Research article
| Highlight paper
25 Oct 2021
Research article
| Highlight paper
| 25 Oct 2021
A dynamical adjustment perspective on extreme event attribution
Laurent Terray
Related authors
Aurélien Ribes, Julien Boé, Saïd Qasmi, Brigitte Dubuisson, Hervé Douville, and Laurent Terray
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2022-7, https://doi.org/10.5194/esd-2022-7, 2022
Preprint under review for ESD
Short summary
Short summary
We use a novel statistical method to combine climate simulations and observations, and deliver an updated assessment of past and future warming over France. As a key result, we find that the warming over that region was underestimated in previous multi-model ensembles, by up to 50 %. We also assess the contribution of greenhouse gases, aerosols and other factors to the observed warming, the impact on the seasonal temperature cycle, and discuss implications for climate services.
Eduardo Moreno-Chamarro, Louis-Philippe Caron, Saskia Loosveldt Tomas, Javier Vegas-Regidor, Oliver Gutjahr, Marie-Pierre Moine, Dian Putrasahan, Christopher D. Roberts, Malcolm J. Roberts, Retish Senan, Laurent Terray, Etienne Tourigny, and Pier Luigi Vidale
Geosci. Model Dev., 15, 269–289, https://doi.org/10.5194/gmd-15-269-2022, https://doi.org/10.5194/gmd-15-269-2022, 2022
Short summary
Short summary
Climate models do not fully reproduce observations: they show differences (biases) in regional temperature, precipitation, or cloud cover. Reducing model biases is important to increase our confidence in their ability to reproduce present and future climate changes. Model realism is set by its resolution: the finer it is, the more physical processes and interactions it can resolve. We here show that increasing resolution of up to ~ 25 km can help reduce model biases but not remove them entirely.
Reinhard Schiemann, Panos Athanasiadis, David Barriopedro, Francisco Doblas-Reyes, Katja Lohmann, Malcolm J. Roberts, Dmitry V. Sein, Christopher D. Roberts, Laurent Terray, and Pier Luigi Vidale
Weather Clim. Dynam., 1, 277–292, https://doi.org/10.5194/wcd-1-277-2020, https://doi.org/10.5194/wcd-1-277-2020, 2020
Short summary
Short summary
In blocking situations the westerly atmospheric flow in the midlatitudes is blocked by near-stationary high-pressure systems. Blocking can be associated with extremes such as cold spells and heat waves. Climate models are known to underestimate blocking occurrence. Here, we assess the latest generation of models and find improvements in simulated blocking, partly due to increases in model resolution. These new models are therefore more suitable for studying climate extremes related to blocking.
Laurent Bessières, Stéphanie Leroux, Jean-Michel Brankart, Jean-Marc Molines, Marie-Pierre Moine, Pierre-Antoine Bouttier, Thierry Penduff, Laurent Terray, Bernard Barnier, and Guillaume Sérazin
Geosci. Model Dev., 10, 1091–1106, https://doi.org/10.5194/gmd-10-1091-2017, https://doi.org/10.5194/gmd-10-1091-2017, 2017
Short summary
Short summary
A new, probabilistic version of an ocean modelling system has been implemented in order to simulate the chaotic and the atmospherically forced contributions to the ocean variability. For that purpose, a large ensemble of global hindcasts has been performed. Results illustrate the importance of the oceanic chaos on climate-related oceanic indices, and the relevance of such probabilistic ocean modelling approaches to anticipating the behaviour of the next generation of coupled climate models.
Aurélien Ribes, Julien Boé, Saïd Qasmi, Brigitte Dubuisson, Hervé Douville, and Laurent Terray
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2022-7, https://doi.org/10.5194/esd-2022-7, 2022
Preprint under review for ESD
Short summary
Short summary
We use a novel statistical method to combine climate simulations and observations, and deliver an updated assessment of past and future warming over France. As a key result, we find that the warming over that region was underestimated in previous multi-model ensembles, by up to 50 %. We also assess the contribution of greenhouse gases, aerosols and other factors to the observed warming, the impact on the seasonal temperature cycle, and discuss implications for climate services.
