Articles | Volume 2, issue 2
https://doi.org/10.5194/wcd-2-413-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-2-413-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Zonal scale and temporal variability of the Asian monsoon anticyclone in an idealised numerical model
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
currently at: Meteorological Institute Munich, Ludwig Maximilian University of Munich, Munich, Germany
Peter Haynes
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
Related authors
Blanca Ayarzagüena, Amy H. Butler, Peter Hitchcock, Chaim I. Garfinkel, Zac D. Lawrence, Wuhan Ning, Philip Rupp, Zheng Wu, Hilla Afargan-Gerstman, Natalia Calvo, Álvaro de la Cámara, Martin Jucker, Gerbrand Koren, Daniel De Maeseneire, Gloria L. Manney, Marisol Osman, Masakazu Taguchi, Cory Barton, Dong-Chang Hong, Yu-Kyung Hyun, Hera Kim, Jeff Knight, Piero Malguzzi, Daniele Mastrangelo, Jiyoung Oh, Inna Polichtchouk, Jadwiga H. Richter, Isla R. Simpson, Seok-Woo Son, Damien Specq, and Tim Stockdale
EGUsphere, https://doi.org/10.5194/egusphere-2025-3611, https://doi.org/10.5194/egusphere-2025-3611, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Sudden Stratospheric Warmings (SSWs) are known to follow a sustained wave dissipation in the stratosphere, which depends on both the tropospheric and stratospheric states. However, the relative role of each state is still unclear. Using a new set of subseasonal to seasonal forecasts, we show that the stratospheric state does not drastically affect the precursors of three recent SSWs, but modulates the stratospheric wave activity, with impacts depending on SSW features.
Philip Rupp, Jonas Spaeth, Hilla Afargan-Gerstman, Dominik Büeler, Michael Sprenger, and Thomas Birner
Weather Clim. Dynam., 5, 1287–1298, https://doi.org/10.5194/wcd-5-1287-2024, https://doi.org/10.5194/wcd-5-1287-2024, 2024
Short summary
Short summary
We quantify the occurrence of strong synoptic storms as contributing about 20 % to the uncertainty of subseasonal geopotential height forecasts over northern Europe. We further show that North Atlantic storms are less frequent, weaker and shifted southward following sudden stratospheric warming events, leading to a reduction in northern European forecast uncertainty.
Felix Jäger, Philip Rupp, and Thomas Birner
Weather Clim. Dynam., 4, 49–60, https://doi.org/10.5194/wcd-4-49-2023, https://doi.org/10.5194/wcd-4-49-2023, 2023
Short summary
Short summary
Mid-latitude weather is dominated by the growth, breaking and decay of baroclinic waves and associated jet shifts. A way to study this process is via idealised life-cycle simulations, which are often classified as LC1 (anticyclonic breaking, poleward shift) or LC2 (cyclonic breaking, equatorward shift), depending on details of the initial state. We show that all systems exhibit predominantly anticyclonic character and poleward net shifts if multiple wave modes are allowed to grow simultaneously.
Philip Rupp and Thomas Birner
Weather Clim. Dynam., 2, 111–128, https://doi.org/10.5194/wcd-2-111-2021, https://doi.org/10.5194/wcd-2-111-2021, 2021
Short summary
Short summary
We use the simple framework of an idealised baroclinic life cycle to study the tropospheric eddy feedback to different stratospheric conditions and, hence, obtain insights into the fundamental processes of stratosphere–troposphere coupling – in particular, the processes involved in creating the robust equatorward shift in the tropospheric mid-latitude jet that has been observed following sudden stratospheric warming events.
Blanca Ayarzagüena, Amy H. Butler, Peter Hitchcock, Chaim I. Garfinkel, Zac D. Lawrence, Wuhan Ning, Philip Rupp, Zheng Wu, Hilla Afargan-Gerstman, Natalia Calvo, Álvaro de la Cámara, Martin Jucker, Gerbrand Koren, Daniel De Maeseneire, Gloria L. Manney, Marisol Osman, Masakazu Taguchi, Cory Barton, Dong-Chang Hong, Yu-Kyung Hyun, Hera Kim, Jeff Knight, Piero Malguzzi, Daniele Mastrangelo, Jiyoung Oh, Inna Polichtchouk, Jadwiga H. Richter, Isla R. Simpson, Seok-Woo Son, Damien Specq, and Tim Stockdale
EGUsphere, https://doi.org/10.5194/egusphere-2025-3611, https://doi.org/10.5194/egusphere-2025-3611, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Sudden Stratospheric Warmings (SSWs) are known to follow a sustained wave dissipation in the stratosphere, which depends on both the tropospheric and stratospheric states. However, the relative role of each state is still unclear. Using a new set of subseasonal to seasonal forecasts, we show that the stratospheric state does not drastically affect the precursors of three recent SSWs, but modulates the stratospheric wave activity, with impacts depending on SSW features.
