Research article
27 May 2021
Research article
| 27 May 2021
The wave geometry of final stratospheric warming events
Amy H. Butler and Daniela I. V. Domeisen
Related authors
Peter Hitchcock, Amy Butler, Andrew Charlton-Perez, Chaim I. Garfinkel, Tim Stockdale, James Anstey, Dann Mitchell, Daniela I. V. Domeisen, Tongwen Wu, Yixiong Lu, Daniele Mastrangelo, Piero Malguzzi, Hai Lin, Ryan Muncaster, Bill Merryfield, Michael Sigmond, Baoqiang Xiang, Liwei Jia, Yu-Kyung Hyun, Jiyoung Oh, Damien Specq, Isla R. Simpson, Jadwiga H. Richter, Cory Barton, Jeff Knight, Eun-Pa Lim, and Harry Hendon
Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, https://doi.org/10.5194/gmd-15-5073-2022, 2022
Short summary
Short summary
This paper describes an experimental protocol focused on sudden stratospheric warmings to be carried out by subseasonal forecast modeling centers. These will allow for inter-model comparisons of these major disruptions to the stratospheric polar vortex and their impacts on the near-surface flow. The protocol will lead to new insights into the contribution of the stratosphere to subseasonal forecast skill and new approaches to the dynamical attribution of extreme events.
John R. Albers, Amy H. Butler, Andrew O. Langford, Dillon Elsbury, and Melissa L. Breeden
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-276, https://doi.org/10.5194/acp-2022-276, 2022
Preprint under review for ACP
Short summary
Short summary
Ozone transported from the stratosphere contributes to background ozone concentrations in the free troposphere and to surface ozone exceedance events that affect human health. The physical processes whereby the El Niño-Southern Oscillation (ENSO) modulates North American stratosphere-to-troposphere ozone transport during spring are documented, and the usefulness of ENSO for predicting ozone events that may cause exceedances in surface air quality standards during are assessed.
Shima Bahramvash Shams, Von P. Walden, James W. Hannigan, William J. Randel, Irina V. Petropavlovskikh, Amy H. Butler, and Alvaro de la Cámara
Atmos. Chem. Phys., 22, 5435–5458, https://doi.org/10.5194/acp-22-5435-2022, https://doi.org/10.5194/acp-22-5435-2022, 2022
Short summary
Short summary
Large-scale atmospheric circulation has a strong influence on ozone in the Arctic, and certain anomalous dynamical events, such as sudden stratospheric warmings, cause dramatic alterations of the large-scale circulation. A reanalysis model is evaluated and then used to investigate the impact of sudden stratospheric warmings on mid-atmospheric ozone. Results show that the position of the cold jet stream over the Arctic before these events influences the variability of ozone.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irina Statnaia, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-12, https://doi.org/10.5194/wcd-2022-12, 2022
Revised manuscript accepted for WCD
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
John R. Albers, Amy H. Butler, Melissa L. Breeden, Andrew O. Langford, and George N. Kiladis
Weather Clim. Dynam., 2, 433–452, https://doi.org/10.5194/wcd-2-433-2021, https://doi.org/10.5194/wcd-2-433-2021, 2021
Short summary
Short summary
Weather variability controls the transport of ozone from the stratosphere to the Earth’s surface and water vapor from oceanic source regions to continental land masses. Forecasting these types of transport has high societal value because of the negative impacts of ozone on human health and the role of water vapor in governing precipitation variability. We use upper-level wind forecasts to assess the potential for predicting ozone and water vapor transport 3–6 weeks ahead of time.
Antara Banerjee, Amy H. Butler, Lorenzo M. Polvani, Alan Robock, Isla R. Simpson, and Lantao Sun
Atmos. Chem. Phys., 21, 6985–6997, https://doi.org/10.5194/acp-21-6985-2021, https://doi.org/10.5194/acp-21-6985-2021, 2021
Short summary
Short summary
We find that simulated stratospheric sulfate geoengineering could lead to warmer Eurasian winters alongside a drier Mediterranean and wetting to the north. These effects occur due to the strengthening of the Northern Hemisphere stratospheric polar vortex, which shifts the North Atlantic Oscillation to a more positive phase. We find the effects in our simulations to be much more significant than the wintertime effects of large tropical volcanic eruptions which inject much less sulfate aerosol.
Melissa L. Breeden, Amy H. Butler, John R. Albers, Michael Sprenger, and Andrew O'Neil Langford
Atmos. Chem. Phys., 21, 2781–2794, https://doi.org/10.5194/acp-21-2781-2021, https://doi.org/10.5194/acp-21-2781-2021, 2021
Short summary
Short summary
Prior research has found a maximum in deep stratosphere-to-troposphere mass/ozone transport over the western United States in boreal spring, which can enhance surface ozone concentrations, reducing air quality. We find that the winter-to-summer evolution of the north Pacific jet increases the frequency of stratospheric intrusions that drive transport, helping explain the observed maximum. The El Niño–Southern Oscillation affects the timing of the spring jet transition and therefore transport.
Patrick Martineau, Seok-Woo Son, Masakazu Taguchi, and Amy H. Butler
Atmos. Chem. Phys., 18, 7169–7187, https://doi.org/10.5194/acp-18-7169-2018, https://doi.org/10.5194/acp-18-7169-2018, 2018
Short summary
Short summary
This study evaluates the agreement between eight reanalysis datasets by comparing zonal-mean zonal winds and the forcing terms of the zonal-mean momentum equation during sudden stratospheric warming events. Results show that the spread between datasets increases exponentially with height and is largest during the most intense sudden stratospheric warming events. The largest uncertainties arise from differences in the mean meridional circulation and horizontal fluxes of momentum by eddies.
Amy H. Butler, Jeremiah P. Sjoberg, Dian J. Seidel, and Karen H. Rosenlof
Earth Syst. Sci. Data, 9, 63–76, https://doi.org/10.5194/essd-9-63-2017, https://doi.org/10.5194/essd-9-63-2017, 2017
Short summary
Short summary
From six different reanalysis products, we created a new comprehensive database of major sudden stratospheric warming events, which are large and rapid temperature increases in the stratosphere associated with a reversal of the stratospheric winter circulation. This new database can facilitate analysis of the evolution and surface impacts of these events as well as intercomparison of reanalysis products.