Eduardo Moreno-Chamarro, Louis-Philippe Caron, Saskia Loosveldt Tomas, Javier Vegas-Regidor, Oliver Gutjahr, Marie-Pierre Moine, Dian Putrasahan, Christopher D. Roberts, Malcolm J. Roberts, Retish Senan, Laurent Terray, Etienne Tourigny, and Pier Luigi Vidale
Geosci. Model Dev., 15, 269–289, https://doi.org/10.5194/gmd-15-269-2022, https://doi.org/10.5194/gmd-15-269-2022, 2022
Short summary
Short summary
Climate models do not fully reproduce observations: they show differences (biases) in regional temperature, precipitation, or cloud cover. Reducing model biases is important to increase our confidence in their ability to reproduce present and future climate changes. Model realism is set by its resolution: the finer it is, the more physical processes and interactions it can resolve. We here show that increasing resolution of up to ~ 25 km can help reduce model biases but not remove them entirely.
Reinhard Schiemann, Panos Athanasiadis, David Barriopedro, Francisco Doblas-Reyes, Katja Lohmann, Malcolm J. Roberts, Dmitry V. Sein, Christopher D. Roberts, Laurent Terray, and Pier Luigi Vidale
Weather Clim. Dynam., 1, 277–292, https://doi.org/10.5194/wcd-1-277-2020, https://doi.org/10.5194/wcd-1-277-2020, 2020
Short summary
Short summary
In blocking situations the westerly atmospheric flow in the midlatitudes is blocked by near-stationary high-pressure systems. Blocking can be associated with extremes such as cold spells and heat waves. Climate models are known to underestimate blocking occurrence. Here, we assess the latest generation of models and find improvements in simulated blocking, partly due to increases in model resolution. These new models are therefore more suitable for studying climate extremes related to blocking.
Laurent Bessières, Stéphanie Leroux, Jean-Michel Brankart, Jean-Marc Molines, Marie-Pierre Moine, Pierre-Antoine Bouttier, Thierry Penduff, Laurent Terray, Bernard Barnier, and Guillaume Sérazin
Geosci. Model Dev., 10, 1091–1106, https://doi.org/10.5194/gmd-10-1091-2017, https://doi.org/10.5194/gmd-10-1091-2017, 2017
Short summary
Short summary
A new, probabilistic version of an ocean modelling system has been implemented in order to simulate the chaotic and the atmospherically forced contributions to the ocean variability. For that purpose, a large ensemble of global hindcasts has been performed. Results illustrate the importance of the oceanic chaos on climate-related oceanic indices, and the relevance of such probabilistic ocean modelling approaches to anticipating the behaviour of the next generation of coupled climate models.
Related subject area
Other aspects of weather and climate dynamics
A characterisation of Alpine mesocyclone occurrence
Intraseasonal variability of ocean surface wind waves in the western South Atlantic: the role of cyclones and the Pacific South American pattern
The signature of the tropospheric gravity wave background in observed mesoscale motion
Increasing frequency in off-season tropical cyclones and its relation to climate variability and change
Monika Feldmann, Urs Germann, Marco Gabella, and Alexis Berne
Weather Clim. Dynam., 2, 1225–1244, https://doi.org/10.5194/wcd-2-1225-2021, https://doi.org/10.5194/wcd-2-1225-2021, 2021
Short summary
Short summary
Mesocyclones are the rotating updraught of supercell thunderstorms that present a particularly hazardous subset of thunderstorms. A first-time characterisation of the spatiotemporal occurrence of mesocyclones in the Alpine region is presented, using 5 years of Swiss operational radar data. We investigate parallels to hailstorms, particularly the influence of large-scale flow, daily cycles and terrain. Improving understanding of mesocyclones is valuable for risk assessment and warning purposes.
Dalton K. Sasaki, Carolina B. Gramcianinov, Belmiro Castro, and Marcelo Dottori
Weather Clim. Dynam., 2, 1149–1166, https://doi.org/10.5194/wcd-2-1149-2021, https://doi.org/10.5194/wcd-2-1149-2021, 2021
Short summary
Short summary
Extratropical cyclones are relevant in the western South Atlantic and influence the climate of ocean surface wave. Propagating atmospheric features from the South Pacific to the South Atlantic are relevant to the cyclones and waves, and its intensified westerlies lead to more cyclones and, as a consequence, to higher wave heights. The opposite happens with its weakening. These features are similar to the so-called Pacific South American patterns and present periods between 30 and 180 d.
