Articles | Volume 2, issue 4
Weather Clim. Dynam., 2, 971–989, 2021
https://doi.org/10.5194/wcd-2-971-2021
Weather Clim. Dynam., 2, 971–989, 2021
https://doi.org/10.5194/wcd-2-971-2021

Research article 25 Oct 2021

Research article | 25 Oct 2021

A dynamical adjustment perspective on extreme event attribution

Laurent Terray

Related authors

Impact of increased resolution on long-standing biases in HighResMIP-PRIMAVERA climate models
Eduardo Moreno-Chamarro, Louis-Philippe Caron, Saskia Loosveldt Tomas, Javier Vegas-Regidor, Oliver Gutjahr, Marie-Pierre Moine, Dian Putrasahan, Christopher D. Roberts, Malcolm J. Roberts, Retish Senan, Laurent Terray, Etienne Tourigny, and Pier Luigi Vidale
Geosci. Model Dev., 15, 269–289, https://doi.org/10.5194/gmd-15-269-2022,https://doi.org/10.5194/gmd-15-269-2022, 2022
Short summary
Northern Hemisphere blocking simulation in current climate models: evaluating progress from the Climate Model Intercomparison Project Phase 5 to 6 and sensitivity to resolution
Reinhard Schiemann, Panos Athanasiadis, David Barriopedro, Francisco Doblas-Reyes, Katja Lohmann, Malcolm J. Roberts, Dmitry V. Sein, Christopher D. Roberts, Laurent Terray, and Pier Luigi Vidale
Weather Clim. Dynam., 1, 277–292, https://doi.org/10.5194/wcd-1-277-2020,https://doi.org/10.5194/wcd-1-277-2020, 2020
Short summary
Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution
Laurent Bessières, Stéphanie Leroux, Jean-Michel Brankart, Jean-Marc Molines, Marie-Pierre Moine, Pierre-Antoine Bouttier, Thierry Penduff, Laurent Terray, Bernard Barnier, and Guillaume Sérazin
Geosci. Model Dev., 10, 1091–1106, https://doi.org/10.5194/gmd-10-1091-2017,https://doi.org/10.5194/gmd-10-1091-2017, 2017
Short summary

Related subject area

Other aspects of weather and climate dynamics
A characterisation of Alpine mesocyclone occurrence
Monika Feldmann, Urs Germann, Marco Gabella, and Alexis Berne
Weather Clim. Dynam., 2, 1225–1244, https://doi.org/10.5194/wcd-2-1225-2021,https://doi.org/10.5194/wcd-2-1225-2021, 2021
Short summary
Intraseasonal variability of ocean surface wind waves in the western South Atlantic: the role of cyclones and the Pacific South American pattern
Dalton K. Sasaki, Carolina B. Gramcianinov, Belmiro Castro, and Marcelo Dottori
Weather Clim. Dynam., 2, 1149–1166, https://doi.org/10.5194/wcd-2-1149-2021,https://doi.org/10.5194/wcd-2-1149-2021, 2021
Short summary
The signature of the tropospheric gravity wave background in observed mesoscale motion
Claudia Christine Stephan and Alexis Mariaccia
Weather Clim. Dynam., 2, 359–372, https://doi.org/10.5194/wcd-2-359-2021,https://doi.org/10.5194/wcd-2-359-2021, 2021
Short summary
Increasing frequency in off-season tropical cyclones and its relation to climate variability and change
José J. Hernández Ayala and Rafael Méndez-Tejeda
Weather Clim. Dynam., 1, 745–757, https://doi.org/10.5194/wcd-1-745-2020,https://doi.org/10.5194/wcd-1-745-2020, 2020
Short summary

Cited articles

Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M., and Garcia-Herrera, R.: The hot summer of 2010: Redrawing the temperature record map of Europe, Science, 332, 220–224, https://doi.org/10.1126/science.1201224, 2011. 
Buchan, J., Hirschi, J. J., Blaker, A. T., and Sinha, B.: North Atlantic SST Anomalies and the Cold North European Weather Events of Winter 2009/10 and December 2010, Mon. Wea. Rev., 142, 922–932, https://doi.org/10.1175/MWR-D-13-00104.1, 2014 
Bulygina, O. N., Razuvaev, V. N., and Korshunova, N. N.: Changes in snow cover over Northern Eurasia in the last few decades, Environ. Res. Lett., 4, 045026, 2009. 
Bulygina, O. N., Groisman, P. Y., Razuvaev, V. N., and Korshunova, N. N.: Changes in snow cover characteristics over Northern Eurasia since 1966, Environ. Res. Lett., 6, 045204, 2011. 
Caesar, J., Alexander, L., and Vose, R.: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set, J. Geophys. Res., 111, D05101, https://doi.org/10.1029/2005JD006280, 2006. 
Download
Short summary
Attribution of the causes of extreme temperature events has become active research due to the wide-ranging impacts of recent heat waves and cold spells. Here we show that a purely observational approach based on atmospheric circulation analogues and resampling provides a robust quantification of the various dynamic and thermodynamic contributions to specific extreme temperature events. The approach can easily be integrated in the toolbox of any real-time extreme event attribution system.