Philip Rupp, Jonas Spaeth, Hilla Afargan-Gerstman, Dominik Büeler, Michael Sprenger, and Thomas Birner
Weather Clim. Dynam., 5, 1287–1298, https://doi.org/10.5194/wcd-5-1287-2024, https://doi.org/10.5194/wcd-5-1287-2024, 2024
Short summary
Short summary
We quantify the occurrence of strong synoptic storms as contributing about 20 % to the uncertainty of subseasonal geopotential height forecasts over northern Europe. We further show that North Atlantic storms are less frequent, weaker and shifted southward following sudden stratospheric warming events, leading to a reduction in northern European forecast uncertainty.
Matthew Davison and Peter Haynes
Weather Clim. Dynam., 5, 1153–1185, https://doi.org/10.5194/wcd-5-1153-2024, https://doi.org/10.5194/wcd-5-1153-2024, 2024
Short summary
Short summary
A simple model is used to study the relation between small-scale convection and large-scale variability in the tropics arising from the coupling between moisture and dynamics. In the model, moisture preferentially lies at either moist or dry states, which merge to form large-scale aggregated regions. On an equatorial β plane, these aggregated regions are localised at the Equator and propagate zonally. This forms an intermediate model between past simpler models and general circulation models.
Kasturi Shah and Peter H. Haynes
Weather Clim. Dynam., 5, 559–585, https://doi.org/10.5194/wcd-5-559-2024, https://doi.org/10.5194/wcd-5-559-2024, 2024
Short summary
Short summary
Long-lived rising bubbles of wildfire smoke or volcanic aerosol contained within strong vortices have been observed in the stratosphere. Heating through absorption of solar radiation has been hypothesised as driving these structures. We present simple models incorporating two-way interaction between dynamics and aerosol combined with insight from vortex dynamics to explain aspects of observed behaviours, including ascent rate and vorticity magnitude, and to suggest criteria for formation.
Flossie Brown, Lauren Marshall, Peter H. Haynes, Rolando R. Garcia, Thomas Birner, and Anja Schmidt
Atmos. Chem. Phys., 23, 5335–5353, https://doi.org/10.5194/acp-23-5335-2023, https://doi.org/10.5194/acp-23-5335-2023, 2023
Short summary
Short summary
Large-magnitude volcanic eruptions have the potential to alter large-scale circulation patterns, such as the quasi-biennial oscillation (QBO). The QBO is an oscillation of the tropical stratospheric zonal winds between easterly and westerly directions. Using a climate model, we show that large-magnitude eruptions can delay the progression of the QBO, with a much longer delay when the shear is easterly than when it is westerly. Such delays may affect weather and transport of atmospheric gases.
Felix Jäger, Philip Rupp, and Thomas Birner
Weather Clim. Dynam., 4, 49–60, https://doi.org/10.5194/wcd-4-49-2023, https://doi.org/10.5194/wcd-4-49-2023, 2023
Short summary
Short summary
Mid-latitude weather is dominated by the growth, breaking and decay of baroclinic waves and associated jet shifts. A way to study this process is via idealised life-cycle simulations, which are often classified as LC1 (anticyclonic breaking, poleward shift) or LC2 (cyclonic breaking, equatorward shift), depending on details of the initial state. We show that all systems exhibit predominantly anticyclonic character and poleward net shifts if multiple wave modes are allowed to grow simultaneously.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
Rachel Furner, Peter Haynes, Dave Munday, Brooks Paige, Daniel C. Jones, and Emily Shuckburgh
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-132, https://doi.org/10.5194/gmd-2021-132, 2021
Revised manuscript not accepted
Short summary
Short summary
Traditional weather & climate models are built from physics-based equations, while data-driven models are built from patterns found in datasets using Machine Learning or statistics. There is growing interest in using data-driven models for weather & climate prediction, but confidence in their use depends on understanding the patterns they're finding. We look at this with a simple regression model of ocean temperature and see the patterns found by the regression model are similar to the physics.
Philip Rupp and Thomas Birner
Weather Clim. Dynam., 2, 111–128, https://doi.org/10.5194/wcd-2-111-2021, https://doi.org/10.5194/wcd-2-111-2021, 2021
Short summary
Short summary
We use the simple framework of an idealised baroclinic life cycle to study the tropospheric eddy feedback to different stratospheric conditions and, hence, obtain insights into the fundamental processes of stratosphere–troposphere coupling – in particular, the processes involved in creating the robust equatorward shift in the tropospheric mid-latitude jet that has been observed following sudden stratospheric warming events.