Claudia Christine Stephan and Alexis Mariaccia
Weather Clim. Dynam., 2, 359–372, https://doi.org/10.5194/wcd-2-359-2021, https://doi.org/10.5194/wcd-2-359-2021, 2021
Short summary
Short summary
Vertical motion on horizontal scales of a few hundred kilometers can influence cloud properties. This motion is difficult to measure directly but can be inferred from the area-averaged mass divergence. The latter can be derived from horizontal wind measurements at the area’s perimeter. This study derives vertical properties of area-averaged divergence from an extensive network of atmospheric soundings and proposes an explanation for the variation of divergence magnitudes with area size.
José J. Hernández Ayala and Rafael Méndez-Tejeda
Weather Clim. Dynam., 1, 745–757, https://doi.org/10.5194/wcd-1-745-2020, https://doi.org/10.5194/wcd-1-745-2020, 2020
Short summary
Short summary
This study focused on exploring if off-season tropical cyclones, those that develop outside of the peak months, have been increasing over time in the Atlantic Ocean and Pacific Ocean basins and if that higher frequency could be explained by climate variability or change. We found that off-season tropical cyclones are exhibiting an increase in total numbers by decade in the North Atlantic and East Pacific ocean basins and that climate change explained much of the increasing trends over time.
Cited articles
Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M., and
Garcia-Herrera, R.: The hot summer of 2010: Redrawing the temperature record
map of Europe, Science, 332, 220–224, https://doi.org/10.1126/science.1201224,
2011.
Buchan, J., Hirschi, J. J., Blaker, A. T., and Sinha, B.: North Atlantic SST
Anomalies and the Cold North European Weather Events of Winter 2009/10 and
December 2010, Mon. Wea. Rev., 142, 922–932, https://doi.org/10.1175/MWR-D-13-00104.1, 2014
Bulygina, O. N., Razuvaev, V. N., and Korshunova, N. N.: Changes in snow cover over Northern Eurasia in the last few decades, Environ. Res. Lett., 4, 045026, 2009.
Bulygina, O. N., Groisman, P. Y., Razuvaev, V. N., and Korshunova, N. N.: Changes in snow cover characteristics over Northern Eurasia since 1966, Environ. Res. Lett., 6, 045204, 2011.
Caesar, J., Alexander, L., and Vose, R.: Large-scale changes in observed
daily maximum and minimum temperatures: Creation and analysis of a new
gridded data set, J. Geophys. Res., 111, D05101, https://doi.org/10.1029/2005JD006280,
2006.
Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson-Delmotte, V., and
Codron, F.: Winter in 2010 in Europe: A cold extreme in a warming climate,
Geophys. Res. Lett., 37, L20704, https://doi.org/10.1029/2010GL044613, 2010.
Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpennings, I.: A
Seasonal-Trend Decomposition Procedure Based on Loess, J. Off.
Stat., Vol. 6, 3–73, 1990.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis Project, Q. J. R. Meteorol. Soc., 137, 1-28, https://doi.org/10.1002/qj.776, 2011
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones,
P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Data
Sets. J. Geophys. Res. Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200,
2018.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137,
553–597, https://doi.org/10.1002/qj.828, 2011.
Deser, C., Terray, L., and Phillips, A. S.: Forced and internal components
of winter air temperature trends over North America during the past 50
years: Mechanisms and implications, J. Climate, 29, 2237–2258,
https://doi.org/10.1175/JCLI-D-15-0304.1, 2016.
Deser, C., Phillips, A. S., Simpson, I. R., Rosenbloom, N., Coleman, D.,
Lehner, F., Pendergrass, A., DiNezio, P., and Stevenson, S.: Isolating the
Evolving Contributions of Anthropogenic Aerosols and Greenhouse Gases: A New
CESM1 Large Ensemble Community Resource, J. Climate, 33, 7835–7858,
https://doi.org/10.1175/JCLI-D-20-0123.1, 2020.
