Articles | Volume 5, issue 3
https://doi.org/10.5194/wcd-5-1031-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-5-1031-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of mid-latitude sea surface temperature fronts on the atmospheric water cycle and storm track activity
Fumiaki Ogawa
CORRESPONDING AUTHOR
Research Center for Advanced Science and Technology, University of Tokyo, Meguro, Japan
Faculty of Science, Hokkaido University, Sapporo, Japan
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Thomas Spengler
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Related authors
No articles found.
Chris Weijenborg and Thomas Spengler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3404, https://doi.org/10.5194/egusphere-2024-3404, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
The swift succession of storms, referred to as cyclone clustering, is often associated with weather extremes. We introduce a detection scheme for these events and subdivide these into two types. One type is associated with storms that follow each other in space, whereas the other type requires a proximity over time. Cyclone clustering is more frequent during winter and the first type is associated with stronger storms, suggesting that the two types emerge due to different mechanisms.
Henrik Auestad, Clemens Spensberger, Andrea Marcheggiani, Paulo Ceppi, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 5, 1269–1286, https://doi.org/10.5194/wcd-5-1269-2024, https://doi.org/10.5194/wcd-5-1269-2024, 2024
Short summary
Short summary
Latent heating due to condensation can influence atmospheric circulation by strengthening or weakening horizontal temperature contrasts. Strong temperature contrasts intensify storms and imply the existence of strong upper tropospheric winds called jets. It remains unclear whether latent heating preferentially reinforces or abates the existing jet. We show that this disagreement is attributable to how the jet is defined, confirming that latent heating reinforces the jet.
Clemens Spensberger, Kjersti Konstali, and Thomas Spengler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1709, https://doi.org/10.5194/egusphere-2024-1709, 2024
Short summary
Short summary
The transport of moisture from warmer and moister towards colder and drier regions mainly occurs in brief and narrow. In the mid-latitudes, such bursts are generally referred to as atmospheric rivers, in the Arctic they are often referred to as warm moist intrusions. We introduce a new definition to identify such bursts which is based primarily on their elongated structure. With this more general definition, we show that bursts in moisture transport occur frequently across all climate zones.
Christiane Duscha, Juraj Pálenik, Thomas Spengler, and Joachim Reuder
Atmos. Meas. Tech., 16, 5103–5123, https://doi.org/10.5194/amt-16-5103-2023, https://doi.org/10.5194/amt-16-5103-2023, 2023
Short summary
Short summary
We combine observations from two scanning Doppler lidars to obtain new and unique insights into the dynamic processes inherent to atmospheric convection. The approach complements and enhances conventional methods to probe convection and has the potential to substantially deepen our understanding of this complex process, which is crucial to improving our weather and climate models.
Andrea Marcheggiani and Thomas Spengler
Weather Clim. Dynam., 4, 927–942, https://doi.org/10.5194/wcd-4-927-2023, https://doi.org/10.5194/wcd-4-927-2023, 2023
Short summary
Short summary
There is a gap between the theoretical understanding and model representation of moist diabatic effects on the evolution of storm tracks. We seek to bridge this gap by exploring the relationship between diabatic and adiabatic contributions to changes in baroclinicity. We find reversed behaviours in the lower and upper troposphere in the maintenance of baroclinicity. In particular, our study reveals a link between higher moisture availability and upper-tropospheric restoration of baroclinicity.
Stephen Outten, Camille Li, Martin P. King, Lingling Suo, Peter Y. F. Siew, Hoffman Cheung, Richard Davy, Etienne Dunn-Sigouin, Tore Furevik, Shengping He, Erica Madonna, Stefan Sobolowski, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 4, 95–114, https://doi.org/10.5194/wcd-4-95-2023, https://doi.org/10.5194/wcd-4-95-2023, 2023
Short summary
Short summary
Strong disagreement exists in the scientific community over the role of Arctic sea ice in shaping wintertime Eurasian cooling. The observed Eurasian cooling can arise naturally without sea-ice loss but is expected to be a rare event. We propose a framework that incorporates sea-ice retreat and natural variability as contributing factors. A helpful analogy is of a dice roll that may result in cooling, warming, or anything in between, with sea-ice loss acting to load the dice in favour of cooling.