Cited articles
Amemiya, A. and Sato, K.: A two-dimensional dynamical model for the subseasonal variability of the Asian monsoon anticyclone,
J. Atmos. Sci., 75, 3597–3612, https://doi.org/10.1175/JAS-D-17-0208.1, 2018. a, b, c
Battisti, D. S., Sarachik, E., and Hirst, A.: A Consistent Model for the
Large-Scale Steady Surface Atmospheric Circulation in the Tropics, J. Climate, 12, 2956–2964, 1999. a
Bourassa, A. E., Robock, A., Randel, W. J., Deshler, T., Rieger, L. A., Lloyd, N. D., Llewellyn, E. T., and Degenstein, D. A.: Large volcanic aerosol load in the stratosphere linked to Asian monsoon transport, Science, 337, 78–81, 2012. a
Chen, G. and Plumb, R. A.: Effective isentropic diffusivity of tropospheric
transport, J. Atmos. Sci., 71, 3499–3520, 2014. a
Cushman-Roisin, B., Tang, B., and Chassignet, E. P.: Westward motion of
mesoscale eddies, J. Phys. Oceanogr., 20, 758–768, 1990. a
Davey, M. K. and Killworth, P. D.: Isolated waves and eddies in a shallow water model, J. Phys. Oceanogr., 14, 1047–1064, 1984. a
Davey, M. K. and Killworth, P. D.: Flows produced by discrete sources of
buoyancy, J. Phys. Oceanogr., 19, 1279–1290,
1989b. a
Dee, D. P., Uppala, S. M., Simmons, A., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, D. P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The
ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
European Centre for Medium-Range Weather Forecasts: ERA-Interim, available at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim, last access: 1 May 2021. a
Fadnavis, S., Roy, C., Chattopadhyay, R., Sioris, C. E., Rap, A., Müller, R., Kumar, K. R., and Krishnan, R.: Transport of trace gases via eddy shedding from the Asian summer monsoon anticyclone and associated impacts on ozone heating rates, Atmos. Chem. Phys., 18, 11493–11506, https://doi.org/10.5194/acp-18-11493-2018, 2018. a
Hendon, H. H.: The time-mean flow and variability in a nonlinear model of the
atmosphere with tropical diabatic forcing, J. Atmos. Sci., 43, 72–89, 1986. a
Holton, J. R. and Colton, D. E.: A diagnostic study of the vorticity balance at 200 mb in the tropics during the northern summer, J. Atmos. Sci., 29, 1124–1128, 1972. a
Honomichl, S. B. and Pan, L. L.: Transport from the Asian summer monsoon
anticyclone over the western Pacific, J. Geophys. Res.-Atmos., 125, e2019JD032094, https://doi.org/10.1029/2019JD032094, 2020. a
Hoskins, B. J. and Jin, F.-F.: The initial value problem for tropical
perturbations to a baroclinic atmosphere, Q. J. Roy. Meteor. Soc., 117, 299–317, 1991. a
Hoskins, B. J. and Simmons, A. J.: A multi-layer spectral model and the
semi-implicit method, Q. J. Roy. Meteor. Soc., 101, 637–655, 1975. a
Jin, F. and Hoskins, B. J.: The direct response to tropical heating in a
baroclinic atmosphere, J. Atmos. Sci., 52, 307–319,
1995. a
Kraucunas, I. and Hartmann, D. L.: Tropical stationary waves in a nonlinear
shallow-water model with realistic basic states, J. Atmos. Sci., 64, 2540–2557, 2007. a
Luo, J., Song, J., Tian, H., Liu, L., and Liang, X.: A Case Study of Mass
Transport during the East-west Oscillation of the Asian Summer Monsoon
Anticyclone, Adv. Meteorol., 2017, 5174025, https://doi.org/10.1155/2017/5174025, 2017. a, b
Matsuno, T.: Quasi-geostrophic motions in the equatorial area,
J. Meteorol. Soc. Jpn., 44, 25–43, 1966. a
McGraw, M. C. and Barnes, E. A.: Seasonal sensitivity of the eddy-driven jet to tropospheric heating in an idealized AGCM, J. Climate, 29,
5223–5240, 2016. a
Nützel, M., Dameris, M., and Garny, H.: Movement, drivers and bimodality of the South Asian High, Atmos. Chem. Phys., 16, 14755–14774, https://doi.org/10.5194/acp-16-14755-2016, 2016. a
Ploeger, F., Günther, G., Konopka, P., Fueglistaler, S., Müller, R.,
Hoppe, C., Kunz, A., Spang, R., Grooß, J.-U., and Riese, M.: Horizontal
water vapor transport in the lower stratosphere from subtropics to high
latitudes during boreal summer, J. Geophys. Res.-Atmos.,