Dole, R., Hoerling, M., Perlwitz, J., Eischeid, J., Pegion, P., Zhang, T.,
Quan, X.-W., Xu, T., and Murray, D.: Was there a basis for anticipating the
2010 Russian heat wave?, Geophys. Res. Lett., 38, L06702,
https://doi.org/10.1029/2010GL046582, 2011.
Drouard, M. and Woollings, T.: Contrasting mechanisms of summer blocking
over western Eurasia, Geophys. Res. Lett., 45, 12040–12048,
https://doi.org/10.1029/2018GL079894, 2018.
Dunn, R. J. H., Alexander, L. V., Donat, M. G., Zhang, X., Bador, M.,
Herold, N., Lippmann, T., Allan, R., Aguilar, E., Barry, A. A., Brunet, M., Caesar, J., Chagnaud, G., Cheng, V., Cinco, T., Durre, I., de Guzman, R., Htay, T. M., Ibadullah, W. M. W., Bin Ibrahim, M. K. I., Khoshkam, M., Kruger, A., Kubota, H., Leng, T. W., Lim, G., Li-Sha, L., Marengo, J., Mbatha, S., McGree, S., Menne, M., de los Milagros Skansi, M., Ngwenya, S., Nkrumah, F., Oonariya, C., Pabon-Caicedo, J. D., Panthou, G., Pham, C., Rahimzadeh, F., Ramos, A., Salgado, E., Salinger, J., Sané, Y., Sopaheluwakan, A., Srivastava, A., Sun, Y., Timbal, B., Trachow, N., Trewin, B., van der Schrier, G., Vazquez-Aguirre, J., Vasquez, R., Villarroel, C., Vincent, L., Vischel, T., Vose, R., and Bin Hj Yussof M. N.'A.: Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3, J. Geophys. Res.-Atmos., 125, e2019JD032263,
https://doi.org/10.1029/2019JD032263, 2020.
Gillett, N. P., Shiogama, H., Funke, B., Hegerl, G., Knutti, R., Matthes, K., Santer, B. D., Stone, D., and Tebaldi, C.: The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6, Geosci. Model Dev., 9, 3685–3697, https://doi.org/10.5194/gmd-9-3685-2016, 2016.
Gong, H., Wang, L., Chen, W., and Wu, R.: Attribution of the East Asian
Winter Temperature Trends During 1979–2018: Role of External Forcing and
Internal Variability, Geophys. Res. Lett., 46, 10874–10881,
https://doi.org/10.1029/2019GL084154, 2019.
Guan, X., Huang, J., Guo, R., and Pu, L.: The role of dynamically induced
variability in the recent warming trend slowdown over the Northern
Hemisphere, Sci. Rep., 5, 12669, https://doi.org/10.1038/srep12669, 2015.
Guo, Y., Gasparrini, A., Li, S., Sera, F., Vicedo-Cabrera, A. M., de Sousa Zanotti Stagliorio Coelho, M., Nascimento Saldiva, P. H., Lavigne, E., Tawatsupa, B., Punnasiri, K., Overcenco, A., Correa, P. M., Valdes Ortega, N., Kan, H., Osorio, S., Jaakkola, J. J. K., Ryti, N. R. I., Goodman, P. G., Zeka, A., Michelozzi, P., Scortichini, M., Hashizume, M., Honda, Y., Seposo, X., Kim, H., Tobias, A., Íñiguez, C., Forsberg, B., Åström, D. O., Guo, Y. L., Chen, B.-Y., Zanobetti, A., Schwartz, J., Dang, T. N., Van, D. D., Bell, M. L., Armstrong, B., Ebi, K. L., and Tong, S.: Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry time series modelling study, PLOS Med., 15, e1002629, https://doi.org/10.1371/journal.pmed.1002629, 2018.
Guo, R., Deser, C., Terray, L., and Lehner, F.: Human influence on winter
precipitation trends (1921–2015) over North America and Eurasia revealed by
dynamical adjustment, Geophys. Res. Lett., 46, 3426–3434, https://doi.org/10.1029/2018GL081316, 2019.
Hawkins, E., Frame, D., Harrington, L., Joshi, M., King, A., Rojas, M., and
Sutton, R.: Observed emergence of the climate change signal: From the
familiar to the unknown, Geophys. Res. Lett., 47, e2019GL086259, https://doi.org/10.1029/2019GL086259, 2020.