Wolfgang Wicker, Inna Polichtchouk, and Daniela I. V. Domeisen
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-41, https://doi.org/10.5194/wcd-2022-41, 2022
Preprint under review for WCD
Short summary
Short summary
Sudden stratospheric warmings are extreme weather events where the winter polar stratosphere warms by about 25 K. An improved representation of small-scale gravity waves in sub-seasonal prediction models can reduce forecast errors since their impact on the large-scale circulation is predictable multiple weeks ahead. After a sudden stratospheric warming, vertically propagating gravity waves break at a lower altitude than usual which strengthens the long-lasting positive temperature anomalies.
Rachel Wai-Ying Wu, Zheng Wu, and Daniela I.V. Domeisen
Weather Clim. Dynam., 3, 755–776, https://doi.org/10.5194/wcd-3-755-2022, https://doi.org/10.5194/wcd-3-755-2022, 2022
Short summary
Short summary
Accurate predictions of the stratospheric polar vortex can enhance surface weather predictability. Stratospheric events themselves are less predictable, with strong inter-event differences. We assess the predictability of stratospheric acceleration and deceleration events in a sub-seasonal prediction system, finding that the predictability of events is largely dependent on event magnitude, while extreme drivers of deceleration events are not fully represented in the model.
Marina Friedel, Gabriel Chiodo, Andrea Stenke, Daniela I. V. Domeisen, and Thomas Peter
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-397, https://doi.org/10.5194/acp-2022-397, 2022
Preprint under review for ACP
Short summary
Short summary
In spring, winds the Arctic stratosphere change direction – an event called Final Stratospheric Warming (FSW). Here, we examine whether the interannual variability in Arctic stratospheric ozone impacts the timing of the FSW. We find that Arctic ozone pushes the FSW to earlier and later dates in years with high and low ozone via the absorption of UV-light. The modulation of the FSW by ozone has consequences for surface climate in ozone-rich years, which may result in better seasonal predictions.
Peter Hitchcock, Amy Butler, Andrew Charlton-Perez, Chaim I. Garfinkel, Tim Stockdale, James Anstey, Dann Mitchell, Daniela I. V. Domeisen, Tongwen Wu, Yixiong Lu, Daniele Mastrangelo, Piero Malguzzi, Hai Lin, Ryan Muncaster, Bill Merryfield, Michael Sigmond, Baoqiang Xiang, Liwei Jia, Yu-Kyung Hyun, Jiyoung Oh, Damien Specq, Isla R. Simpson, Jadwiga H. Richter, Cory Barton, Jeff Knight, Eun-Pa Lim, and Harry Hendon
Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, https://doi.org/10.5194/gmd-15-5073-2022, 2022
Short summary
Short summary
This paper describes an experimental protocol focused on sudden stratospheric warmings to be carried out by subseasonal forecast modeling centers. These will allow for inter-model comparisons of these major disruptions to the stratospheric polar vortex and their impacts on the near-surface flow. The protocol will lead to new insights into the contribution of the stratosphere to subseasonal forecast skill and new approaches to the dynamical attribution of extreme events.
Chen Schwartz, Chaim I. Garfinkel, Priyanka Yadav, Wen Chen, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 679–692, https://doi.org/10.5194/wcd-3-679-2022, https://doi.org/10.5194/wcd-3-679-2022, 2022
Short summary
Short summary
Eleven operational forecast models that run on subseasonal timescales (up to 2 months) are examined to assess errors in their simulated large-scale stationary waves in the Northern Hemisphere winter. We found that models with a more finely resolved stratosphere generally do better in simulating the waves in both the stratosphere (10–50 km) and troposphere below. Moreover, a connection exists between errors in simulated time-mean convection in tropical regions and errors in the simulated waves.
John R. Albers, Amy H. Butler, Andrew O. Langford, Dillon Elsbury, and Melissa L. Breeden
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-276, https://doi.org/10.5194/acp-2022-276, 2022
Preprint under review for ACP
Short summary
Short summary
Ozone transported from the stratosphere contributes to background ozone concentrations in the free troposphere and to surface ozone exceedance events that affect human health. The physical processes whereby the El Niño-Southern Oscillation (ENSO) modulates North American stratosphere-to-troposphere ozone transport during spring are documented, and the usefulness of ENSO for predicting ozone events that may cause exceedances in surface air quality standards during are assessed.
Shima Bahramvash Shams, Von P. Walden, James W. Hannigan, William J. Randel, Irina V. Petropavlovskikh, Amy H. Butler, and Alvaro de la Cámara
Atmos. Chem. Phys., 22, 5435–5458, https://doi.org/10.5194/acp-22-5435-2022, https://doi.org/10.5194/acp-22-5435-2022, 2022
Short summary
Short summary
Large-scale atmospheric circulation has a strong influence on ozone in the Arctic, and certain anomalous dynamical events, such as sudden stratospheric warmings, cause dramatic alterations of the large-scale circulation. A reanalysis model is evaluated and then used to investigate the impact of sudden stratospheric warmings on mid-atmospheric ozone. Results show that the position of the cold jet stream over the Arctic before these events influences the variability of ozone.
Nora Bergner, Marina Friedel, Daniela I. V. Domeisen, Darryn Waugh, and Gabriel Chiodo
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-229, https://doi.org/10.5194/acp-2022-229, 2022
Preprint under review for ACP
Short summary
Short summary
Polar vortex extremes, particularly situations with an unusually weak cyclonic circulation in the stratosphere, can influence the surface climate in the spring-summer time in the Southern Hemisphere. Using climate models and observations, we evaluate the robustness of the surface impacts. While models capture the general surface response, they do not show the observed climate patterns in midlatitude regions, which we trace back to biases in the models’ circulations.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irina Statnaia, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-12, https://doi.org/10.5194/wcd-2022-12, 2022
Revised manuscript accepted for WCD
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
Jake W. Casselman, Bernat Jiménez-Esteve, and Daniela I. V. Domeisen
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-82, https://doi.org/10.5194/wcd-2021-82, 2022
Revised manuscript accepted for WCD
Short summary
Short summary
Using an atmospheric general circulation model, we analyze how the Tropical North Atlantic modulates the El Niño Southern Oscillation teleconnection towards the North Atlantic European region. Our results demonstrate a modulation originating from anomalous sea surface temperatures that cause different responses over the Caribbean region. Furthermore, our study offers a deeper understanding of the inter-basin interactions and the central role of the tropical Atlantic in modulating the connection.