118, 8111–8127, 2013. a
Ploeger, F., Gottschling, C., Griessbach, S., Grooß, J.-U., Guenther, G., Konopka, P., Müller, R., Riese, M., Stroh, F., Tao, M., Ungermann, J., Vogel, B., and von Hobe, M.: A potential vorticity-based determination of the transport barrier in the Asian summer monsoon anticyclone, Atmos. Chem. Phys., 15, 13145–13159, https://doi.org/10.5194/acp-15-13145-2015, 2015. a
Polvani, L. M. and Kushner, P. J.: Tropospheric response to stratospheric
perturbations in a relatively simple general circulation model,
Geophys. Res. Lett., 29, 18-1–18-4, https://doi.org/10.1029/2001GL014284, 2002. a, b
Postel, G. A. and Hitchman, M. H.: A climatology of Rossby wave breaking along the subtropical tropopause, J. Atmos. Sci., 56,
359–373, 1999. a
Randel, W. J., Park, M., Emmons, L., Kinnison, D., Bernath, P., Walker, K. A., Boone, C., and Pumphrey, H.: Asian monsoon transport of pollution to the stratosphere, Science, 328, 611–613, 2010. a
Ren, X., Yang, D., and Yang, X.-Q.: Characteristics and mechanisms of the
subseasonal eastward extension of the South Asian High, J. Climate,
28, 6799–6822, 2015. a
Ring, M. J. and Plumb, R. A.: Forced annular mode patterns in a simple
atmospheric general circulation model, J. Atmos. Sci.,
64, 3611–3626, 2007. a
Rupp, P.: On the structure and dynamics of the Asian monsoon anticyclone, Ph.D. thesis, University of Cambridge, Cambridge, UK, 2019. a
Rupp, P. M. and Haynes, P. H.: Spatio-temporal stability analysis applied to
monsoon anticyclone flow, Q. J. Roy. Meteor. Soc., 146, 1861–1879, https://doi.org/10.1002/qj.3771, 2020. a
Sardeshmukh, P. D. and Held, I. M.: The vorticity balance in the tropical upper troposphere of a general circulation model, J. Atmos. Sci., 41, 768–778, 1984. a
Sardeshmukh, P. D. and Hoskins, B. J.: Vorticity balances in the tropics during the 1982–1983 El Niñio-Southern oscillation event, Q. J. Roy. Meteor. Soc., 111, 261–278, 1985. a
Thompson, D. W. and Wallace, J. M.: Annular modes in the extratropical
circulation, Part I: Month-to-month variability, J. Climate, 13,
1000–1016, 2000. a
Ting, M. and Yu, L.: Steady response to tropical heating in wavy linear and
nonlinear baroclinic models, J. Atmos. Sci., 55,
3565–3582, 1998. a
University of Reading: Numerical atmosphere model IGCM, available at: http://www.met.reading.ac.uk/~mike/dyn_models/igcm/, last access: 1 May 2021. a
Vogel, B., Günther, G., Müller, R., Grooß, J.-U., Hoor, P., Krämer, M., Müller, S., Zahn, A., and Riese, M.: Fast transport from Southeast Asia boundary layer sources to northern Europe: rapid uplift in typhoons and eastward eddy shedding of the Asian monsoon anticyclone, Atmos. Chem. Phys., 14, 12745–12762, https://doi.org/10.5194/acp-14-12745-2014, 2014. a, b, c, d, e
Vogel, B., Günther, G., Müller, R., Grooß, J.-U., and Riese, M.: Impact of different Asian source regions on the composition of the Asian monsoon anticyclone and of the extratropical lowermost stratosphere, Atmos. Chem. Phys., 15, 13699–13716, https://doi.org/10.5194/acp-15-13699-2015, 2015. a
Zhang, G. J. and McFarlane, N. A.: Role of convective scale momentum transport in climate simulation, J. Geophys. Res.-Atmos., 100, 1417–1426, 1995. a
Zurita-Gotor, P.: The sensitivity of the isentropic slope in a primitive
equation dry model, J. Atmos. Sci., 65, 43–65, 2008. a
Short summary
We study a range of dynamical aspects of the Asian monsoon anticyclone as the response of a simple numerical model to a steady imposed heating distribution with different background flow configurations. Particular focus is given on interactions between the monsoon anticyclone and active mid-latitude dynamics, which we find to have a zonally localising effect on the time-mean circulation and to be able to qualitatively alter the temporal variability of the bulk anticyclone.
We study a range of dynamical aspects of the Asian monsoon anticyclone as the response of a...