Hegerl, G. and Zwiers, F.: Use of models in detection and attribution of climate change, WIREs Clim. Change, 2, 570–591, https://doi.org/10.1002/wcc.121, 2011.
Horton, D., Johnson, N., Singh, D., Swain, D. L., Rajaratnam, B., and
Diffenbaugh, N. S.: Contribution of changes in atmospheric circulation
patterns to extreme temperature trends, Nature, 522, 465–469,
https://doi.org/10.1038/nature14550, 2015.
Hurrell, J. W.: Decadal trends in the north-atlantic oscillation: Regional
temperatures and precipitation, Science, 269, 676–679,
https://doi.org/10.1126/science.269.5224.676, 1995.
Jahn, M.: Economics of extreme weather events: Terminology and regional
impact models, Weather Clim. Extrem., 10, 29–39,
https://doi.org/10.1016/j.wace.2015.08.005, 2015.
Jézéquel, A., Cattiaux, J., Naveau, P., Radanovics, S., Ribes, A.,
Vautard, R., Vrac, M. and Yiou, P.: Trends of atmospheric circulation during
singular hot days in Europe, Environ. Res. Lett., 13, 054007, https://doi.org/10.1088/1748-9326/aab5da, 2018.
Jézéquel, A., Bevacqua, E., d'Andrea, F., Thao, S., Vautard, R.,
Vrac, M., and Yiou, P.: Conditional and residual trends of singular hot days
in Europe Environ. Res. Lett., 15, 064018, https://doi.org/10.1088/1748-9326/ab76dd, 2020.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, 1996.
Lehner, F., Deser, C., and Terray, L.: Toward a New Estimate of “Time of
Emergence” of Anthropogenic Warming: Insights from Dynamical Adjustment and
a Large Initial-Condition Model Ensemble, J. Climate, 30, 7739–7756,
https://doi.org/10.1175/JCLI-D-16-0792.1, 2017.
Lehner, F., Deser, C., Simpson, I., and Terray, L.: Attributing the US
Southwest's recent shift into drier conditions. Geophys. Res. Lett., 45, 6251–6261, https://doi.org/10.1029/2018GL078312, 2018.
Lloyd, E. A. and Shepherd, T. G.: Environmental catastrophes, climate change,
and attribution, Ann. N. Y. Acad. Sci., 1469, 105–124, https://doi.org/10.1111/nyas.14308, 2020.
McCarthy, G., Frajka-Williams, E., Johns, W. E., Baringer, M. O., Meinen, C. S., Bryden, H. L., Rayner, D., Duchez, A., Roberts, C., and Cunningham, S. A.: Observed interannual variability of the Atlantic meridional overturning circulation at 26.5∘ N. Geophys. Res. Lett., 39, L19609, https://doi.org/10.1029/2012GL052933, 2012.
Meredith, E., Semenov, V., Maraun, D., Park, W., and Chernokulsky, A.V.: Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation extreme, Nat. Geosci., 8, 615–619, https://doi.org/10.1038/ngeo2483, 2015.
Merrifield, A., Lehner, F., Xie, S.-P., and Deser, C.: Removing circulation
effects to assess central U.S. land-atmosphere interactions in the CESM
Large Ensemble. Geophys. Res. Lett., 44, 9938–9946, https://doi.org/10.1002/2017GL074831, 2017.
Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C., and de Arellano, J.
V.-G.: Mega-heatwave temperatures due to combined soil desiccation and
atmospheric heat accumulation, Nat. Geosci., 7, 345–349,
https://doi.org/10.1038/NGEO2141, 2014.
Naveau, P., Hannart, A., and Ribes, A.: Statistical Methods for Extreme
Event Attribution in Climate Science, Annu. Rev. Stat. Appl., 7, 89–110, 2020.
O'Reilly, C. H., Woollings, T., and Zanna, L.: The dynamical influence of
the Atlantic multidecadal oscillation on continental climate, J. Climate,
30, 7213–7230, https://doi.org/10.1175/JCLI-D-16-0345.1, 2017.
Osborn, T. J.: Winter 2009/2010 temperatures and a record-breaking North
Atlantic Oscillation index. Weather, 66, 19–21, https://doi.org/10.1002/wea.660, 2011.