Zheng Wu, Bernat Jiménez-Esteve, Raphaël de Fondeville, Enikő Székely, Guillaume Obozinski, William T. Ball, and Daniela I. V. Domeisen
Weather Clim. Dynam., 2, 841–865, https://doi.org/10.5194/wcd-2-841-2021, https://doi.org/10.5194/wcd-2-841-2021, 2021
Short summary
Short summary
We use an advanced statistical approach to investigate the dynamics of the development of sudden stratospheric warming (SSW) events in the winter Northern Hemisphere. We identify distinct signals that are representative of these events and their event type at lead times beyond currently predictable lead times. The results can be viewed as a promising step towards improving the predictability of SSWs in the future by using more advanced statistical methods in operational forecasting systems.
John R. Albers, Amy H. Butler, Melissa L. Breeden, Andrew O. Langford, and George N. Kiladis
Weather Clim. Dynam., 2, 433–452, https://doi.org/10.5194/wcd-2-433-2021, https://doi.org/10.5194/wcd-2-433-2021, 2021
Short summary
Short summary
Weather variability controls the transport of ozone from the stratosphere to the Earth’s surface and water vapor from oceanic source regions to continental land masses. Forecasting these types of transport has high societal value because of the negative impacts of ozone on human health and the role of water vapor in governing precipitation variability. We use upper-level wind forecasts to assess the potential for predicting ozone and water vapor transport 3–6 weeks ahead of time.
Antara Banerjee, Amy H. Butler, Lorenzo M. Polvani, Alan Robock, Isla R. Simpson, and Lantao Sun
Atmos. Chem. Phys., 21, 6985–6997, https://doi.org/10.5194/acp-21-6985-2021, https://doi.org/10.5194/acp-21-6985-2021, 2021
Short summary
Short summary
We find that simulated stratospheric sulfate geoengineering could lead to warmer Eurasian winters alongside a drier Mediterranean and wetting to the north. These effects occur due to the strengthening of the Northern Hemisphere stratospheric polar vortex, which shifts the North Atlantic Oscillation to a more positive phase. We find the effects in our simulations to be much more significant than the wintertime effects of large tropical volcanic eruptions which inject much less sulfate aerosol.
Melissa L. Breeden, Amy H. Butler, John R. Albers, Michael Sprenger, and Andrew O'Neil Langford
Atmos. Chem. Phys., 21, 2781–2794, https://doi.org/10.5194/acp-21-2781-2021, https://doi.org/10.5194/acp-21-2781-2021, 2021
Short summary
Short summary
Prior research has found a maximum in deep stratosphere-to-troposphere mass/ozone transport over the western United States in boreal spring, which can enhance surface ozone concentrations, reducing air quality. We find that the winter-to-summer evolution of the north Pacific jet increases the frequency of stratospheric intrusions that drive transport, helping explain the observed maximum. The El Niño–Southern Oscillation affects the timing of the spring jet transition and therefore transport.
Hilla Afargan-Gerstman, Iuliia Polkova, Lukas Papritz, Paolo Ruggieri, Martin P. King, Panos J. Athanasiadis, Johanna Baehr, and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 541–553, https://doi.org/10.5194/wcd-1-541-2020, https://doi.org/10.5194/wcd-1-541-2020, 2020
Short summary
Short summary
We investigate the stratospheric influence on marine cold air outbreaks (MCAOs) in the North Atlantic using ERA-Interim reanalysis data. MCAOs are associated with severe Arctic weather, such as polar lows and strong surface winds. Sudden stratospheric events are found to be associated with more frequent MCAOs in the Barents and the Norwegian seas, affected by the anomalous circulation over Greenland and Scandinavia. Identification of MCAO precursors is crucial for improved long-range prediction.
Daniela I. V. Domeisen, Christian M. Grams, and Lukas Papritz
Weather Clim. Dynam., 1, 373–388, https://doi.org/10.5194/wcd-1-373-2020, https://doi.org/10.5194/wcd-1-373-2020, 2020
Short summary
Short summary
We cannot currently predict the weather over Europe beyond 2 weeks. The stratosphere provides a promising opportunity to go beyond that limit by providing a change in probability of certain weather regimes at the surface. However, not all stratospheric extreme events are followed by the same surface weather evolution. We show that this weather evolution is related to the tropospheric weather regime around the onset of the stratospheric extreme event for many stratospheric events.
Bernat Jiménez-Esteve and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 225–245, https://doi.org/10.5194/wcd-1-225-2020, https://doi.org/10.5194/wcd-1-225-2020, 2020
Short summary
Short summary
Atmospheric predictability over Europe on subseasonal to seasonal timescales remains limited. However, the remote impact from the El Niño–Southern Oscillation (ENSO) can help to improve predictability. Research has suggested that the ENSO impact in the North Atlantic region is affected by nonlinearities. Here, we isolate the nonlinearities in the tropospheric pathway through the North Pacific, finding that a strong El Niño leads to a stronger and distinct impact compared to a strong La Niña.
Patrick Martineau, Seok-Woo Son, Masakazu Taguchi, and Amy H. Butler
Atmos. Chem. Phys., 18, 7169–7187, https://doi.org/10.5194/acp-18-7169-2018, https://doi.org/10.5194/acp-18-7169-2018, 2018
Short summary
Short summary
This study evaluates the agreement between eight reanalysis datasets by comparing zonal-mean zonal winds and the forcing terms of the zonal-mean momentum equation during sudden stratospheric warming events. Results show that the spread between datasets increases exponentially with height and is largest during the most intense sudden stratospheric warming events. The largest uncertainties arise from differences in the mean meridional circulation and horizontal fluxes of momentum by eddies.
Matthias Fischer, Daniela I. V. Domeisen, Wolfgang A. Müller, and Johanna Baehr
Earth Syst. Dynam., 8, 129–146, https://doi.org/10.5194/esd-8-129-2017, https://doi.org/10.5194/esd-8-129-2017, 2017
Short summary
Short summary
In a climate projection experiment with the Max Planck Institute Earth System Model (MPI-ESM), we find that a decline in the Atlantic Ocean meridional heat transport (OHT) is accompanied by a change in the seasonal cycle of the total OHT and its components. We found a northward shift of 5° and latitude-dependent shifts between 1 and 6 months in the seasonal cycle that are mainly associated with changes in the meridional velocity field rather than the temperature field.
