Articles | Volume 1, issue 2
https://doi.org/10.5194/wcd-1-293-2020
https://doi.org/10.5194/wcd-1-293-2020
Research article
 | 
08 Jul 2020
Research article |  | 08 Jul 2020

Atmospheric blocking in an aquaplanet and the impact of orography

Veeshan Narinesingh, James F. Booth, Spencer K. Clark, and Yi Ming

Related authors

Influence of Storm Type on Compound Flood Hazard of a Mid-Latitude Coastal-Urban Environment
Ziyu Chen, Philip Orton, James Booth, Thomas Wahl, Arthur DeGaetano, Joel Kaatz, and Radley Horton
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-135,https://doi.org/10.5194/hess-2024-135, 2024
Preprint under review for HESS
Short summary
A multivariate statistical framework for mixed populations in compound flood analysis
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Andrew Jane, James F. Booth, Hanbeen Kim, and Gabriele Villarini
EGUsphere, https://doi.org/10.5194/egusphere-2024-1122,https://doi.org/10.5194/egusphere-2024-1122, 2024
Short summary
Tropical cyclone storm surge probabilities for the east coast of the United States: a cyclone-based perspective
Katherine L. Towey, James F. Booth, Alejandra Rodriguez Enriquez, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 22, 1287–1300, https://doi.org/10.5194/nhess-22-1287-2022,https://doi.org/10.5194/nhess-22-1287-2022, 2022
Short summary
Contribution of local and remote anthropogenic aerosols to a record-breaking torrential rainfall event in Guangdong Province, China
Zhen Liu, Yi Ming, Chun Zhao, Ngar Cheung Lau, Jianping Guo, Massimo Bollasina, and Steve Hung Lam Yim
Atmos. Chem. Phys., 20, 223–241, https://doi.org/10.5194/acp-20-223-2020,https://doi.org/10.5194/acp-20-223-2020, 2020
Short summary
Adverse effects of increasing drought on air quality via natural processes
Yuxuan Wang, Yuanyu Xie, Wenhao Dong, Yi Ming, Jun Wang, and Lu Shen
Atmos. Chem. Phys., 17, 12827–12843, https://doi.org/10.5194/acp-17-12827-2017,https://doi.org/10.5194/acp-17-12827-2017, 2017
Short summary

Related subject area

Dynamical processes in midlatitudes
Large-scale perspective on extreme near-surface winds in the central North Atlantic
Aleksa Stanković, Gabriele Messori, Joaquim G. Pinto, and Rodrigo Caballero
Weather Clim. Dynam., 5, 821–837, https://doi.org/10.5194/wcd-5-821-2024,https://doi.org/10.5194/wcd-5-821-2024, 2024
Short summary
Divergent convective outflow in ICON deep-convection-permitting and parameterised deep convection simulations
Edward Groot, Patrick Kuntze, Annette Miltenberger, and Holger Tost
Weather Clim. Dynam., 5, 779–803, https://doi.org/10.5194/wcd-5-779-2024,https://doi.org/10.5194/wcd-5-779-2024, 2024
Short summary
Changes in the North Atlantic Oscillation over the 20th century
Stephen Outten and Richard Davy
Weather Clim. Dynam., 5, 753–762, https://doi.org/10.5194/wcd-5-753-2024,https://doi.org/10.5194/wcd-5-753-2024, 2024
Short summary
Life cycle dynamics of Greenland blocking from a potential vorticity perspective
Seraphine Hauser, Franziska Teubler, Michael Riemer, Peter Knippertz, and Christian M. Grams
Weather Clim. Dynam., 5, 633–658, https://doi.org/10.5194/wcd-5-633-2024,https://doi.org/10.5194/wcd-5-633-2024, 2024
Short summary
Warm conveyor belt characteristics and impacts along the life cycle of extratropical cyclones: case studies and climatological analysis based on ERA5
Katharina Heitmann, Michael Sprenger, Hanin Binder, Heini Wernli, and Hanna Joos
Weather Clim. Dynam., 5, 537–557, https://doi.org/10.5194/wcd-5-537-2024,https://doi.org/10.5194/wcd-5-537-2024, 2024
Short summary

Cited articles

Abatzoglou, J. T. and Magnusdottir, G.: Planetary Wave Breaking and Nonlinear Reflection, J. Climate, 19, 6139–6152, https://doi.org/10.1175/JCLI3968.1, 2006. 
Barnes, E., Slingo, J., and Woollings, T.: A methodology for the comparison of blocking climatologies across indices, models and climate scenarios, Clim. Dynam., 38, 2467–2481, https://doi.org/10.1007/s00382-011-1243-6, 2012. 
Barriopedro, D., GarcÍa-Herrera, R., Lupo, A. R., and Hernández, E.: A Climatology of Northern Hemisphere Blocking, J. Climate, 19, 1042–1063, https://doi.org/10.1175/JCLI3678.1, 2006. 
Barriopedro, D., García-Herrera, R., and Trigo, R.: Application of blocking diagnosis methods to General Circulation Models. Part I: a novel detection scheme, Clim. Dynam., 35, 1373–1391, https://doi.org/10.1007/s00382-010-0767-5, 2010. 
Berggren, R., Bolin, B., and Rossby, C.-G.: An Aerological Study of Zonal Motion, its Perturbations and Break-down, Tellus, 1, 14–37, https://doi.org/10.3402/tellusa.v1i2.8501, 1949. 
Download
Short summary
This work investigates the influence of orography on atmospheric blocking dynamics, spatial frequency, and duration. Using an idealized model, a landless integration and integrations with mountains are analyzed. The dynamical evolution of blocking in the idealized model is found to be similar to reanalysis. Orography is found to significantly increase blocking and anchors where blocks most likely occur (i.e., just upstream from mountains and near storm track exits).