Articles | Volume 2, issue 4
https://doi.org/10.5194/wcd-2-971-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-971-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A dynamical adjustment perspective on extreme event attribution
Laurent Terray
CORRESPONDING AUTHOR
CECI, Université de Toulouse, CERFACS/CNRS, Toulouse, France
Related authors
Benjamin M. Sanderson, Susanne Baur, Carl-Freidrich Schleussner, Glen P. Peters, Shivika Mittal, Marit Sandstad, Steffen Kallbekken, Chris Smith, Sabine Fuss, Bas van Ruijven, Rosie A. Fisher, Joeri Rogelj, Roland Séférian, Bjørn Samset, Norman J. Steinert, Laurent Terray, and Jan Fuglestvedt
EGUsphere, https://doi.org/10.5194/egusphere-2026-28, https://doi.org/10.5194/egusphere-2026-28, 2026
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Solar Radiation Modification by adding aerosols to the stratosphere could rapidly and temporarily cool the Earth, but this speed creates unprecedented risks. Fast climate responses coupled with political instability create risks of failure to decarbonise, super-rapid climate change, and conflict. Idealized scenarios or conventional modeling tools could lead to systematic ignorance of these risks. We thus introduce a framework outlining what must be represented in future modeling and assessment.
Susanne Baur, Benjamin M. Sanderson, Roland Séférian, and Laurent Terray
Earth Syst. Dynam., 16, 667–681, https://doi.org/10.5194/esd-16-667-2025, https://doi.org/10.5194/esd-16-667-2025, 2025
Short summary
Short summary
Stratospheric aerosol injection (SAI) could be used alongside mitigation to reduce global warming. Previous studies suggest that more atmospheric CO2 is taken up when SAI is deployed. Here, we look at the entire SAI deployment from start to after termination. We show how the initial CO2 uptake benefit, and hence lower mitigation burden, is reduced in later stages of SAI, where the reduction in natural CO2 uptake turns into an additional mitigation burden.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Saloua Peatier, Benjamin M. Sanderson, and Laurent Terray
Earth Syst. Dynam., 15, 987–1014, https://doi.org/10.5194/esd-15-987-2024, https://doi.org/10.5194/esd-15-987-2024, 2024
Short summary
Short summary
The calibration of Earth system model parameters is a high-dimensionality problem subject to data, time, and computational constraints. In this study, we propose a practical solution for finding diverse near-optimal solutions. We argue that the effective degrees of freedom in the model performance response to parameter input is relatively small. Comparably performing parameter configurations exist and showcase different trade-offs in model errors, providing insights for model development.
Susanne Baur, Benjamin M. Sanderson, Roland Séférian, and Laurent Terray
Earth Syst. Dynam., 15, 307–322, https://doi.org/10.5194/esd-15-307-2024, https://doi.org/10.5194/esd-15-307-2024, 2024
Short summary
Short summary
Most solar radiation modification (SRM) simulations assume no physical coupling between mitigation and SRM. We analyze the impact of SRM on photovoltaic (PV) and concentrated solar power (CSP) and find that almost all regions have reduced PV and CSP potential compared to a mitigated or unmitigated scenario, especially in the middle and high latitudes. This suggests that SRM could pose challenges for meeting energy demands with solar renewable resources.
Steve Delhaye, Rym Msadek, Thierry Fichefet, François Massonnet, and Laurent Terray
EGUsphere, https://doi.org/10.5194/egusphere-2023-1748, https://doi.org/10.5194/egusphere-2023-1748, 2023
Preprint archived
Short summary
Short summary
The climate impact of Arctic sea ice loss may depend on the region of sea ice loss and the methodology used to study this impact. This study uses two approaches across seven climate models to investigate the winter atmospheric circulation response to regional sea ice loss. Our findings indicate a consistent atmospheric circulation response to pan-Arctic sea ice loss in most models and across both approaches. In contrast, more uncertainty emerges in the responses linked to regional sea ice loss.
Aurélien Ribes, Julien Boé, Saïd Qasmi, Brigitte Dubuisson, Hervé Douville, and Laurent Terray
Earth Syst. Dynam., 13, 1397–1415, https://doi.org/10.5194/esd-13-1397-2022, https://doi.org/10.5194/esd-13-1397-2022, 2022
Short summary
Short summary
We use a novel statistical method to combine climate simulations and observations, and we deliver an updated assessment of past and future warming over France. As a key result, we find that the warming over that region was underestimated in previous multi-model ensembles by up to 50 %. We also assess the contribution of greenhouse gases, aerosols, and other factors to the observed warming, as well as the impact on the seasonal temperature cycle, and we discuss implications for climate services.