Amy H. Butler, Jeremiah P. Sjoberg, Dian J. Seidel, and Karen H. Rosenlof
Earth Syst. Sci. Data, 9, 63–76, https://doi.org/10.5194/essd-9-63-2017, https://doi.org/10.5194/essd-9-63-2017, 2017
Short summary
Short summary
From six different reanalysis products, we created a new comprehensive database of major sudden stratospheric warming events, which are large and rapid temperature increases in the stratosphere associated with a reversal of the stratospheric winter circulation. This new database can facilitate analysis of the evolution and surface impacts of these events as well as intercomparison of reanalysis products.
Related subject area
Atmospheric teleconnections incl. stratosphere–troposphere coupling
Stratospheric modulation of Arctic Oscillation extremes as represented by extended-range ensemble forecasts
The tropical route of quasi-biennial oscillation (QBO) teleconnections in a climate model
Decline in Etesian winds after large volcanic eruptions in the last millennium
Stationary wave biases and their effect on upward troposphere– stratosphere coupling in sub-seasonal prediction models
Stratospheric wave driving events as an alternative to sudden stratospheric warmings
Tropical influence on heat-generating atmospheric circulation over Australia strengthens through spring
Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems
Sudden stratospheric warmings during El Niño and La Niña: sensitivity to atmospheric model biases
Modulation of the ENSO teleconnection to the North Atlantic by the tropical North Atlantic and Caribbean
Minimal impact of model biases on Northern Hemisphere El Niño–Southern Oscillation teleconnections
Resampling of ENSO teleconnections: accounting for cold-season evolution reduces uncertainty in the North Atlantic
Origins of multi-decadal variability in sudden stratospheric warmings
Tropospheric eddy feedback to different stratospheric conditions in idealised baroclinic life cycles
Impacts of the North Atlantic Oscillation on winter precipitations and storm track variability in southeast Canada and the northeast United States
The role of Barents–Kara sea ice loss in projected polar vortex changes
Mechanisms and predictability of sudden stratospheric warming in winter 2018
On the intermittency of orographic gravity wave hotspots and its importance for middle atmosphere dynamics
The role of North Atlantic–European weather regimes in the surface impact of sudden stratospheric warming events
Nonlinearity in the tropospheric pathway of ENSO to the North Atlantic
Jonas Spaeth and Thomas Birner
Weather Clim. Dynam., 3, 883–903, https://doi.org/10.5194/wcd-3-883-2022, https://doi.org/10.5194/wcd-3-883-2022, 2022
Short summary
Short summary
Past research has demonstrated robust stratosphere–troposphere dynamical coupling following stratospheric circulation extremes. Here, we use a large set of extended-range ensemble forecasts to robustly quantify the increased risk for tropospheric circulation extremes following stratospheric extreme events. In particular, we provide estimates of the fraction of tropospheric extremes that may be attributable to preceding stratospheric extremes.
Jorge L. García-Franco, Lesley J. Gray, Scott Osprey, Robin Chadwick, and Zane Martin
Weather Clim. Dynam., 3, 825–844, https://doi.org/10.5194/wcd-3-825-2022, https://doi.org/10.5194/wcd-3-825-2022, 2022
Short summary
Short summary
This paper establishes robust links between the stratospheric quasi-biennial oscillation (QBO) and several features of tropical climate. Robust precipitation responses, as well as changes to the Walker circulation, were found to be robustly linked to the variability in the lower stratosphere associated with the QBO using a 500-year simulation of a state-of-the-art climate model.
Stergios Misios, Ioannis Logothetis, Mads F. Knudsen, Christoffer Karoff, Vassilis Amiridis, and Kleareti Tourpali
Weather Clim. Dynam., 3, 811–823, https://doi.org/10.5194/wcd-3-811-2022, https://doi.org/10.5194/wcd-3-811-2022, 2022
Short summary
Short summary
We investigate the impact of strong volcanic eruptions on the northerly Etesian winds blowing in the eastern Mediterranean. Μodel simulations of the last millennium demonstrate a robust reduction in the total number of days with Etesian winds in the post-eruption summers. The decline in the Etesian winds is attributed to a weakened Indian summer monsoon in the post-eruption summer. These findings could improve seasonal predictions of the wind circulation in the eastern Mediterranean.
Chen Schwartz, Chaim I. Garfinkel, Priyanka Yadav, Wen Chen, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 679–692, https://doi.org/10.5194/wcd-3-679-2022, https://doi.org/10.5194/wcd-3-679-2022, 2022
Short summary
Short summary
Eleven operational forecast models that run on subseasonal timescales (up to 2 months) are examined to assess errors in their simulated large-scale stationary waves in the Northern Hemisphere winter. We found that models with a more finely resolved stratosphere generally do better in simulating the waves in both the stratosphere (10–50 km) and troposphere below. Moreover, a connection exists between errors in simulated time-mean convection in tropical regions and errors in the simulated waves.
Thomas Reichler and Martin Jucker
Weather Clim. Dynam., 3, 659–677, https://doi.org/10.5194/wcd-3-659-2022, https://doi.org/10.5194/wcd-3-659-2022, 2022
Short summary
Short summary
Variations in the stratospheric polar vortex, so-called vortex events, can improve predictions of surface weather and climate. There are various ways to detect such events, and here we use the amount of wave energy that propagates into the stratosphere. The new definition is tested against so-called stratospheric sudden warmings (SSWs). We find that the wave definition has advantages over SSWs, for example in terms of a stronger surface response that follows the events.
Roseanna C. McKay, Julie M. Arblaster, and Pandora Hope
Weather Clim. Dynam., 3, 413–428, https://doi.org/10.5194/wcd-3-413-2022, https://doi.org/10.5194/wcd-3-413-2022, 2022
Short summary
Short summary
Understanding what makes it hot in Australia in spring helps us better prepare for harmful impacts. We look at how the higher latitudes and tropics change the atmospheric circulation from early to late spring and how that changes maximum temperatures in Australia. We find that the relationship between maximum temperatures and the tropics is stronger in late spring than early spring. These findings could help improve forecasts of hot months in Australia in spring.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irina Statnaia, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-12, https://doi.org/10.5194/wcd-2022-12, 2022
Revised manuscript accepted for WCD
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Nicholas L. Tyrrell, Juho M. Koskentausta, and Alexey Yu. Karpechko
Weather Clim. Dynam., 3, 45–58, https://doi.org/10.5194/wcd-3-45-2022, https://doi.org/10.5194/wcd-3-45-2022, 2022
Short summary
Short summary
El Niño events are known to effect the variability of the wintertime stratospheric polar vortex. The observed relationship differs from what is seen in climate models. Climate models have errors in their average winds and temperature, and in this work we artificially reduce those errors to see how that changes the communication of El Niño events to the polar stratosphere. We find reducing errors improves stratospheric variability, but does not explain the differences with observations.
