Articles | Volume 2, issue 3
https://doi.org/10.5194/wcd-2-581-2021
https://doi.org/10.5194/wcd-2-581-2021
Research article
 | 
12 Jul 2021
Research article |  | 12 Jul 2021

An unsupervised learning approach to identifying blocking events: the case of European summer

Carl Thomas, Apostolos Voulgarakis, Gerald Lim, Joanna Haigh, and Peer Nowack

Related authors

Constraining uncertainty in projected precipitation over land with causal discovery
Kevin Debeire, Lisa Bock, Peer Nowack, Jakob Runge, and Veronika Eyring
EGUsphere, https://doi.org/10.5194/egusphere-2024-2656,https://doi.org/10.5194/egusphere-2024-2656, 2024
Short summary
A systematic evaluation of high-cloud controlling factors
Sarah Wilson Kemsley, Paulo Ceppi, Hendrik Andersen, Jan Cermak, Philip Stier, and Peer Nowack
Atmos. Chem. Phys., 24, 8295–8316, https://doi.org/10.5194/acp-24-8295-2024,https://doi.org/10.5194/acp-24-8295-2024, 2024
Short summary
Opinion: Why all emergent constraints are wrong but some are useful – a machine learning perspective
Peer Nowack and Duncan Watson-Parris
EGUsphere, https://doi.org/10.5194/egusphere-2024-1636,https://doi.org/10.5194/egusphere-2024-1636, 2024
Short summary
A global behavioural model of human fire use and management: WHAM! v1.0
Oliver Perkins, Matthew Kasoar, Apostolos Voulgarakis, Cathy Smith, Jay Mistry, and James D. A. Millington
Geosci. Model Dev., 17, 3993–4016, https://doi.org/10.5194/gmd-17-3993-2024,https://doi.org/10.5194/gmd-17-3993-2024, 2024
Short summary
INFERNO-peat v1.0.0: a representation of northern high-latitude peat fires in the JULES-INFERNO global fire model
Katie R. Blackford, Matthew Kasoar, Chantelle Burton, Eleanor Burke, Iain Colin Prentice, and Apostolos Voulgarakis
Geosci. Model Dev., 17, 3063–3079, https://doi.org/10.5194/gmd-17-3063-2024,https://doi.org/10.5194/gmd-17-3063-2024, 2024
Short summary

Related subject area

Dynamical processes in midlatitudes
The importance of diabatic processes for the dynamics of synoptic-scale extratropical weather systems – a review
Heini Wernli and Suzanne L. Gray
Weather Clim. Dynam., 5, 1299–1408, https://doi.org/10.5194/wcd-5-1299-2024,https://doi.org/10.5194/wcd-5-1299-2024, 2024
Short summary
The impact of synoptic storm likelihood on European subseasonal forecast uncertainty and their modulation by the stratosphere
Philip Rupp, Jonas Spaeth, Hilla Afargan-Gerstman, Dominik Büeler, Michael Sprenger, and Thomas Birner
Weather Clim. Dynam., 5, 1287–1298, https://doi.org/10.5194/wcd-5-1287-2024,https://doi.org/10.5194/wcd-5-1287-2024, 2024
Short summary
Spatio-temporal averaging of jets obscures the reinforcement of baroclinicity by latent heating
Henrik Auestad, Clemens Spensberger, Andrea Marcheggiani, Paulo Ceppi, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 5, 1269–1286, https://doi.org/10.5194/wcd-5-1269-2024,https://doi.org/10.5194/wcd-5-1269-2024, 2024
Short summary
Impact of stochastic physics on the representation of atmospheric blocking in EC-Earth3
Michele Filippucci, Simona Bordoni, and Paolo Davini
Weather Clim. Dynam., 5, 1207–1222, https://doi.org/10.5194/wcd-5-1207-2024,https://doi.org/10.5194/wcd-5-1207-2024, 2024
Short summary
The crucial representation of deep convection for the cyclogenesis of Medicane Ianos
Florian Pantillon, Silvio Davolio, Elenio Avolio, Carlos Calvo-Sancho, Diego Saul Carrió, Stavros Dafis, Emanuele Silvio Gentile, Juan Jesus Gonzalez-Aleman, Suzanne Gray, Mario Marcello Miglietta, Platon Patlakas, Ioannis Pytharoulis, Didier Ricard, Antonio Ricchi, Claudio Sanchez, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 1187–1205, https://doi.org/10.5194/wcd-5-1187-2024,https://doi.org/10.5194/wcd-5-1187-2024, 2024
Short summary

Cited articles

Barnes, E. A.: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes, Geophys. Res. Lett., 40, 4734–4739, https://doi.org/10.1002/grl.50880, 2013. a
Barnes, E. A. and Polvani, L. M.: CMIP5 Projections of Arctic Amplification, of the North American/North Atlantic Circulation, and of Their Relationship, J. Climate, 28, 5254–5271, https://doi.org/10.1175/JCLI-D-14-00589.1, 2015. a
Barnes, E. A. and Screen, J. A.: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it?, WIREs Clim. Change, 6, 277–286, https://doi.org/10.1002/wcc.337, 2015. a
Barnes, E. A., Dunn-Sigouin, E., Masato, G., and Woollings, T.: Exploring recent trends in Northern Hemisphere blocking, Geophys. Res. Lett., 41, 638–644, https://doi.org/10.1002/2013GL058745, 2014. a, b
Barriopedro, D., García-Herrera, R., and Trigo, R.: Application of blocking diagnosis methods to General Circulation Models. Part I: A novel detection scheme, Clim. Dynam., 35, 1373–1391, https://doi.org/10.1007/s00382-010-0767-5, 2010. a, b, c, d
Download
Short summary
Atmospheric blocking events are complex large-scale weather patterns which block the path of the jet stream. They are associated with heat waves in summer and cold snaps in winter. Blocking is poorly understood, and the effect of climate change is not clear. Here, we present a new method to study blocking using unsupervised machine learning. We show that this method performs better than previous methods used. These results show the potential for unsupervised learning in atmospheric science.