Otto, F. E. L.: Attribution of Weather and Climate Events, Annu. Rev. Environ. Resour., 42, 627–646, https://doi.org/10.1146/annurev-environ-102016-060847, 2017.
Otto, F. E. L., Massey, N., van Oldenborgh, G. J., Jones, R. G., and Allen,
M. R.: Reconciling two approaches to attribution of the 2010 Russian heat
wave, Geophys. Res. Lett., 39, L04702, https://doi.org/10.1029/2011GL050422, 2012.
Pfahl, S., and Wernli, H.: Quantifying the relevance of atmospheric blocking
for co-located temperature extremes in the Northern Hemisphere on
(sub-)daily time scales, Geophys. Res. Lett., 39, L12807,
https://doi.org/10.1029/2012GL052261, 2012.
Quinting, J. F. and Reeder, M. J.: Southeastern Australian Heat Waves from
a Trajectory Viewpoint, Mon. Weather Rev., 145, 4109–4125, https://doi.org/10.1175/MWR-D-17-0165.1, 2017.
Robine, J.-M., Cheung, S. L. K., Le Roy, S., Van Oyen, H., Griffiths, C.,
Michel, J.-P., and Herrmann, F. R.: Death toll exceeded 70 000 in Europe
during the summer of 2003, C. R. Biol., 331, 171–178,
https://doi.org/10.1016/j.crvi.2007.12.001, 2008.
Rohde, R., Muller, A., Jacobsen, R., Muller, E., Perlmutter. S., Rosenfeld, A., Wurtele, J., Groom, D., and Wickham, C.: A New
Estimate of the Average Earth Surface Land Temperature Spanning 1753 to
2011, Geoinfor. Geostat.: An Overview, 1, 20–100, https://doi.org/10.4172/2327-4581.1000101, 2013.
Saffioti, C., Fischer, E. M., Scherrer, S. C., and Knutti, R.: Reconciling
observed and modelled temperature and precipitation trends over Europe by
adjusting for circulation variability, Geophys. Res. Lett., 43, 8189–8198,
2016.
Sato, T. and Nakamura, T.: Intensification of hot Eurasian summers by climate
change and land–atmosphere interactions, Sci. Rep., 9, 10866, https://doi.org/10.1038/s41598-019-47291-5, 2019.
Schär, C. and Kröner, N.: Sequential Factor Separation for the Analysis of Numerical Model Simulations, J. Atmos. Sci., 74, 1471–1484, doi.org/10.1175/JAS-D-16-0284.1, 2017.
Schneidereit, A., Schubert, S., Vargin, P., Lunkeit, F., Zhu, X., Peters,
D., and Fraedrich, K.: Large scale flow and the long-lasting blocking high
over Russia: Summer 2010, Mon. Weather Rev., 140, 2967–2981, https://doi.org/10.1175/MWR-D-11-00249.1, 2012.
Shaltout, M. and Omstedt, A.: Recent sea surface temperature trends and future scenarios for the Mediterranean Sea, Oceanologia, 56, 411–443,
https://doi.org/10.5697/oc.56-3.411, 2014.
Shepherd, T. G.: A common framework for approaches to extreme event
attribution, Curr. Clim. Change Rep., 2, 28–38, 2016.
Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Dessai, S., Dima-West, I. M., Fowler, H. J., James, R., Maraun, D., Martius, O., Senior, C. A., Sobel, A. H., Stainforth, D. A., Tett, S. F. B., Trenberth, K. E., van den Hurk, B. J. J. M., Watkins, N. W., Wilby, R. L., and Zenghelis, D. A.: Storylines: an alternative approach to representing uncertainty in physical aspects of climate change, Climatic Change, 151, 555–571, https://doi.org/10.1007/s10584-018-2317-9, 2018.
Sippel, S., Meinshausen, N., Merrifield, A., Lehner, F., Pendergrass, A. G.,
Fischer, E. M., and Knutti, R.: Uncovering the forced climate response from
a single ensemble member using statistical learning, J. Climate, 32,
5677–5699, https://doi.org/10.1175/JCLI-D-18-0882.1, 2019.
