Articles | Volume 2, issue 3
https://doi.org/10.5194/wcd-2-581-2021
https://doi.org/10.5194/wcd-2-581-2021
Research article
 | 
12 Jul 2021
Research article |  | 12 Jul 2021

An unsupervised learning approach to identifying blocking events: the case of European summer

Carl Thomas, Apostolos Voulgarakis, Gerald Lim, Joanna Haigh, and Peer Nowack

Related authors

Constraining uncertainty in projected precipitation over land with causal discovery
Kevin Debeire, Lisa Bock, Peer Nowack, Jakob Runge, and Veronika Eyring
Earth Syst. Dynam., 16, 607–630, https://doi.org/10.5194/esd-16-607-2025,https://doi.org/10.5194/esd-16-607-2025, 2025
Short summary
Estimating future wildfire burnt area over Greece using the JULES-INFERNO model
Anastasios Rovithakis, Eleanor Burke, Chantelle Burton, Matthew Kasoar, Manolis G. Grillakis, Konstantinos D. Seiradakis, and Apostolos Voulgarakis
EGUsphere, https://doi.org/10.5194/egusphere-2025-274,https://doi.org/10.5194/egusphere-2025-274, 2025
Short summary
Opinion: Why all emergent constraints are wrong but some are useful – a machine learning perspective
Peer Nowack and Duncan Watson-Parris
Atmos. Chem. Phys., 25, 2365–2384, https://doi.org/10.5194/acp-25-2365-2025,https://doi.org/10.5194/acp-25-2365-2025, 2025
Short summary
Exploring Ozone-climate Interactions in Idealized CMIP6 DECK Experiments
Jingyu Wang, Gabriel Chiodo, Timofei Sukhodolov, Blanca Ayarzagüena, William T. Ball, Mohamadou Diallo, Birgit Hassler, James Keeble, Peer Nowack, Clara Orbe, and Sandro Vattioni
EGUsphere, https://doi.org/10.5194/egusphere-2025-340,https://doi.org/10.5194/egusphere-2025-340, 2025
Short summary
The importance of stratocumulus clouds for projected warming patterns and circulation changes
Philipp Breul, Paulo Ceppi, and Peer Nowack
EGUsphere, https://doi.org/10.5194/egusphere-2025-221,https://doi.org/10.5194/egusphere-2025-221, 2025
Short summary

Related subject area

Dynamical processes in midlatitudes
Minimal influence of future Arctic sea ice loss on North Atlantic jet stream morphology
Yvonne Anderson, Jacob Perez, and Amanda C. Maycock
Weather Clim. Dynam., 6, 595–608, https://doi.org/10.5194/wcd-6-595-2025,https://doi.org/10.5194/wcd-6-595-2025, 2025
Short summary
Weather type reconstruction using machine learning approaches
Lucas Pfister, Lena Wilhelm, Yuri Brugnara, Noemi Imfeld, and Stefan Brönnimann
Weather Clim. Dynam., 6, 571–594, https://doi.org/10.5194/wcd-6-571-2025,https://doi.org/10.5194/wcd-6-571-2025, 2025
Short summary
Temporally and zonally varying atmospheric waveguides – climatologies and connections to quasi-stationary waves
Rachel H. White and Lualawi Mareshet Admasu
Weather Clim. Dynam., 6, 549–570, https://doi.org/10.5194/wcd-6-549-2025,https://doi.org/10.5194/wcd-6-549-2025, 2025
Short summary
Moisture transport axes: a unifying definition for tropical moisture exports, atmospheric rivers, and warm moist intrusions
Clemens Spensberger, Kjersti Konstali, and Thomas Spengler
Weather Clim. Dynam., 6, 431–446, https://doi.org/10.5194/wcd-6-431-2025,https://doi.org/10.5194/wcd-6-431-2025, 2025
Short summary
On the movement of atmospheric blocking systems and the associated temperature responses
Jonna van Mourik, Hylke de Vries, and Michiel Baatsen
Weather Clim. Dynam., 6, 413–429, https://doi.org/10.5194/wcd-6-413-2025,https://doi.org/10.5194/wcd-6-413-2025, 2025
Short summary

Cited articles

Barnes, E. A.: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes, Geophys. Res. Lett., 40, 4734–4739, https://doi.org/10.1002/grl.50880, 2013. a
Barnes, E. A. and Polvani, L. M.: CMIP5 Projections of Arctic Amplification, of the North American/North Atlantic Circulation, and of Their Relationship, J. Climate, 28, 5254–5271, https://doi.org/10.1175/JCLI-D-14-00589.1, 2015. a
Barnes, E. A. and Screen, J. A.: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it?, WIREs Clim. Change, 6, 277–286, https://doi.org/10.1002/wcc.337, 2015. a
Barnes, E. A., Dunn-Sigouin, E., Masato, G., and Woollings, T.: Exploring recent trends in Northern Hemisphere blocking, Geophys. Res. Lett., 41, 638–644, https://doi.org/10.1002/2013GL058745, 2014. a, b
Barriopedro, D., García-Herrera, R., and Trigo, R.: Application of blocking diagnosis methods to General Circulation Models. Part I: A novel detection scheme, Clim. Dynam., 35, 1373–1391, https://doi.org/10.1007/s00382-010-0767-5, 2010. a, b, c, d
Download
Short summary
Atmospheric blocking events are complex large-scale weather patterns which block the path of the jet stream. They are associated with heat waves in summer and cold snaps in winter. Blocking is poorly understood, and the effect of climate change is not clear. Here, we present a new method to study blocking using unsupervised machine learning. We show that this method performs better than previous methods used. These results show the potential for unsupervised learning in atmospheric science.
Share