Tim Woollings, Camille Li, Marie Drouard, Etienne Dunn-Sigouin, Karim A. Elmestekawy, Momme Hell, Brian Hoskins, Cheikh Mbengue, Matthew Patterson, and Thomas Spengler
Weather Clim. Dynam., 4, 61–80, https://doi.org/10.5194/wcd-4-61-2023, https://doi.org/10.5194/wcd-4-61-2023, 2023
Short summary
Short summary
This paper investigates large-scale atmospheric variability in polar regions, specifically the balance between large-scale turbulence and Rossby wave activity. The polar regions are relatively more dominated by turbulence than lower latitudes, but Rossby waves are found to play a role and can even be triggered from high latitudes under certain conditions. Features such as cyclone lifetimes, high-latitude blocks, and annular modes are discussed from this perspective.
Clemens Spensberger, Trond Thorsteinsson, and Thomas Spengler
Geosci. Model Dev., 15, 2711–2729, https://doi.org/10.5194/gmd-15-2711-2022, https://doi.org/10.5194/gmd-15-2711-2022, 2022
Short summary
Short summary
In order to understand the atmosphere, we rely on a hierarchy of models ranging from very simple to very complex. Comparing different steps in this hierarchy usually entails comparing different models. Here we combine two such steps that are commonly used in one modelling framework. This makes comparisons both much easier and much more direct.
Leonidas Tsopouridis, Thomas Spengler, and Clemens Spensberger
Weather Clim. Dynam., 2, 953–970, https://doi.org/10.5194/wcd-2-953-2021, https://doi.org/10.5194/wcd-2-953-2021, 2021
Short summary
Short summary
Comparing simulations with realistic and smoothed SSTs, we find that the intensification of individual cyclones in the Gulf Stream and Kuroshio regions is only marginally affected by reducing the SST gradient. In contrast, we observe a reduced cyclone activity and a shift in storm tracks. Considering differences of the variables occurring within/outside of a radius of any cyclone, we find cyclones to play only a secondary role in explaining the mean states differences among the SST experiments.
Kristine Flacké Haualand and Thomas Spengler
Weather Clim. Dynam., 2, 695–712, https://doi.org/10.5194/wcd-2-695-2021, https://doi.org/10.5194/wcd-2-695-2021, 2021
Short summary
Short summary
Given the recent focus on the influence of upper tropospheric structure in wind and temperature on midlatitude weather, we use an idealised model to investigate how structural modifications impact cyclone development. We find that cyclone intensification is less sensitive to these modifications than to changes in the amount of cloud condensation, suggesting that an accurate representation of the upper-level troposphere is less important for midlatitude weather than previously anticipated.
Patrick Johannes Stoll, Thomas Spengler, Annick Terpstra, and Rune Grand Graversen
Weather Clim. Dynam., 2, 19–36, https://doi.org/10.5194/wcd-2-19-2021, https://doi.org/10.5194/wcd-2-19-2021, 2021
Short summary
Short summary
Polar lows are intense meso-scale cyclones occurring at high latitudes. The research community has not agreed on a conceptual model to describe polar-low development. Here, we apply self-organising maps to identify the typical ambient sub-synoptic environments of polar lows and find that they can be described as moist-baroclinic cyclones that develop in four different environments characterised by the vertical wind shear.