Eduardo Moreno-Chamarro, Louis-Philippe Caron, Saskia Loosveldt Tomas, Javier Vegas-Regidor, Oliver Gutjahr, Marie-Pierre Moine, Dian Putrasahan, Christopher D. Roberts, Malcolm J. Roberts, Retish Senan, Laurent Terray, Etienne Tourigny, and Pier Luigi Vidale
Geosci. Model Dev., 15, 269–289, https://doi.org/10.5194/gmd-15-269-2022, https://doi.org/10.5194/gmd-15-269-2022, 2022
Short summary
Short summary
Climate models do not fully reproduce observations: they show differences (biases) in regional temperature, precipitation, or cloud cover. Reducing model biases is important to increase our confidence in their ability to reproduce present and future climate changes. Model realism is set by its resolution: the finer it is, the more physical processes and interactions it can resolve. We here show that increasing resolution of up to ~ 25 km can help reduce model biases but not remove them entirely.
Benjamin M. Sanderson, Susanne Baur, Carl-Freidrich Schleussner, Glen P. Peters, Shivika Mittal, Marit Sandstad, Steffen Kallbekken, Chris Smith, Sabine Fuss, Bas van Ruijven, Rosie A. Fisher, Joeri Rogelj, Roland Séférian, Bjørn Samset, Norman J. Steinert, Laurent Terray, and Jan Fuglestvedt
EGUsphere, https://doi.org/10.5194/egusphere-2026-28, https://doi.org/10.5194/egusphere-2026-28, 2026
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Solar Radiation Modification by adding aerosols to the stratosphere could rapidly and temporarily cool the Earth, but this speed creates unprecedented risks. Fast climate responses coupled with political instability create risks of failure to decarbonise, super-rapid climate change, and conflict. Idealized scenarios or conventional modeling tools could lead to systematic ignorance of these risks. We thus introduce a framework outlining what must be represented in future modeling and assessment.
Susanne Baur, Benjamin M. Sanderson, Roland Séférian, and Laurent Terray
Earth Syst. Dynam., 16, 667–681, https://doi.org/10.5194/esd-16-667-2025, https://doi.org/10.5194/esd-16-667-2025, 2025
Short summary
Short summary
Stratospheric aerosol injection (SAI) could be used alongside mitigation to reduce global warming. Previous studies suggest that more atmospheric CO2 is taken up when SAI is deployed. Here, we look at the entire SAI deployment from start to after termination. We show how the initial CO2 uptake benefit, and hence lower mitigation burden, is reduced in later stages of SAI, where the reduction in natural CO2 uptake turns into an additional mitigation burden.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Saloua Peatier, Benjamin M. Sanderson, and Laurent Terray
Earth Syst. Dynam., 15, 987–1014, https://doi.org/10.5194/esd-15-987-2024, https://doi.org/10.5194/esd-15-987-2024, 2024
Short summary
Short summary
The calibration of Earth system model parameters is a high-dimensionality problem subject to data, time, and computational constraints. In this study, we propose a practical solution for finding diverse near-optimal solutions. We argue that the effective degrees of freedom in the model performance response to parameter input is relatively small. Comparably performing parameter configurations exist and showcase different trade-offs in model errors, providing insights for model development.
Susanne Baur, Benjamin M. Sanderson, Roland Séférian, and Laurent Terray
Earth Syst. Dynam., 15, 307–322, https://doi.org/10.5194/esd-15-307-2024, https://doi.org/10.5194/esd-15-307-2024, 2024
Short summary
Short summary
Most solar radiation modification (SRM) simulations assume no physical coupling between mitigation and SRM. We analyze the impact of SRM on photovoltaic (PV) and concentrated solar power (CSP) and find that almost all regions have reduced PV and CSP potential compared to a mitigated or unmitigated scenario, especially in the middle and high latitudes. This suggests that SRM could pose challenges for meeting energy demands with solar renewable resources.