Jake W. Casselman, Bernat Jiménez-Esteve, and Daniela I. V. Domeisen
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-82, https://doi.org/10.5194/wcd-2021-82, 2022
Revised manuscript accepted for WCD
Short summary
Short summary
Using an atmospheric general circulation model, we analyze how the Tropical North Atlantic modulates the El Niño Southern Oscillation teleconnection towards the North Atlantic European region. Our results demonstrate a modulation originating from anomalous sea surface temperatures that cause different responses over the Caribbean region. Furthermore, our study offers a deeper understanding of the inter-basin interactions and the central role of the tropical Atlantic in modulating the connection.
Nicholas L. Tyrrell and Alexey Yu. Karpechko
Weather Clim. Dynam., 2, 913–925, https://doi.org/10.5194/wcd-2-913-2021, https://doi.org/10.5194/wcd-2-913-2021, 2021
Short summary
Short summary
Tropical Pacific sea surface temperatures (El Niño) affect the global climate. The Pacific-to-Europe connection relies on interactions of large atmospheric waves with winds and surface pressure. We looked at how mean errors in a climate model affect its ability to simulate the Pacific-to-Europe connection. We found that even large errors in the seasonal winds did not affect the response of the model to an El Niño event, which is good news for seasonal forecasts which rely on these connections.
Martin P. King, Camille Li, and Stefan Sobolowski
Weather Clim. Dynam., 2, 759–776, https://doi.org/10.5194/wcd-2-759-2021, https://doi.org/10.5194/wcd-2-759-2021, 2021
Short summary
Short summary
We re-examine the uncertainty of ENSO teleconnection to the North Atlantic by considering the November–December and January–February months in the cold season, in addition to the conventional DJF months. This is motivated by previous studies reporting varying teleconnected atmospheric anomalies and the mechanisms concerned. Our results indicate an improved confidence in the patterns of the teleconnection. The finding may also have implications on research in predictability and climate impact.
Oscar Dimdore-Miles, Lesley Gray, and Scott Osprey
Weather Clim. Dynam., 2, 205–231, https://doi.org/10.5194/wcd-2-205-2021, https://doi.org/10.5194/wcd-2-205-2021, 2021
Short summary
Short summary
Observations of the stratosphere span roughly half a century, preventing analysis of multi-decadal variability in circulation using these data. Instead, we rely on long simulations of climate models. Here, we use a model to examine variations in northern polar stratospheric winds and find they vary with a period of around 90 years. We show that this is possibly due to variations in the size of winds over the Equator. This result may improve understanding of Equator–polar stratospheric coupling.
Philip Rupp and Thomas Birner
Weather Clim. Dynam., 2, 111–128, https://doi.org/10.5194/wcd-2-111-2021, https://doi.org/10.5194/wcd-2-111-2021, 2021
Short summary
Short summary
We use the simple framework of an idealised baroclinic life cycle to study the tropospheric eddy feedback to different stratospheric conditions and, hence, obtain insights into the fundamental processes of stratosphere–troposphere coupling – in particular, the processes involved in creating the robust equatorward shift in the tropospheric mid-latitude jet that has been observed following sudden stratospheric warming events.
Julien Chartrand and Francesco S. R. Pausata
Weather Clim. Dynam., 1, 731–744, https://doi.org/10.5194/wcd-1-731-2020, https://doi.org/10.5194/wcd-1-731-2020, 2020
Short summary
Short summary
This study explores the relationship between the North Atlantic Oscillation and the winter climate of eastern North America using reanalysis data. Results show that negative phases are linked with an increase in frequency of winter storms developing on the east coast of the United States, resulting in much heavier snowfall over the eastern United States. On the contrary, an increase in cyclone activity over southeastern Canada results in slightly heavier precipitation during positive phases.
Marlene Kretschmer, Giuseppe Zappa, and Theodore G. Shepherd
Weather Clim. Dynam., 1, 715–730, https://doi.org/10.5194/wcd-1-715-2020, https://doi.org/10.5194/wcd-1-715-2020, 2020
Short summary
Short summary
The winds in the polar stratosphere affect the weather in the mid-latitudes, making it important to understand potential changes in response to global warming. However, climate model projections disagree on how this so-called polar vortex will change in the future. Here we show that sea ice loss in the Barents and Kara (BK) seas plays a central role in this. The time when the BK seas become ice-free differs between models, which explains some of the disagreement regarding vortex projections.
Irina A. Statnaia, Alexey Y. Karpechko, and Heikki J. Järvinen
Weather Clim. Dynam., 1, 657–674, https://doi.org/10.5194/wcd-1-657-2020, https://doi.org/10.5194/wcd-1-657-2020, 2020
Short summary
Short summary
In this paper we investigate the role of the tropospheric forcing in the occurrence of the sudden stratospheric warming (SSW) that took place in February 2018, its predictability and teleconnection with the Madden–Julian oscillation (MJO) by analysing the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecast. The purpose of the paper is to present the results of the analysis of the atmospheric circulation before and during the SSW and clarify the driving mechanisms.
Ales Kuchar, Petr Sacha, Roland Eichinger, Christoph Jacobi, Petr Pisoft, and Harald E. Rieder
Weather Clim. Dynam., 1, 481–495, https://doi.org/10.5194/wcd-1-481-2020, https://doi.org/10.5194/wcd-1-481-2020, 2020
Short summary
Short summary
Our study focuses on the impact of topographic structures such as the Himalayas and Rocky Mountains, so-called orographic gravity-wave hotspots. These hotspots play an important role in the dynamics of the middle atmosphere, in particular in the lower stratosphere. We study intermittency and zonally asymmetric character of these hotspots and their effects on the upper stratosphere and mesosphere using a new detection method in various modeling and observational datasets.