Related subject area
Links between the atmospheric water cycle and weather systems
Dynamic and thermodynamic contribution to the October 2019 exceptional rainfall in western central Africa
Impact of precipitation mass sinks on midlatitude storms in idealized simulations across a wide range of climates
The monthly evolution of precipitation and warm conveyor belts during the central southwest Asia wet season
Exploring hail and lightning diagnostics over the Alpine-Adriatic region in a km-scale climate model
Model-simulated hydroclimate in the East Asian summer monsoon region during past and future climate: a pilot study with a moisture source perspective
Lagrangian formation pathways of moist anomalies in the trade-wind region during the dry season: two case studies from EUREC4A
A numerical study to investigate the roles of former Hurricane Leslie, orography and evaporative cooling in the 2018 Aude heavy-precipitation event
High-resolution stable isotope signature of a land-falling atmospheric river in southern Norway
Atmospheric convergence zones stemming from large-scale mixing
The role of air–sea fluxes for the water vapour isotope signals in the cold and warm sectors of extratropical cyclones over the Southern Ocean
Extreme wet seasons – their definition and relationship with synoptic-scale weather systems
Attribution of precipitation to cyclones and fronts over Europe in a kilometer-scale regional climate simulation
An attempt to explain recent changes in European snowfall extremes
Kevin Kenfack, Francesco Marra, Zéphirin Yepdo Djomou, Lucie Angennes Djiotang Tchotchou, Alain Tchio Tamoffo, and Derbetini Appolinaire Vondou
Weather Clim. Dynam., 5, 1457–1472, https://doi.org/10.5194/wcd-5-1457-2024, https://doi.org/10.5194/wcd-5-1457-2024, 2024
Short summary
Short summary
The results of this study show that moisture advection induced by horizontal wind anomalies and vertical moisture advection induced by vertical velocity anomalies were crucial mechanisms behind the anomalous October 2019 exceptional rainfall increase over western central Africa. The information we derive can be used to support risk assessment and management in the region and to improve our resilience to ongoing climate change.
Tristan H. Abbott and Paul A. O'Gorman
Weather Clim. Dynam., 5, 17–41, https://doi.org/10.5194/wcd-5-17-2024, https://doi.org/10.5194/wcd-5-17-2024, 2024
Short summary
Short summary
Atmospheric models often neglect the mass sink from precipitation fallout, but a small number of modeling studies suggest that this mass sink may intensify storms. We provide evidence, using simulations and theory, that precipitation mass sinks have little systematic effect on storm intensity unless exaggerated by an order of magnitude. This result holds even in very warm climates with very heavy rainfall and helps to justify the neglect of precipitation mass sinks in atmospheric models.
Melissa Leah Breeden, Andrew Hoell, John Robert Albers, and Kimberly Slinski
Weather Clim. Dynam., 4, 963–980, https://doi.org/10.5194/wcd-4-963-2023, https://doi.org/10.5194/wcd-4-963-2023, 2023
Short summary
Short summary
We compare the month-to-month evolution of daily precipitation over central southwest Asia (CSWA), a data-sparse, food-insecure area prone to drought and flooding. The seasonality of CSWA precipitation aligns with the seasonality of warm conveyor belts (WCBs), the warm, rapidly ascending airstreams associated with extratropical storms, most common from February–April. El Niño conditions are related to more WCBs and precipitation and La Niña conditions the opposite, except in January.
Ruoyi Cui, Nikolina Ban, Marie-Estelle Demory, Raffael Aellig, Oliver Fuhrer, Jonas Jucker, Xavier Lapillonne, and Christoph Schär
Weather Clim. Dynam., 4, 905–926, https://doi.org/10.5194/wcd-4-905-2023, https://doi.org/10.5194/wcd-4-905-2023, 2023
Short summary
Short summary
Our study focuses on severe convective storms that occur over the Alpine-Adriatic region. By running simulations for eight real cases and evaluating them against available observations, we found our models did a good job of simulating total precipitation, hail, and lightning. Overall, this research identified important meteorological factors for hail and lightning, and the results indicate that both HAILCAST and LPI diagnostics are promising candidates for future climate research.
Astrid Fremme, Paul J. Hezel, Øyvind Seland, and Harald Sodemann
Weather Clim. Dynam., 4, 449–470, https://doi.org/10.5194/wcd-4-449-2023, https://doi.org/10.5194/wcd-4-449-2023, 2023
Short summary
Short summary
We study the atmospheric moisture transport into eastern China for past, present, and future climate. Hence, we use different climate and weather prediction model data with a moisture source identification method. We find that while the moisture to first order originates mostly from similar regions, smaller changes consistently point to differences in the recycling of precipitation over land between different climates. Some differences are larger between models than between different climates.