Steve Delhaye, Rym Msadek, Thierry Fichefet, François Massonnet, and Laurent Terray
EGUsphere, https://doi.org/10.5194/egusphere-2023-1748, https://doi.org/10.5194/egusphere-2023-1748, 2023
Preprint archived
Short summary
Short summary
The climate impact of Arctic sea ice loss may depend on the region of sea ice loss and the methodology used to study this impact. This study uses two approaches across seven climate models to investigate the winter atmospheric circulation response to regional sea ice loss. Our findings indicate a consistent atmospheric circulation response to pan-Arctic sea ice loss in most models and across both approaches. In contrast, more uncertainty emerges in the responses linked to regional sea ice loss.
Aurélien Ribes, Julien Boé, Saïd Qasmi, Brigitte Dubuisson, Hervé Douville, and Laurent Terray
Earth Syst. Dynam., 13, 1397–1415, https://doi.org/10.5194/esd-13-1397-2022, https://doi.org/10.5194/esd-13-1397-2022, 2022
Short summary
Short summary
We use a novel statistical method to combine climate simulations and observations, and we deliver an updated assessment of past and future warming over France. As a key result, we find that the warming over that region was underestimated in previous multi-model ensembles by up to 50 %. We also assess the contribution of greenhouse gases, aerosols, and other factors to the observed warming, as well as the impact on the seasonal temperature cycle, and we discuss implications for climate services.
Eduardo Moreno-Chamarro, Louis-Philippe Caron, Saskia Loosveldt Tomas, Javier Vegas-Regidor, Oliver Gutjahr, Marie-Pierre Moine, Dian Putrasahan, Christopher D. Roberts, Malcolm J. Roberts, Retish Senan, Laurent Terray, Etienne Tourigny, and Pier Luigi Vidale
Geosci. Model Dev., 15, 269–289, https://doi.org/10.5194/gmd-15-269-2022, https://doi.org/10.5194/gmd-15-269-2022, 2022
Short summary
Short summary
Climate models do not fully reproduce observations: they show differences (biases) in regional temperature, precipitation, or cloud cover. Reducing model biases is important to increase our confidence in their ability to reproduce present and future climate changes. Model realism is set by its resolution: the finer it is, the more physical processes and interactions it can resolve. We here show that increasing resolution of up to ~ 25 km can help reduce model biases but not remove them entirely.
Cited articles
Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M., and
Garcia-Herrera, R.: The hot summer of 2010: Redrawing the temperature record
map of Europe, Science, 332, 220–224, https://doi.org/10.1126/science.1201224,
2011.
Buchan, J., Hirschi, J. J., Blaker, A. T., and Sinha, B.: North Atlantic SST
Anomalies and the Cold North European Weather Events of Winter 2009/10 and
December 2010, Mon. Wea. Rev., 142, 922–932, https://doi.org/10.1175/MWR-D-13-00104.1, 2014
Bulygina, O. N., Razuvaev, V. N., and Korshunova, N. N.: Changes in snow cover over Northern Eurasia in the last few decades, Environ. Res. Lett., 4, 045026, 2009.
Bulygina, O. N., Groisman, P. Y., Razuvaev, V. N., and Korshunova, N. N.: Changes in snow cover characteristics over Northern Eurasia since 1966, Environ. Res. Lett., 6, 045204, 2011.
Caesar, J., Alexander, L., and Vose, R.: Large-scale changes in observed
daily maximum and minimum temperatures: Creation and analysis of a new
gridded data set, J. Geophys. Res., 111, D05101, https://doi.org/10.1029/2005JD006280,
2006.
Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson-Delmotte, V., and
Codron, F.: Winter in 2010 in Europe: A cold extreme in a warming climate,
Geophys. Res. Lett., 37, L20704, https://doi.org/10.1029/2010GL044613, 2010.
Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpennings, I.: A
Seasonal-Trend Decomposition Procedure Based on Loess, J. Off.
Stat., Vol. 6, 3–73, 1990.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis Project, Q. J. R. Meteorol. Soc., 137, 1-28, https://doi.org/10.1002/qj.776, 2011
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones,
P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Data
Sets. J. Geophys. Res. Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200,
2018.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137,
553–597, https://doi.org/10.1002/qj.828, 2011.
Deser, C., Terray, L., and Phillips, A. S.: Forced and internal components
of winter air temperature trends over North America during the past 50
years: Mechanisms and implications, J. Climate, 29, 2237–2258,
https://doi.org/10.1175/JCLI-D-15-0304.1, 2016.
