Articles | Volume 3, issue 2
Weather Clim. Dynam., 3, 429–448, 2022
https://doi.org/10.5194/wcd-3-429-2022
Weather Clim. Dynam., 3, 429–448, 2022
https://doi.org/10.5194/wcd-3-429-2022
Research article
05 Apr 2022
Research article | 05 Apr 2022

Future changes in North Atlantic winter cyclones in CESM-LE – Part 1: Cyclone intensity, potential vorticity anomalies, and horizontal wind speed

Edgar Dolores-Tesillos et al.

Related authors

Meteorological, Impact and Climate perspectives of the 29 June 2017 Heavy Precipitation Event in the Berlin Metropolitan Area
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-96,https://doi.org/10.5194/nhess-2022-96, 2022
Preprint under review for NHESS
Short summary
Atmospheric blocking and weather extremes over the Euro-Atlantic sector – a review
Lisa-Ann Kautz, Olivia Martius, Stephan Pfahl, Joaquim G. Pinto, Alexandre M. Ramos, Pedro M. Sousa, and Tim Woollings
Weather Clim. Dynam., 3, 305–336, https://doi.org/10.5194/wcd-3-305-2022,https://doi.org/10.5194/wcd-3-305-2022, 2022
Short summary
Stable water isotope signals in tropical ice clouds in the West African monsoon simulated with a regional convection-permitting model
Andries Jan de Vries, Franziska Aemisegger, Stephan Pfahl, and Heini Wernli
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-902,https://doi.org/10.5194/acp-2021-902, 2021
Revised manuscript accepted for ACP
Short summary
Disentangling different moisture transport pathways over the eastern subtropical North Atlantic using multi-platform isotope observations and high-resolution numerical modelling
Fabienne Dahinden, Franziska Aemisegger, Heini Wernli, Matthias Schneider, Christopher J. Diekmann, Benjamin Ertl, Peter Knippertz, Martin Werner, and Stephan Pfahl
Atmos. Chem. Phys., 21, 16319–16347, https://doi.org/10.5194/acp-21-16319-2021,https://doi.org/10.5194/acp-21-16319-2021, 2021
Short summary
Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments
Zhihong Zhuo, Ingo Kirchner, Stephan Pfahl, and Ulrich Cubasch
Atmos. Chem. Phys., 21, 13425–13442, https://doi.org/10.5194/acp-21-13425-2021,https://doi.org/10.5194/acp-21-13425-2021, 2021
Short summary

Related subject area

Role of atmospheric dynamics in climate change projections
Storm track response to uniform global warming downstream of an idealized sea surface temperature front
Sebastian Schemm, Lukas Papritz, and Gwendal Rivière
Weather Clim. Dynam., 3, 601–623, https://doi.org/10.5194/wcd-3-601-2022,https://doi.org/10.5194/wcd-3-601-2022, 2022
Short summary
Impact of climate change on wintertime European atmospheric blocking
Sara Bacer, Fatima Jomaa, Julien Beaumet, Hubert Gallée, Enzo Le Bouëdec, Martin Ménégoz, and Chantal Staquet
Weather Clim. Dynam., 3, 377–389, https://doi.org/10.5194/wcd-3-377-2022,https://doi.org/10.5194/wcd-3-377-2022, 2022
Short summary
Twenty-first-century Southern Hemisphere impacts of ozone recovery and climate change from the stratosphere to the ocean
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171, https://doi.org/10.5194/wcd-3-139-2022,https://doi.org/10.5194/wcd-3-139-2022, 2022
Short summary
Relationship between Southern Hemispheric jet variability and forced response: the role of the stratosphere
Philipp Breul, Paulo Ceppi, and Theodore Gordon Shepherd
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-78,https://doi.org/10.5194/wcd-2021-78, 2021
Revised manuscript accepted for WCD
Short summary
Future summer warming pattern under climate change is affected by lapse-rate changes
Roman Brogli, Silje Lund Sørland, Nico Kröner, and Christoph Schär
Weather Clim. Dynam., 2, 1093–1110, https://doi.org/10.5194/wcd-2-1093-2021,https://doi.org/10.5194/wcd-2-1093-2021, 2021
Short summary

Cited articles

Ahmadi-Givi, F., Graig, G., and Plant, R.: The dynamics of a midlatitude cyclone with very strong latent-heat release, Q. J. Roy. Meteorol. Soc., 130, 295–323, https://doi.org/10.1256/qj.02.226, 2004. a, b
Barnes, S. L. and Colman, B. R.: Quasigeostrophic diagnosis of cyclogenesis associated with a cutoff extratropical cyclone-The Christmas 1987 storm, Mon. Weather Rev., 121, 1613–1634, https://doi.org/10.1175/1520-0493(1993)121<1613:QDOCAW>2.0.CO;2, 1993. a
Bengtsson, L., Hodges, K. I., and Keenlyside, N.: Will extratropical storms intensify in a warmer climate?, J. Climate, 22, 2276–2301, https://doi.org/10.1175/2008JCLI2678.1, 2009. a, b
Bjerknes, J.: On the structure of moving cyclones, Mon. Weather Rev., 47, 95–99, https://doi.org/10.1175/1520-0493(1919)47<95:OTSOMC>2.0.CO;2, 1919. a
Bluestein, H. B.: Synoptic-dynamic Meteorology in Midlatitudes: Observations and theory of weather systems, Vol. 2, Taylor & Francis, ISBN: 0-19-506268-X, 198 Madison Avenue, New York, New York 10016-4314, 1992. a
Download
Short summary
Strong winds caused by extratropical cyclones represent a costly hazard for European countries. Here, based on CESM-LENS coupled climate simulations, we show that future changes of such strong winds are characterized by an increased magnitude and extended footprint southeast of the cyclone center. This intensification is related to a combination of increased diabatic heating and changes in upper-level wave dynamics.