Leonie Villiger, Heini Wernli, Maxi Boettcher, Martin Hagen, and Franziska Aemisegger
Weather Clim. Dynam., 3, 59–88, https://doi.org/10.5194/wcd-3-59-2022, https://doi.org/10.5194/wcd-3-59-2022, 2022
Short summary
Short summary
The coupling between the large-scale atmospheric circulation and the clouds in the trade-wind region is complex and not yet fully understood. In this study, the formation pathway of two anomalous cloud layers over Barbados during the field campaign EUREC4A is described. The two case studies highlight the influence of remote weather systems on the local environmental conditions in Barbados.
Marc Mandement and Olivier Caumont
Weather Clim. Dynam., 2, 795–818, https://doi.org/10.5194/wcd-2-795-2021, https://doi.org/10.5194/wcd-2-795-2021, 2021
Short summary
Short summary
On 14–15 October 2018, in the Aude department (France), a heavy-precipitation event produced up to about 300 mm of rain in 11 h. Simulations carried out show that the former Hurricane Leslie, while involved, was not the first supplier of moisture over the entire event. The location of the highest rainfall was primarily driven by the location of a quasi-stationary front and secondarily by the location of precipitation bands downwind of mountains bordering the Mediterranean Sea.
Yongbiao Weng, Aina Johannessen, and Harald Sodemann
Weather Clim. Dynam., 2, 713–737, https://doi.org/10.5194/wcd-2-713-2021, https://doi.org/10.5194/wcd-2-713-2021, 2021
Short summary
Short summary
High-resolution measurements of stable isotopes in near-surface vapour and precipitation show a
W-shaped evolution during a 24 h land-falling atmospheric river event in southern Norway. We distinguish contributions from below-cloud processes, weather system characteristics, and moisture source conditions during different stages of the event. Rayleigh distillation models need to be expanded by additional processes to accurately predict isotopes in surface precipitation from stratiform clouds.
Gabriel M. P. Perez, Pier Luigi Vidale, Nicholas P. Klingaman, and Thomas C. M. Martin
Weather Clim. Dynam., 2, 475–488, https://doi.org/10.5194/wcd-2-475-2021, https://doi.org/10.5194/wcd-2-475-2021, 2021
Short summary
Short summary
Much of the rainfall in tropical regions comes from organised cloud bands called convergence zones (CZs). These bands have hundreds of kilometers. In South America (SA), they cause intense rain for long periods of time. To study these systems, we need to define and identify them with computer code. We propose a definition of CZs based on the the pathways of air, selecting regions where air masses originated in separated regions meet. This method identifies important mechanisms of rain in SA.
Iris Thurnherr, Katharina Hartmuth, Lukas Jansing, Josué Gehring, Maxi Boettcher, Irina Gorodetskaya, Martin Werner, Heini Wernli, and Franziska Aemisegger
Weather Clim. Dynam., 2, 331–357, https://doi.org/10.5194/wcd-2-331-2021, https://doi.org/10.5194/wcd-2-331-2021, 2021
Short summary
Short summary
Extratropical cyclones are important for the transport of moisture from low to high latitudes. In this study, we investigate how the isotopic composition of water vapour is affected by horizontal temperature advection associated with extratropical cyclones using measurements and modelling. It is shown that air–sea moisture fluxes induced by this horizontal temperature advection lead to the strong variability observed in the isotopic composition of water vapour in the marine boundary layer.
Emmanouil Flaounas, Matthias Röthlisberger, Maxi Boettcher, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 2, 71–88, https://doi.org/10.5194/wcd-2-71-2021, https://doi.org/10.5194/wcd-2-71-2021, 2021
Short summary
Short summary
In this study we identify the wettest seasons globally and address their meteorological characteristics. We show that in different regions the wettest seasons occur in different times of the year and result from either unusually high frequencies of wet days and/or daily extremes. These high frequencies can be largely attributed to four specific weather systems, especially cyclones. Our analysis uses a thoroughly explained, novel methodology that could also be applied to climate models.