Deser, C., Phillips, A. S., Simpson, I. R., Rosenbloom, N., Coleman, D.,
Lehner, F., Pendergrass, A., DiNezio, P., and Stevenson, S.: Isolating the
Evolving Contributions of Anthropogenic Aerosols and Greenhouse Gases: A New
CESM1 Large Ensemble Community Resource, J. Climate, 33, 7835–7858,
https://doi.org/10.1175/JCLI-D-20-0123.1, 2020.
Dole, R., Hoerling, M., Perlwitz, J., Eischeid, J., Pegion, P., Zhang, T.,
Quan, X.-W., Xu, T., and Murray, D.: Was there a basis for anticipating the
2010 Russian heat wave?, Geophys. Res. Lett., 38, L06702,
https://doi.org/10.1029/2010GL046582, 2011.
Drouard, M. and Woollings, T.: Contrasting mechanisms of summer blocking
over western Eurasia, Geophys. Res. Lett., 45, 12040–12048,
https://doi.org/10.1029/2018GL079894, 2018.
Dunn, R. J. H., Alexander, L. V., Donat, M. G., Zhang, X., Bador, M.,
Herold, N., Lippmann, T., Allan, R., Aguilar, E., Barry, A. A., Brunet, M., Caesar, J., Chagnaud, G., Cheng, V., Cinco, T., Durre, I., de Guzman, R., Htay, T. M., Ibadullah, W. M. W., Bin Ibrahim, M. K. I., Khoshkam, M., Kruger, A., Kubota, H., Leng, T. W., Lim, G., Li-Sha, L., Marengo, J., Mbatha, S., McGree, S., Menne, M., de los Milagros Skansi, M., Ngwenya, S., Nkrumah, F., Oonariya, C., Pabon-Caicedo, J. D., Panthou, G., Pham, C., Rahimzadeh, F., Ramos, A., Salgado, E., Salinger, J., Sané, Y., Sopaheluwakan, A., Srivastava, A., Sun, Y., Timbal, B., Trachow, N., Trewin, B., van der Schrier, G., Vazquez-Aguirre, J., Vasquez, R., Villarroel, C., Vincent, L., Vischel, T., Vose, R., and Bin Hj Yussof M. N.'A.: Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3, J. Geophys. Res.-Atmos., 125, e2019JD032263,
https://doi.org/10.1029/2019JD032263, 2020.
Gillett, N. P., Shiogama, H., Funke, B., Hegerl, G., Knutti, R., Matthes, K., Santer, B. D., Stone, D., and Tebaldi, C.: The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6, Geosci. Model Dev., 9, 3685–3697, https://doi.org/10.5194/gmd-9-3685-2016, 2016.
Gong, H., Wang, L., Chen, W., and Wu, R.: Attribution of the East Asian
Winter Temperature Trends During 1979–2018: Role of External Forcing and
Internal Variability, Geophys. Res. Lett., 46, 10874–10881,
https://doi.org/10.1029/2019GL084154, 2019.
Guan, X., Huang, J., Guo, R., and Pu, L.: The role of dynamically induced
variability in the recent warming trend slowdown over the Northern
Hemisphere, Sci. Rep., 5, 12669, https://doi.org/10.1038/srep12669, 2015.
Guo, Y., Gasparrini, A., Li, S., Sera, F., Vicedo-Cabrera, A. M., de Sousa Zanotti Stagliorio Coelho, M., Nascimento Saldiva, P. H., Lavigne, E., Tawatsupa, B., Punnasiri, K., Overcenco, A., Correa, P. M., Valdes Ortega, N., Kan, H., Osorio, S., Jaakkola, J. J. K., Ryti, N. R. I., Goodman, P. G., Zeka, A., Michelozzi, P., Scortichini, M., Hashizume, M., Honda, Y., Seposo, X., Kim, H., Tobias, A., Íñiguez, C., Forsberg, B., Åström, D. O., Guo, Y. L., Chen, B.-Y., Zanobetti, A., Schwartz, J., Dang, T. N., Van, D. D., Bell, M. L., Armstrong, B., Ebi, K. L., and Tong, S.: Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry time series modelling study, PLOS Med., 15, e1002629, https://doi.org/10.1371/journal.pmed.1002629, 2018.
