K.: Atmospheric water vapor transport and recycling in Equatorial Central Africa through NCEP/NCAR reanalysis data, Clim. Dynam., 38, 1715–1729, https://doi.org/10.1007/s00382-011-1242-7, 2011.
Pokam, W. M., Bain, C. L., Chadwick, R. S., Graham, R., Sonwa, D. J., and Kamga, F. M.: Identification of processes driving low-level westerlies in west equatorial africa, J. Climate, 27, 4245–4262, https://doi.org/10.1175/jcli-d-13-00490.1, 2014.
Roy, I. and Troccoli, A.: Identifying important drivers of East African October to December rainfall season, Sci. Total Environ., 914, 169615, https://doi.org/10.1016/j.scitotenv.2023.169615, 2024.
Sandjon, A. T., Nzeukou, A., and Tchawoua, C.: Intraseasonal atmospheric variability and its interannual modulation in Central Africa, Meteorol. Atmos. Phys., 117, 167–179, https://doi.org/10.1007/s00703-012-0196-6, 2012.
Seager, R., Naik, N., and Vecchi, G. A.: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming*, J. Climate, 23, 4651–4668, https://doi.org/10.1175/2010jcli3655.1, 2010.
Shisanya, Chris, A.: The 1983–1984 drought in Kenya, J. East. Afr. Res. Dev., 20, 127–148, http://www.jstor.org/stable/24326214 (last access: 8 July 2025), 1990.
Stachnik, J. P. and Schumacher, C.: A comparison of the Hadley circulation in modern reanalyses, J. Geophys. Res.-Atmos., 116, D22102, https://doi.org/10.1029/2011jd016677, 2011.
Taguela, T. N., Pokam, W. M., Dyer, E., James, R., and Washington, R.: Low-level circulation over Central Equatorial Africa as simulated from CMIP5 to CMIP6 models, Clim. Dynam., 62, 8333–8351, https://doi.org/10.1007/s00382-022-06411-0, 2022.
Tamoffo, A. T., Amekudzi, L. K., Weber, T., Vondou, D. A., Yamba, E. I., and Jacob, D.: Mechanisms of rainfall biases in two CORDEX-CORE regional climate models at rainfall peaks over central equatorial africa, J. Climate, 35, 639–668, https://doi.org/10.1175/jcli-d-21-0487.1, 2022.
Tamoffo, A. T., Weber, T., Abel, D., Ziegler, K., Cabos, W., Sein, D. V., and Laux, P.: Regionally coupled climate model ROM projects more plausible precipitation change over Central Equatorial Africa, J. Geophys. Res.-Atmos., 129, https://doi.org/10.1029/2024jd041466, 2024.
Tanessong, R. S., Vondou, D. A., Djomou, Z. Y., and Igri, P. M.: WRF high resolution simulation of an extreme rainfall event over Douala (Cameroon): A case study, Model. Earth Syst. Environ., 3, 927–942, https://doi.org/10.1007/s40808-017-0343-7, 2017.
UCSB: Index of /products/CHIRPS-2.0/global_daily/netcdf/p05/by_month/, UCSB [data set], https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p05/by_month/ (last access: 5 May 2025), 2025.
Wahiduzzaman, M. and Luo, J.-J.: A statistical analysis on the contribution of El Niño–Southern Oscillation to the rainfall and temperature over Bangladesh, Meteorol. Atmos. Phys., 133, 55–68, https://doi.org/10.1007/s00703-020-00733-6, 2020.
Wainwright, C. M., Finney, D. L., Kilavi, M., Black, E., and Marsham, J. H.: Extreme rainfall in East Africa, October 2019–January 2020 and context under future climate change, Weather, 76, 26–31, https://doi.org/10.1002/wea.3824, 2020.
Zaitchik, B. F.: Madden–Julian Oscillation impacts on tropical African precipitation, Atmos. Res., 184, 88–102, https://doi.org/10.1016/j.atmosres.2016.10.002, 2017.
Zhang, W., Wang, Y., Jin, F., Stuecker, M. F., and Turner, A. G.: Impact of different El Niño types on the El Niño/IOD relationship, Geophys. Res. Lett., 42, 8570–8576, https://doi.org/10.1002/2015gl065703, 2015.
Zheng, X. and Eltahir, E. A. B.: A Soil Moisture–Rainfall Feedback Mechanism: 2. Numerical experiments, Water Resour. Res., 34, 777–785, https://doi.org/10.1029/97wr03497, 1998.
Short summary
The results of this study show that extreme rainfall in November 2023 over Equatorial Africa was controlled by several factors, including strong sea-surface-temperature anomalies in the Niño-3.4, North Tropical Atlantic, Equatorial Atlantic and Indian Ocean Dipole regions; changes in zonal winds; the Walker circulation; the moisture flux and its divergence; and the easterly jets. The information we derive can be used to support risk assessment in the region and to improve our resilience to ongoing climate change.
The results of this study show that extreme rainfall in November 2023 over Equatorial Africa was...