Daniela I. V. Domeisen, Christian M. Grams, and Lukas Papritz
Weather Clim. Dynam., 1, 373–388, https://doi.org/10.5194/wcd-1-373-2020, https://doi.org/10.5194/wcd-1-373-2020, 2020
Short summary
Short summary
We cannot currently predict the weather over Europe beyond 2 weeks. The stratosphere provides a promising opportunity to go beyond that limit by providing a change in probability of certain weather regimes at the surface. However, not all stratospheric extreme events are followed by the same surface weather evolution. We show that this weather evolution is related to the tropospheric weather regime around the onset of the stratospheric extreme event for many stratospheric events.
Bernat Jiménez-Esteve and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 225–245, https://doi.org/10.5194/wcd-1-225-2020, https://doi.org/10.5194/wcd-1-225-2020, 2020
Short summary
Short summary
Atmospheric predictability over Europe on subseasonal to seasonal timescales remains limited. However, the remote impact from the El Niño–Southern Oscillation (ENSO) can help to improve predictability. Research has suggested that the ENSO impact in the North Atlantic region is affected by nonlinearities. Here, we isolate the nonlinearities in the tropospheric pathway through the North Pacific, finding that a strong El Niño leads to a stronger and distinct impact compared to a strong La Niña.
Cited articles
Afargan-Gerstman, H. and Domeisen, D. I. V.: Pacific Modulation of the North Atlantic Storm Track Response to Sudden Stratospheric Warming Events, Geophys. Res. Lett., 47, 18–10, https://doi.org/10.1029/2019GL085007, 2020. a
Bancalá, S., Krüger, K., and Giorgetta, M.: The preconditioning of major sudden stratospheric warmings, J. Geophys. Res., 117, D04101, https://doi.org/10.1029/2011JD016769, 2012. a, b, c
Barnes, P. W., Williamson, C. E., Lucas, R. M., Robinson, S. A., Madronich, S., Paul, N. D., Bornman, J. F., Bais, A. F., Sulzberger, B., Wilson, S. R., Andrady, A. L., McKenzie, R. L., Neale, P. J., Austin, A. T., Bernhard, G. H., Solomon, K. R., Neale, R. E., Young, P. J., Norval, M., Rhodes, L. E., Hylander, S., Rose, K. C., Longstreth, J., Aucamp, P. J., Ballaré, C. L., Cory, R. M., Flint, S. D., de Gruijl, F. R., Häder, D.-P., Heikkilä, A. M., Jansen, M. A. K., Pandey, K. K., Robson, T. M., Sinclair, C. A., Wängberg, S.-Å., Worrest, R. C., Yazar, S., Young, A. R., and Zepp, R. G.: Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future, Nature Sustainability, 2, 569–579, 2019. a
Berrisford, P., Dee, D. P., Poli, P., Brugge, R., Fielding, M., Fuentes, M., Kållberg, P. W., Kobayashi, S., Uppala, S., and Simmons, A.: The ERA-Interim archive Version 2.0, ERA Report Series, https://www.ecmwf.int/node/8174 (last access: 21 May 2021). a
Bodeker, G. E., Kremser, S., and Tradowsky, J. S.: BS Filled Total Column Ozone Database (Version 3.4) [data set], https://doi.org/10.5281/zenodo.3908787, 2020. a, b, c
Breeden, M. L., Butler, A. H., Albers, J. R., Sprenger, M., and Langford, A. O.: The spring transition of the North Pacific jet and its relation to deep stratosphere-to-troposphere mass transport over western North America, Atmos. Chem. Phys., 21, 2781–2794, https://doi.org/10.5194/acp-21-2781-2021, 2021. a
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and Match, A.: Defining sudden stratospheric warmings, B. Am. Meteorol. Soc., 96, 1913–1928, 2015. a
Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.: A sudden stratospheric warming compendium, Earth Syst. Sci. Data, 9, 63–76, https://doi.org/10.5194/essd-9-63-2017, 2017. a
Butler, A. H., Charlton-Perez, A., Domeisen, D. I. V., Simpson, I., and Sjoberg, J.: Predictability of Northern Hemisphere final stratospheric warmings and their surface impacts, Geophys. Res. Lett., 46, https://doi.org/10.1029/2019GL083346, 2019. a, b
Byrne, N. J. and Shepherd, T. G.: Seasonal Persistence of Circulation Anomalies in the Southern Hemisphere Stratosphere and Its Implications for the Troposphere, J. Climate, 31, 3467–3483, 2018. a
Byrne, N. J., Shepherd, T. G., and Polichtchouk, I.: Subseasonal-to-Seasonal Predictability of the Southern Hemisphere Eddy-Driven Jet During Austral Spring and Early Summer, J. Geophys. Res.-Atmos., 124, 6841–6855, 2019. a
Calvo, N., Polvani, L. M., and Solomon, S.: On the surface impact of Arctic stratospheric ozone extremes, Environ. Res. Lett., 10, https://doi.org/10.1088/1748-9326/10/9/094003, 2015. a
Charlton, A., O'Neill, A., Lahoz, W., and Berrisford, P.: The splitting of the stratospheric polar vortex in the Southern Hemisphere, September 2002: Dynamical evolution, J. Atmos. Sci., 62, 590–602, 2005. a
Charlton-Perez, A. J., Ferranti, L., and Lee, R. W.: The influence of the stratospheric state on North Atlantic weather regimes, Q. J. Roy. Meteor. Soc., 144, 1140–1151, 2018. a
Chipperfield, M. P. and Jones, R. L.: Relative influences of atmospheric chemistry and transport on Arctic ozone trends, Nature, 400, 551–554, 1999. a
Coy, L., Nash, E. R., and Newman, P. A.: Meteorology of the polar vortex: Spring 1997, Geophys. Res. Lett., 24, 2693–2696, 1997. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart, F.: The ERAInterim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011. a
Domeisen, D. I. V.: Estimating the Frequency of Sudden Stratospheric Warming Events from Surface Observations of the North Atlantic Oscillation, J. Geophys. Res.-Atmos., 124, 3180–3194, https://doi.org/10.1029/2018JD030077, 2019. a, b
Domeisen, D. I. V. and Butler, A. H.: Stratospheric drivers of extreme events at the Earth's surface, Communications Earth & Environment, 1, 59, https://doi.org/10.1038/s43247-020-00060-z, 2020. a