Guo, R., Deser, C., Terray, L., and Lehner, F.: Human influence on winter
precipitation trends (1921–2015) over North America and Eurasia revealed by
dynamical adjustment, Geophys. Res. Lett., 46, 3426–3434, https://doi.org/10.1029/2018GL081316, 2019.
Hawkins, E., Frame, D., Harrington, L., Joshi, M., King, A., Rojas, M., and
Sutton, R.: Observed emergence of the climate change signal: From the
familiar to the unknown, Geophys. Res. Lett., 47, e2019GL086259, https://doi.org/10.1029/2019GL086259, 2020.
Hegerl, G. and Zwiers, F.: Use of models in detection and attribution of climate change, WIREs Clim. Change, 2, 570–591, https://doi.org/10.1002/wcc.121, 2011.
Horton, D., Johnson, N., Singh, D., Swain, D. L., Rajaratnam, B., and
Diffenbaugh, N. S.: Contribution of changes in atmospheric circulation
patterns to extreme temperature trends, Nature, 522, 465–469,
https://doi.org/10.1038/nature14550, 2015.
Hurrell, J. W.: Decadal trends in the north-atlantic oscillation: Regional
temperatures and precipitation, Science, 269, 676–679,
https://doi.org/10.1126/science.269.5224.676, 1995.
Jahn, M.: Economics of extreme weather events: Terminology and regional
impact models, Weather Clim. Extrem., 10, 29–39,
https://doi.org/10.1016/j.wace.2015.08.005, 2015.
Jézéquel, A., Cattiaux, J., Naveau, P., Radanovics, S., Ribes, A.,
Vautard, R., Vrac, M. and Yiou, P.: Trends of atmospheric circulation during
singular hot days in Europe, Environ. Res. Lett., 13, 054007, https://doi.org/10.1088/1748-9326/aab5da, 2018.
Jézéquel, A., Bevacqua, E., d'Andrea, F., Thao, S., Vautard, R.,
Vrac, M., and Yiou, P.: Conditional and residual trends of singular hot days
in Europe Environ. Res. Lett., 15, 064018, https://doi.org/10.1088/1748-9326/ab76dd, 2020.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, 1996.
Lehner, F., Deser, C., and Terray, L.: Toward a New Estimate of “Time of
Emergence” of Anthropogenic Warming: Insights from Dynamical Adjustment and
a Large Initial-Condition Model Ensemble, J. Climate, 30, 7739–7756,
https://doi.org/10.1175/JCLI-D-16-0792.1, 2017.
Lehner, F., Deser, C., Simpson, I., and Terray, L.: Attributing the US
Southwest's recent shift into drier conditions. Geophys. Res. Lett., 45, 6251–6261, https://doi.org/10.1029/2018GL078312, 2018.
Lloyd, E. A. and Shepherd, T. G.: Environmental catastrophes, climate change,
and attribution, Ann. N. Y. Acad. Sci., 1469, 105–124, https://doi.org/10.1111/nyas.14308, 2020.
McCarthy, G., Frajka-Williams, E., Johns, W. E., Baringer, M. O., Meinen, C. S., Bryden, H. L., Rayner, D., Duchez, A., Roberts, C., and Cunningham, S. A.: Observed interannual variability of the Atlantic meridional overturning circulation at 26.5∘ N. Geophys. Res. Lett., 39, L19609, https://doi.org/10.1029/2012GL052933, 2012.
Meredith, E., Semenov, V., Maraun, D., Park, W., and Chernokulsky, A.V.: Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation extreme, Nat. Geosci., 8, 615–619, https://doi.org/10.1038/ngeo2483, 2015.
Merrifield, A., Lehner, F., Xie, S.-P., and Deser, C.: Removing circulation
effects to assess central U.S. land-atmosphere interactions in the CESM
Large Ensemble. Geophys. Res. Lett., 44, 9938–9946, https://doi.org/10.1002/2017GL074831, 2017.
Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C., and de Arellano, J.
V.-G.: Mega-heatwave temperatures due to combined soil desiccation and
atmospheric heat accumulation, Nat. Geosci., 7, 345–349,
https://doi.org/10.1038/NGEO2141, 2014.
Naveau, P., Hannart, A., and Ribes, A.: Statistical Methods for Extreme
Event Attribution in Climate Science, Annu. Rev. Stat. Appl., 7, 89–110, 2020.
O'Reilly, C. H., Woollings, T., and Zanna, L.: The dynamical influence of
the Atlantic multidecadal oscillation on continental climate, J. Climate,
30, 7213–7230, https://doi.org/10.1175/JCLI-D-16-0345.1, 2017.
