Articles | Volume 6, issue 3
https://doi.org/10.5194/wcd-6-757-2025
https://doi.org/10.5194/wcd-6-757-2025
Research article
 | 
17 Jul 2025
Research article |  | 17 Jul 2025

Data-driven discovery of mechanisms underlying present and near-future precipitation changes and variability in Brazil

Márcia Talita A. Marques, Maria Luiza Kovalski, Gabriel M. P. Perez, Thomas C. M. Martin, Edson L. S. Y. Barbosa, Pedro Augusto S. M. Ribeiro, and Roilan H. Valdes

Related subject area

Role of atmospheric dynamics in climate change projections
The future North Atlantic jet stream and storm track: relative contributions from sea ice and sea surface temperature changes
Daniel Köhler, Petri Räisänen, Tuomas Naakka, Kalle Nordling, and Victoria A. Sinclair
Weather Clim. Dynam., 6, 669–694, https://doi.org/10.5194/wcd-6-669-2025,https://doi.org/10.5194/wcd-6-669-2025, 2025
Short summary
Characteristics and dynamics of extreme winters in the Barents Sea in a changing climate
Katharina Hartmuth, Heini Wernli, and Lukas Papritz
Weather Clim. Dynam., 6, 505–520, https://doi.org/10.5194/wcd-6-505-2025,https://doi.org/10.5194/wcd-6-505-2025, 2025
Short summary
On the role of moist and dry processes in atmospheric blocking biases in the Euro-Atlantic region in CMIP6
Edgar Dolores-Tesillos, Olivia Martius, and Julian Quinting
Weather Clim. Dynam., 6, 471–487, https://doi.org/10.5194/wcd-6-471-2025,https://doi.org/10.5194/wcd-6-471-2025, 2025
Short summary
Benefits of km-scale climate modeling for winds in complex terrain: strong versus weak winds
Danijel Belušić and Petter Lind
EGUsphere, https://doi.org/10.5194/egusphere-2025-1281,https://doi.org/10.5194/egusphere-2025-1281, 2025
Short summary
Attributing the occurrence and intensity of extreme events with the flow analogues method
Robin Noyelle, Davide Faranda, Yoann Robin, Mathieu Vrac, and Pascal Yiou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3167,https://doi.org/10.5194/egusphere-2024-3167, 2024
Short summary

Cited articles

Adler, R. F., Sapiano, M. R. P., Huffman, G. J., Wang, J.-J., Gu, G., Bolvin, D., Chiu, L., Schneider, U., Becker, A., Nelkin, E., Xie, P., Ferraro, R., and Shin, D. B.: The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation, Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138, 2018. 
Bazzanela, A. C., Dereczynski, C., Luiz-Silva, W., and Regoto, P.: Performance of CMIP6 models over South America, Clim. Dyn., 62, 1501–1516, https://doi.org/10.1007/s00382-023-06979-1, 2023. 
Carvalho, L. M. V., Jones, C., Silva, A. E., Liebmann, B., and Silva Dias, P. L.: The South American Monsoon System and the 1970s climate transition, Int. J. Climatol., 31, 1248–1256, https://doi.org/10.1002/joc.2147, 2011. 
Catto, J., Jakob, C., and Nicholls, N.: Can the CMIP5 models represent winter frontal precipitation?, Geophys. Res. Lett., 42, 8596–8604, https://doi.org/10.1002/2015gl066015, 2015. 
Coelho, C. A. S., Uvo, C. B., and Ambrizzi, T.: Exploring the impacts of the tropical Pacific SST on the precipitation patterns over South America during ENSO periods, Theor. Appl. Climatol. 71, 185–197, https://doi.org/10.1007/s007040200004, 2002. 
Download
Short summary
To improve decision-making in the water–energy–food nexus, we untangle the complex network of physical processes driving regional precipitation regimes in the present and near-future climates using a data-driven mechanistic approach to reduce the uncertainty in future projections. The main mechanistic link revealed is that the generalised warming of the oceans suppresses precipitation in northeastern and southeastern Brazil, explained by an intensified Hadley circulation.
Share