Slivinski, L. C., Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang,
X. L., Woodruff, S. D., Worley, S. J.: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth
Century Reanalysis system, Q. J. R. Meteorol. Soc., 145, 2876–2908,
https://doi.org/10.1002/qj.3598, 2019.
Smoliak, B. V., Wallace, J. M., Lin, P., and Fu, Q.: Dynamical adjustment of the Northern Hemisphere surface air temperature field: Methodology and
application to observations, J. Climate, 28, 1613–1629, 2015.
Sonnewald, M., Hirschi, J. J.-M., Marsh, R., McDonagh, E. L., and King, B. A.: Atlantic meridional ocean heat transport at 26∘ N: impact on subtropical ocean heat content variability, Ocean Sci., 9, 1057–1069, https://doi.org/10.5194/os-9-1057-2013, 2013.
Squintu, A. A., van der Schrier, G., Brugnara, Y., and Klein Tank, A.:
Homogenization of daily temperature series in the European Climate
Assessment [data set], Int. J. Climatol., 39, 1243–1261,
https://doi.org/10.1002/joc.5874, 2019.
Stillman, J. H.: Heat Waves, the New Normal: Summertime Temperature Extremes
Will Impact Animals, Ecosystems, and Human Communities, Physiology, 34,
86–100, https://doi.org/10.1152/physiol.00040.2018, 2019.
Stott, P. A., Stone, D. A., and Allen, M. R.: Human contribution to the
European heatwave of 2003, Nature, 432, 610–613, 2004.
Stott, P. A., Christidis, N., Otto, F. E. L., Sun, Y., Vanderlinden, J.-P., van Oldenborgh, G. J., Vautard, R., von Storch, H., Walton, P., Yiou, P., and Zwiers, F. W.: Attribution of extreme weather and climate-related events, WIREs Clim. Change, 7, 23–41, 2016.
Sutton, R. T. and Dong, B.: Atlantic Ocean influence on a shift in
European climate in the 1990s, Nat. Geosci., 5, 788–792,
https://doi.org/10.1038/ngeo1595, 2012.
terrayl: terrayl/Dynamico: Dynamico version v1.0.0 (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.5584777, 2021.
van Garderen, L., Feser, F., and Shepherd, T. G.: A methodology for attributing the role of climate change in extreme events: a global spectrally nudged storyline, Nat. Hazards Earth Syst. Sci., 21, 171–186, https://doi.org/10.5194/nhess-21-171-2021, 2021.
Vautard, R., Yiou, P., Otto, F., Stott, P., Christidis, N., van Oldenborgh,
G. J., and Schaller, N.: Attribution of human-induced dynamical and
thermodynamical contributions in extreme weather events, Environ. Res. Lett.
11, 114009, 2016.
Wallace, J. M., Fu Q., Smoliak, B. V., Lin, P., and Johanson, C. M.:
Simulated versus observed patterns of warming over the extratropical
Northern Hemisphere continents during the cold season, Proc. Natl. Acad.
Sci., 109, 14337–14342, 2012.
Wang, C., Liu, H., and Lee, S.-K.: The record-breaking cold temperatures
during the winter of 2009/2010 in the Northern Hemisphere, Atmos. Sci. Lett.,
11, 161–168, https://doi.org/10.1002/asl.278, 2010.
Wehrli, K., Guillod, B. P., Hauser, M., Leclair, M., and Seneviratne, S.
I.: Identifying key driving processes of major recent heat waves, J. Geophys. Res.-Atmos., 124, 11746–11765, https://doi.org/10.1029/2019JD030635, 2019.
Woollings, T., Papritz, L., Mbengue, C., and Spengler, T.: Diabatic heating
and jet stream shifts: A case study of the 2010 negative North Atlantic
Oscillation winter, Geophys. Res. Lett., 43, 9994–10002,
https://doi.org/10.1002/2016GL070146, 2016.
Short summary
Attribution of the causes of extreme temperature events has become active research due to the wide-ranging impacts of recent heat waves and cold spells. Here we show that a purely observational approach based on atmospheric circulation analogues and resampling provides a robust quantification of the various dynamic and thermodynamic contributions to specific extreme temperature events. The approach can easily be integrated in the toolbox of any real-time extreme event attribution system.
Attribution of the causes of extreme temperature events has become active research due to the...