Osborn, T. J.: Winter 2009/2010 temperatures and a record-breaking North
Atlantic Oscillation index. Weather, 66, 19–21, https://doi.org/10.1002/wea.660, 2011.
Otto, F. E. L.: Attribution of Weather and Climate Events, Annu. Rev. Environ. Resour., 42, 627–646, https://doi.org/10.1146/annurev-environ-102016-060847, 2017.
Otto, F. E. L., Massey, N., van Oldenborgh, G. J., Jones, R. G., and Allen,
M. R.: Reconciling two approaches to attribution of the 2010 Russian heat
wave, Geophys. Res. Lett., 39, L04702, https://doi.org/10.1029/2011GL050422, 2012.
Pfahl, S., and Wernli, H.: Quantifying the relevance of atmospheric blocking
for co-located temperature extremes in the Northern Hemisphere on
(sub-)daily time scales, Geophys. Res. Lett., 39, L12807,
https://doi.org/10.1029/2012GL052261, 2012.
Quinting, J. F. and Reeder, M. J.: Southeastern Australian Heat Waves from
a Trajectory Viewpoint, Mon. Weather Rev., 145, 4109–4125, https://doi.org/10.1175/MWR-D-17-0165.1, 2017.
Robine, J.-M., Cheung, S. L. K., Le Roy, S., Van Oyen, H., Griffiths, C.,
Michel, J.-P., and Herrmann, F. R.: Death toll exceeded 70 000 in Europe
during the summer of 2003, C. R. Biol., 331, 171–178,
https://doi.org/10.1016/j.crvi.2007.12.001, 2008.
Rohde, R., Muller, A., Jacobsen, R., Muller, E., Perlmutter. S., Rosenfeld, A., Wurtele, J., Groom, D., and Wickham, C.: A New
Estimate of the Average Earth Surface Land Temperature Spanning 1753 to
2011, Geoinfor. Geostat.: An Overview, 1, 20–100, https://doi.org/10.4172/2327-4581.1000101, 2013.
Saffioti, C., Fischer, E. M., Scherrer, S. C., and Knutti, R.: Reconciling
observed and modelled temperature and precipitation trends over Europe by
adjusting for circulation variability, Geophys. Res. Lett., 43, 8189–8198,
2016.
Sato, T. and Nakamura, T.: Intensification of hot Eurasian summers by climate
change and land–atmosphere interactions, Sci. Rep., 9, 10866, https://doi.org/10.1038/s41598-019-47291-5, 2019.
Schär, C. and Kröner, N.: Sequential Factor Separation for the Analysis of Numerical Model Simulations, J. Atmos. Sci., 74, 1471–1484, doi.org/10.1175/JAS-D-16-0284.1, 2017.
Schneidereit, A., Schubert, S., Vargin, P., Lunkeit, F., Zhu, X., Peters,
D., and Fraedrich, K.: Large scale flow and the long-lasting blocking high
over Russia: Summer 2010, Mon. Weather Rev., 140, 2967–2981, https://doi.org/10.1175/MWR-D-11-00249.1, 2012.
Shaltout, M. and Omstedt, A.: Recent sea surface temperature trends and future scenarios for the Mediterranean Sea, Oceanologia, 56, 411–443,
https://doi.org/10.5697/oc.56-3.411, 2014.
Shepherd, T. G.: A common framework for approaches to extreme event
attribution, Curr. Clim. Change Rep., 2, 28–38, 2016.
Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Dessai, S., Dima-West, I. M., Fowler, H. J., James, R., Maraun, D., Martius, O., Senior, C. A., Sobel, A. H., Stainforth, D. A., Tett, S. F. B., Trenberth, K. E., van den Hurk, B. J. J. M., Watkins, N. W., Wilby, R. L., and Zenghelis, D. A.: Storylines: an alternative approach to representing uncertainty in physical aspects of climate change, Climatic Change, 151, 555–571, https://doi.org/10.1007/s10584-018-2317-9, 2018.
Sippel, S., Meinshausen, N., Merrifield, A., Lehner, F., Pendergrass, A. G.,
Fischer, E. M., and Knutti, R.: Uncovering the forced climate response from
a single ensemble member using statistical learning, J. Climate, 32,
5677–5699, https://doi.org/10.1175/JCLI-D-18-0882.1, 2019.