Domeisen, D. I. V., Garfinkel, C. I., and Butler, A. H.: The Teleconnection of El Niño Southern Oscillation to the Stratosphere, Rev. Geophys., 57, 5–47, https://doi.org/10.1029/2018RG000596, 2019. a
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzaguena, B., Baldwin, M. P., Dunn Sigouin, E., Furtado, J. C., Garfinkel, C. I., Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim, E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and Taguchi, M.: The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 1. Predictability of the Stratosphere, J. Geophys. Res.-Atmos., 125, 1–17, 2020. a
Gerber, E. P. and Martineau, P.: Quantifying the variability of the annular modes: reanalysis uncertainty vs. sampling uncertainty, Atmos. Chem. Phys., 18, 17099–17117, https://doi.org/10.5194/acp-18-17099-2018, 2018. a
Gerber, E. P., Martineau, P., Ayarzagüena, B., Barriopedro, D., Bracegirdle, T. J., Butler, A. H., Calvo, N., Hardiman, S. C., Hitchcock, P., Iza, M., Langematz, U., Lua, H., Marshall, G., Orr, A., Palmeiro, F. M., Son, S.-W., and Taguchi, M.: Extratropical stratosphere-troposphere coupling, in: Stratosphere-troposphere processes and their role in climate (SPARC) reanalysis intercomparison project (S-RIP), edited by: Fujiwara, M., Manney, G. L., Gray, L., and Wright, J. S., chap. 6, SPARC, Oberpfaffenhofen, Germany, in press, 2021. a, b
Haigh, J. D. and Roscoe, H. K.: The Final Warming Date of the Antarctic Polar Vortex and Influences on its Interannual Variability, J. Climate, 22, 5809–5819, 2009. a
Hall, R. J., Mitchell, D. M., Seviour, W. J. M., and Wright, C. J.: Tracking the stratosphere-to-surface impact of Sudden Stratospheric Warmings, J. Geophys. Res.-Atmos., 126, e2020JD033881, 1–47, 2021. a
Hardiman, S. C., Butchart, N., Charlton-Perez, A. J., Shaw, T. A., Akiyoshi, H., Baumgaertner, A., Bekki, S., Braesicke, P., Chipperfield, M., Dameris, M., Garcia, R. R., Michou, M., Pawson, S., Rozanov, E., and Shibata, K.: Improved predictability of the troposphere using stratospheric final warmings, J. Geophys. Res., 116, 6313, https://doi.org/10.1029/2011JD015914, 2011. a, b, c
Harvey, V. L., Pierce, R. B., Fairlie, T. D., and Hitchman, M. H.: A climatology of stratospheric polar vortices and anticyclones, J. Geophys. Res.-Atmos., 107, https://doi.org/10.1029/2001JD001471, 2002. a
Hu, J. G., Ren, R. C., and Xu, H. M.: Occurrence of Winter Stratospheric Sudden Warming Events and the Seasonal Timing of Spring Stratospheric Final Warming, J. Atmos. Sci., 71, 2319–2334, 2014. a
Ialongo, I., Sofieva, V., Kalakoski, N., Tamminen, J., and Kyrölä, E.: Ozone zonal asymmetry and planetary wave characterization during Antarctic spring, Atmos. Chem. Phys., 12, 2603–2614, https://doi.org/10.5194/acp-12-2603-2012, 2012. a
Ivy, D. J., Solomon, S., Calvo, N., and Thompson, D. W. J.: Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate, Environ. Res. Lett., 12, 024004, https://doi.org/10.1029/2001JD001471, 2017. a
Japan Meteorological Agency/Japan: JRA-55: Japanese 55-year Reanalysis, Daily 3-Hourly and 6-Hourly Data, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D6HH6H41 (last access: 21 May 2021), 2013, updated monthly. a
Karpechko, A. Y.: Predictability of Sudden Stratospheric Warmings in the ECMWF Extended-Range Forecast System, Mon. Weather Rev., 146, 1063–1075, 2018. a
Karpechko, A. Y., Hitchcock, P., Peters, D. H. W., and Schneidereit, A.: Predictability of downward propagation of major sudden stratospheric warmings, Q. J. Roy. Meteor. Soc., 104, 30937, https://doi.org/10.1002/qj.3017, 2017. a
Karpechko, A. Y., Perez, A. C., Balmaseda, M., Tyrrell, N., and Vitart, F.: Predicting Sudden Stratospheric Warming 2018 and its Climate Impacts with a Multi-Model Ensemble, Geophys. Res. Lett., 45, 2018GL081091, https://doi.org/10.1029/2018GL081091, 2018. a
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J. Meteorol. Soc. Jpn. Ser. II, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015. a
Kodera, K., Mukougawa, H., Maury, P., Ueda, M., and Claud, C.: Absorbing and reflecting sudden stratospheric warming events and their relationship with tropospheric circulation, J. Geophys. Res.-Atmos., 121, 80–94, 2016. a
Kravchenko, V. O., Evtushevsky, O. M., Grytsai, A. V., Klekociuk, A. R., Milinevsky, G. P., and Grytsai, Z. I.: Quasi-stationary planetary waves in late winter Antarctic stratosphere temperature as a possible indicator of spring total ozone, Atmos. Chem. Phys., 12, 2865–2879, https://doi.org/10.5194/acp-12-2865-2012, 2012. a
Lawrence, Z. D., Perlwitz, J., Butler, A. H., Manney, G. L., Newman, P. A., Lee, S. H., and Nash, E. R.: The Remarkably Strong Arctic Stratospheric Polar Vortex of Winter 2020: Links to Record-Breaking Arctic Oscillation and Ozone Loss, J. Geophys. Res.-Atmos., 125, 1–29, 2020. a
Lim, E. P., Hendon, H. H., and Thompson, D. W. J.: Seasonal Evolution of Stratosphere-Troposphere Coupling in the Southern Hemisphere and Implications for the Predictability of Surface Climate, J. Geophys. Res.-Atmos., 123, 12002–12016, 2018. a
Manney, G. L. and Lawrence, Z. D.: The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss, Atmos. Chem. Phys., 16, 15371–15396, https://doi.org/10.5194/acp-16-15371-2016, 2016. a
Manney, G. L., Farrara, J. D., and Mechoso, C. R.: The behavior of wave 2 in the Southern Hemisphere stratosphere during late winter and early spring, J. Atmos. Sci., 48, 976–998, 1991. a
Manney, G. L., Zurek, R. W., O'Neill, A., and Swinbank, R.: On the motion of air through the stratospheric polar vortex, J. Atmos. Sci., 51, 2973–2994, 1994. a