Stefan Rüdisühli, Michael Sprenger, David Leutwyler, Christoph Schär, and Heini Wernli
Weather Clim. Dynam., 1, 675–699, https://doi.org/10.5194/wcd-1-675-2020, https://doi.org/10.5194/wcd-1-675-2020, 2020
Short summary
Short summary
Most precipitation over Europe is linked to low-pressure systems, cold fronts, warm fronts, or high-pressure systems. Based on a massive computer simulation able to resolve thunderstorms, we quantify in detail how much precipitation these weather systems produced during 2000–2008. We find distinct seasonal and regional differences, such as fronts precipitating a lot in fall and winter over the North Atlantic but high-pressure systems mostly in summer over the continent by way of thunderstorms.
Davide Faranda
Weather Clim. Dynam., 1, 445–458, https://doi.org/10.5194/wcd-1-445-2020, https://doi.org/10.5194/wcd-1-445-2020, 2020
Short summary
Short summary
Despite the global temperature rise caused by anthropogenic emissions, we still observe heavy snowfalls that cause casualties, transport disruptions and energy supply problems. The goal of this paper is to investigate recent trends in snowfalls from reanalysis and observational datasets. The analysis shows an evident discrepancy between trends in average and extreme snowfalls. The latter can only be explained by looking at atmospheric circulation.
Cited articles
Bryan, F. and Oort, A.: Season Variation of the Global Water Balance Based on Aerological Data, J. Geophys. Res., 89, 11717–11730, 1984. a
Bui, H. and Spengler, T.: On the Influence of Sea Surface Temperature distributions on the Development of Extratropical Cyclones, J. Atmos. Sci., 78, 1173–1188, https://doi.org/10.1175/JAS-D-20-0137.1, 2021. a
Dey, K. and Döös, K.: The coupled ocean–atmosphere hydrologic cycle, Tellus A, 71, 1650413, https://doi.org/10.1080/16000870.2019.1650413, 2019. a, b
Emanuel, K. A.: A Scheme for Representing Cumulus Convection in Large-Scale Models, J. Atmos. Sci., 48, 2313–2329, https://doi.org/10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2, 1991. a
Enomoto, T., Kuwano-Yoshida, A., Komori, N., and Ohfuchi, W.: Description of AFES 2: Improvements for high- resolution and coupled simulations., High Resolution Numerical Modelling of the Atmosphere and Ocean, edited by: Kevin, H. and Wataru, O., Springer, 77–97, https://doi.org/10.1007/978-0-387-49791-4_5, 2008. a
Hartmann, D.: Global Physical Climatology, Elsevier Science, 2nd Edn., https://doi.org/10.1016/C2009-0-00030-0, 2016. a, b
Haualand, K. F. and Spengler, T.: Direct and Indirect Effects of Surface Fluxes on Moist Baroclinic Development in an Idealized Framework, J. Atmos. Sci., 77, 3211–3225, https://doi.org/10.1175/JAS-D-19-0328.1, 2020. a
Höjgård-Olsen, E., Brogniez, H., and Chepfer, H.: Observed Evolution of the Tropical Atmospheric Water Cycle with Sea Surface Temperature, J. Climate, 33, 3449–3470, 2020. a
Hotta, D. and Nakamura, H.: On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks, J. Climate, 24, 3377–3401, https://doi.org/10.1175/2010JCLI3910.1, 2011. a
Kuwano-Yoshida, A., Enomoto, T., and Ohfuchi, W.: An improved PDF cloud scheme for climate simulations., Q. J. Roy. Meteor. Soc., 136, 1583–1597, 2010. a
Le Trent, H. and Li, Z.-X.: Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties, Clim. Dynam., 5, 175–187, https://doi.org/10.1007/BF00251808, 1991. a
Lorenz, E. N.: Available Potential Energy and the Maintenance of the General Circulation, Tellus, 7, 157–167, https://doi.org/10.3402/tellusa.v7i2.8796, 1955. a, b