Slivinski, L. C., Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang,
X. L., Woodruff, S. D., Worley, S. J.: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth
Century Reanalysis system, Q. J. R. Meteorol. Soc., 145, 2876–2908,
https://doi.org/10.1002/qj.3598, 2019.
Smoliak, B. V., Wallace, J. M., Lin, P., and Fu, Q.: Dynamical adjustment of the Northern Hemisphere surface air temperature field: Methodology and
application to observations, J. Climate, 28, 1613–1629, 2015.
Sonnewald, M., Hirschi, J. J.-M., Marsh, R., McDonagh, E. L., and King, B. A.: Atlantic meridional ocean heat transport at 26∘ N: impact on subtropical ocean heat content variability, Ocean Sci., 9, 1057–1069, https://doi.org/10.5194/os-9-1057-2013, 2013.
Squintu, A. A., van der Schrier, G., Brugnara, Y., and Klein Tank, A.:
Homogenization of daily temperature series in the European Climate
Assessment [data set], Int. J. Climatol., 39, 1243–1261,
https://doi.org/10.1002/joc.5874, 2019.
Stillman, J. H.: Heat Waves, the New Normal: Summertime Temperature Extremes
Will Impact Animals, Ecosystems, and Human Communities, Physiology, 34,
86–100, https://doi.org/10.1152/physiol.00040.2018, 2019.
Stott, P. A., Stone, D. A., and Allen, M. R.: Human contribution to the
European heatwave of 2003, Nature, 432, 610–613, 2004.
Stott, P. A., Christidis, N., Otto, F. E. L., Sun, Y., Vanderlinden, J.-P., van Oldenborgh, G. J., Vautard, R., von Storch, H., Walton, P., Yiou, P., and Zwiers, F. W.: Attribution of extreme weather and climate-related events, WIREs Clim. Change, 7, 23–41, 2016.
Sutton, R. T. and Dong, B.: Atlantic Ocean influence on a shift in
European climate in the 1990s, Nat. Geosci., 5, 788–792,
https://doi.org/10.1038/ngeo1595, 2012.
terrayl: terrayl/Dynamico: Dynamico version v1.0.0 (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.5584777, 2021.
van Garderen, L., Feser, F., and Shepherd, T. G.: A methodology for attributing the role of climate change in extreme events: a global spectrally nudged storyline, Nat. Hazards Earth Syst. Sci., 21, 171–186, https://doi.org/10.5194/nhess-21-171-2021, 2021.
Vautard, R., Yiou, P., Otto, F., Stott, P., Christidis, N., van Oldenborgh,
G. J., and Schaller, N.: Attribution of human-induced dynamical and
thermodynamical contributions in extreme weather events, Environ. Res. Lett.
11, 114009, 2016.
Wallace, J. M., Fu Q., Smoliak, B. V., Lin, P., and Johanson, C. M.:
Simulated versus observed patterns of warming over the extratropical
Northern Hemisphere continents during the cold season, Proc. Natl. Acad.
Sci., 109, 14337–14342, 2012.
Wang, C., Liu, H., and Lee, S.-K.: The record-breaking cold temperatures
during the winter of 2009/2010 in the Northern Hemisphere, Atmos. Sci. Lett.,
11, 161–168, https://doi.org/10.1002/asl.278, 2010.
Wehrli, K., Guillod, B. P., Hauser, M., Leclair, M., and Seneviratne, S.
I.: Identifying key driving processes of major recent heat waves, J. Geophys. Res.-Atmos., 124, 11746–11765, https://doi.org/10.1029/2019JD030635, 2019.
Woollings, T., Papritz, L., Mbengue, C., and Spengler, T.: Diabatic heating
and jet stream shifts: A case study of the 2010 negative North Atlantic
Oscillation winter, Geophys. Res. Lett., 43, 9994–10002,
https://doi.org/10.1002/2016GL070146, 2016.
Short summary
Attribution of the causes of extreme temperature events has become active research due to the wide-ranging impacts of recent heat waves and cold spells. Here we show that a purely observational approach based on atmospheric circulation analogues and resampling provides a robust quantification of the various dynamic and thermodynamic contributions to specific extreme temperature events. The approach can easily be integrated in the toolbox of any real-time extreme event attribution system.
Attribution of the causes of extreme temperature events has become active research due to the...