Matsuno, T.: Vertical Propagation of Stationary Planetary Waves in the Winter Northern Hemisphere, J. Atmos. Sci., 27, 871–883, 1970. a
Mechoso, C. R., O'Neill, A., Pope, V. D., and Farrara, J. D.: A Study of the Stratospheric Final Warming of 1982 in the Southern-Hemisphere, Q. J. Roy. Meteor. Soc., 114, 1365–1384, 1988. a
Mitchell, D. M., Charlton-Perez, A. J., and Gray, L. J.: Characterizing the Variability and Extremes of the Stratospheric Polar Vortices Using 2D Moment Analysis, J. Atmos. Sci., 68, 1194–1213, 2011. a
Mitchell, D. M., Gray, L. J., Anstey, J., Baldwin, M. P., and Charlton-Perez, A. J.: The Influence of Stratospheric Vortex Displacements and Splits on Surface Climate, J. Climate, 26, 2668–2682, 2013. a
National Oceanic and Atmospheric Administration, Climate Prediction Center: The North Atlantic Oscillation index [data set], https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml, last access: 21 May 2021. a
Newman, P. A.: The final warming and polar vortex disappearance during the Southern Hemisphere spring, Geophys. Res. Lett., 13, 1228–1231, 1986. a
Newman, P. A., Nash, E., and Rosenfield, J.: What controls the temperature of the Arctic stratosphere during the spring?, J. Geophys. Res., 106, 19999–20010, 2001. a
Plumb, R. A.: On the seasonal cycle of stratospheric planetary waves, Pure Appl. Geophys., 130, 233–242, 1989. a
Plumb, R. A.: Planetary waves and the extratropical winter stratosphere, in: The Stratosphere, Dynamics, Transport and Chemistry, 190, 23–41, Geophysical Monograph, American Geophysical Union, Washington, D. C., 2010. a
Reichler, T., Kim, J., Manzini, E., and Kröger, J.: A stratospheric connection to Atlantic climate variability, Nat. Geosci., 5, 783–787, 2012. a
Rood, R. B. and Schoeberl, M. R.: Ozone transport by diabatic and planetary wave circulations on a β plane, J. Geophys. Res.-Atmos., 88, 8491–8504, 1983. a
Runde, T., Dameris, M., Garny, H., and Kinnison, D. E.: Classification of stratospheric extreme events according to their downward propagation to the troposphere, Geophys. Res. Lett., 43, 6665–6672, 2016. a
Salby, M. L. and Callaghan, P. F.: Influence of planetary wave activity on the stratospheric final warming and spring ozone, J. Geophys. Res.-Atmos., 112, 351, 2007. a
Scott, R. and Haynes, P.: The seasonal cycle of planetary waves in the winter stratosphere, J. Atmos. Sci., 59, 803–822, 2002. a
Seviour, W. J. M., Mitchell, D. M., and Gray, L. J.: A practical method to identify displaced and split stratospheric polar vortex events, Geophys. Res. Lett., 40, 5268–5273, 2013. a
Sheshadri, A., Plumb, R. A., and Domeisen, D. I. V.: Can the delay in Antarctic polar vortex breakup explain recent trends in surface westerlies?, J. Atmos. Sci., 71, 566–573, https://doi.org/10.1175/JAS-D-12-0343.1, 2014. a
Solomon, S.: Stratospheric ozone depletion: A review of concepts and history, Rev. Geophys., 37, 275–316, 1999. a
Solomon, S., Haskins, J., Ivy, D. J., and Min, F.: Fundamental differences between Arctic and Antarctic ozone depletion, P. Natl. Acad. Sci. USA, 111, 6220–6225, 2014. a
Son, S.-W., Purich, A., Hendon, H. H., Kim, B.-M., and Polvani, L. M.: Improved seasonal forecast using ozone hole variability?, Geophys. Res. Lett., 40, 6231–6235, 2013. a
Sun, L., Robinson, W. A., and Chen, G.: The role of planetary waves in the downward influence of stratospheric final warming events, J. Atmos. Sci., 68, 2826–2843, 2011. a
Taguchi, M.: Predictability of Major Stratospheric Sudden Warmings of the Vortex Split Type: Case Study of the 2002 Southern Event and the 2009 and 1989 Northern Events, J. Atmos. Sci., 71, 2886–2904, 2014. a
Taguchi, M.: Connection of predictability of major stratospheric sudden warmings to polar vortex geometry, Atmos. Sci. Lett., 17, 33–38, 2016. a
Thompson, D. W. J., Solomon, S., Kushner, P., England, M., Grise, K., and Karoly, D.: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change, Nat. Geosci., 4, 741–749, 2011. a
Vargin, P. N., Kostrykin, S. V., Rakushina, E. V., Volodin, E. M., and Pogoreltsev, A. I.: Study of the Variability of Spring Breakup Dates and Arctic Stratospheric Polar Vortex Parameters from Simulation and Reanalysis Data, Izvestiya, Atmospheric and Oceanic Physics, 56, 458–469, 2020. a
Wang, T., Zhang, Q., Hannachi, A., Lin, Y., and Hirooka, T.: On the dynamics of the spring seasonal transition in the two hemispheric high-latitude stratosphere, Tellus A, 71, 1–18, 2019. a
Waugh, D. W.: Elliptical diagnostics of stratospheric polar vortices, Q. J. Roy. Meteor. Soc., 123, 1725–1748, 1997. a
White, I. P., Garfinkel, C. I., Cohen, J., Jucker, M., and Rao, J.: The impact of split and displacement sudden stratospheric warmings on the troposphere, J. Geophys. Res.-Atmos., 126, e2020JD033989, https://doi.org/10.1029/2020JD033989, 2021. a
Zhou, S., Gelman, M. E., Miller, A. J., and McCormack, J. P.: An inter-hemisphere comparison of the persistent stratospheric polar vortex, Geophys. Res. Lett., 27, 1123–1126, 2000. a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(8681 KB) - Full-text XML
Short summary
We classify by wave geometry the stratospheric polar vortex during the final warming that occurs every spring in both hemispheres due to a combination of radiative and dynamical processes. We show that the shape of the vortex, as well as the timing of the seasonal transition, is linked to total column ozone prior to and surface weather following the final warming. These results have implications for prediction and our understanding of stratosphere–troposphere coupling processes in springtime.
We classify by wave geometry the stratospheric polar vortex during the final warming that occurs...