McTaggart-Cowan, R., Gyakum, J. R., and Moore, R. W.: The Baroclinic Moisture Flux, Mon. Weather Rev., 145, 25–47, https://doi.org/10.1175/MWR-D-16-0153.1, 2017. a, b
Neiman, P. J., Ralph, F. M., Wick, G. A., Lundquist, J., and Dettinger, M. D.: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations, J. Hydrometeorol., 9, 22–47, https://doi.org/10.1175/2007JHM855.1, 2008. a
Ogawa, F. and Spengler, T.: Output of sensitivity experiements by aqua-planet AGCM on the latitude and existence of SST front, NIRD Research data archive [data set], https://doi.org/10.11582/2020.00065, 2020. a
Ogawa, F., Nakamura, H., Nishii, K., Miyasaka, T., and Kuwano-Yoshida, A.: Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front, Geophys. Res. Lett., 35, L15709, https://doi.org/10.1029/2011GL049922, 2012. a, b, c, d, e, f, g
Ogawa, F., Omrani, N.-E., Nishii, K., Nakamura, H., and Keenlyside, N.: Ozone-induced climate change propped up by the Southern Hemisphere oceanic front, Geophys. Res. Lett., 42, 10056–10063, 2015. a
Ogawa, F., Nakamura, H., Nishii, K., Miyasaka, T., and Kuwano-Yoshida, A.: Importance of midlatitude oceanic frontal zones for the annular mode variability: Interbasin differences in the southern annular mode signature, J. Climate, 29, 6179–6199, https://doi.org/10.1175/JCLI-D-15-0885.1, 2016. a, b, c, d, e, f
Ohfuchi, W. Nakamura, H., Yoshioka, M., Enomoto, T., Takaya, K., Peng, X., Yamane, S., Nishimura, T., Kurihara, Y., and Ninomiya, K.: 10-km mesh meso-scale resolving global simulation of the atmosphere on the Earth Simulator – Preliminary outcome of AFES (AGCM for the Earth Simulator), J. Earth Simulator, 1, 8–34, 2004. a
Oki, T., Entekhabi, D., and Harrold, T. I.: The Global Water Cycle, vol. 150 of Geophysical Monograph Series, AGU, https://doi.org/10.1029/150GM18, 2004. a
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax, M. G.: Daily high-resolution-blended analyses for sea surface temperature, J. Climate, 20, 5473–5496, 2007. a
Schneider, T., O'Gorman, P. A., and Levine, Z. J.: Water vapor and the dynamics of climate changes, Rev. Geophys., 48, RG3001, https://doi.org/10.1029/2009RG000302, 2010. a
Seager, R., Naik, N., and Vecchi, G. A.: Thermodynamic and Dynamic Mechanisms for Large-Scale Changes in the Hydrological Cycle in Response to Global Warming, J. Climate, 23, 4651–4668, 2010. a
The NCAR Command Language: (Version 6.4.0), Boulder, Colorado: UCAR/NCAR/CISL/VETS [software], https://doi.org/10.5065/D6WD3XH5, 2017. a
Trenberth, K.: Changes in precipitation with climate change, Clim. Res., 47, 123–138, 2011. a
Trenberth, K., Smith, L., Qian, T., Dai, A., and Fasullo, J.: Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data, J. Hydrometeorol., 8, 758–769, 2007. a
Zhu, Y. and Newell, R. E.: A proposed algorithm for mois- ture fluxes from atmospheric rivers, Mon. Weather Rev., 126, 725–735, 1998. a
Short summary
The exchange of energy and moisture between the atmosphere and ocean is maximised along strong meridional contrasts in sea surface temperature, such as across the Gulf Stream and Kuroshio. We find that these strong meridional contrasts confine and determine the position of evaporation and precipitation, as well as storm occurrence and intensity. The general intensity of the water cycle and storm activity, however, is determined by the underlying absolute sea surface temperature.
The exchange of energy and moisture between the atmosphere and ocean is maximised along strong...