Articles | Volume 3, issue 1
https://doi.org/10.5194/wcd-3-209-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-3-209-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How well is Rossby wave activity represented in the PRIMAVERA coupled simulations?
Paolo Ghinassi
CORRESPONDING AUTHOR
CNR-ISAC, Bologna, Italy
Federico Fabiano
CNR-ISAC, Bologna, Italy
Susanna Corti
CNR-ISAC, Bologna, Italy
Related authors
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Federico Fabiano, Virna L. Meccia, Paolo Davini, Paolo Ghinassi, and Susanna Corti
Weather Clim. Dynam., 2, 163–180, https://doi.org/10.5194/wcd-2-163-2021, https://doi.org/10.5194/wcd-2-163-2021, 2021
Short summary
Short summary
Global warming not only affects the mean state of the climate (i.e. a warmer world) but also its variability. Here we analyze a set of future climate scenarios and show how some configurations of the wintertime atmospheric flow will become more frequent and persistent under continued greenhouse forcing. For example, over Europe, models predict an increase in the NAO+ regime which drives intense precipitation in northern Europe and the British Isles and dry conditions over the Mediterranean.
Martina Taddia, Federico Fabiano, Stefano Della Fera, Elisa Castelli, and Bianca Maria Dinelli
EGUsphere, https://doi.org/10.5194/egusphere-2025-3750, https://doi.org/10.5194/egusphere-2025-3750, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The time relationship between the energy emitted by the Earth system across the thermal infrared spectral region (also known as Outgoing Longwave Radiation (OLR)) and El-Niño Southern Oscillation (ENSO), shows important contribution from stratospheric temperature and ozone changes. The peak of the radiative response is wavenumber-dependent, this makes this analysis particularly suitable for climate models evaluations.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Manuel López-Puertas, Federico Fabiano, Victor Fomichev, Bernd Funke, and Daniel R. Marsh
Geosci. Model Dev., 17, 4401–4432, https://doi.org/10.5194/gmd-17-4401-2024, https://doi.org/10.5194/gmd-17-4401-2024, 2024
Short summary
Short summary
The radiative infrared cooling of CO2 in the middle atmosphere is crucial for computing its thermal structure. It requires one however to include non-local thermodynamic equilibrium processes which are computationally very expensive, which cannot be afforded by climate models. In this work, we present an updated, efficient, accurate and very fast (~50 µs) parameterization of that cooling able to cope with CO2 abundances from half the pre-industrial values to 10 times the current abundance.
Federico Fabiano, Paolo Davini, Virna L. Meccia, Giuseppe Zappa, Alessio Bellucci, Valerio Lembo, Katinka Bellomo, and Susanna Corti
Earth Syst. Dynam., 15, 527–546, https://doi.org/10.5194/esd-15-527-2024, https://doi.org/10.5194/esd-15-527-2024, 2024
Short summary
Short summary
Even after the concentration of greenhouse gases is stabilized, the climate will continue to adapt, seeking a new equilibrium. We study this long-term stabilization through a set of 1000-year simulations, obtained by suddenly "freezing" the atmospheric composition at different levels. If frozen at the current state, global warming surpasses 3° in the long term with our model. We then study how climate impacts will change after various centuries and how the deep ocean will warm.
Stefano Della Fera, Federico Fabiano, Piera Raspollini, Marco Ridolfi, Ugo Cortesi, Flavio Barbara, and Jost von Hardenberg
Geosci. Model Dev., 16, 1379–1394, https://doi.org/10.5194/gmd-16-1379-2023, https://doi.org/10.5194/gmd-16-1379-2023, 2023
Short summary
Short summary
The long-term comparison between observed and simulated outgoing longwave radiances represents a strict test to evaluate climate model performance. In this work, 9 years of synthetic spectrally resolved radiances, simulated online on the basis of the atmospheric fields predicted by the EC-Earth global climate model (v3.3.3) in clear-sky conditions, are compared to IASI spectral radiance climatology in order to detect model biases in temperature and humidity at different atmospheric levels.
Valerio Lembo, Federico Fabiano, Vera Melinda Galfi, Rune Grand Graversen, Valerio Lucarini, and Gabriele Messori
Weather Clim. Dynam., 3, 1037–1062, https://doi.org/10.5194/wcd-3-1037-2022, https://doi.org/10.5194/wcd-3-1037-2022, 2022
Short summary
Short summary
Eddies in mid-latitudes characterize the exchange of heat between the tropics and the poles. This exchange is largely uneven, with a few extreme events bearing most of the heat transported across latitudes in a season. It is thus important to understand what the dynamical mechanisms are behind these events. Here, we identify recurrent weather regime patterns associated with extreme transports, and we identify scales of mid-latitudinal eddies that are mostly responsible for the transport.
Núria Pérez-Zanón, Louis-Philippe Caron, Silvia Terzago, Bert Van Schaeybroeck, Llorenç Lledó, Nicolau Manubens, Emmanuel Roulin, M. Carmen Alvarez-Castro, Lauriane Batté, Pierre-Antoine Bretonnière, Susana Corti, Carlos Delgado-Torres, Marta Domínguez, Federico Fabiano, Ignazio Giuntoli, Jost von Hardenberg, Eroteida Sánchez-García, Verónica Torralba, and Deborah Verfaillie
Geosci. Model Dev., 15, 6115–6142, https://doi.org/10.5194/gmd-15-6115-2022, https://doi.org/10.5194/gmd-15-6115-2022, 2022
Short summary
Short summary
CSTools (short for Climate Service Tools) is an R package that contains process-based methods for climate forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination, and multivariate verification, as well as basic and advanced tools to obtain tailored products. In addition to describing the structure and methods in the package, we also present three use cases to illustrate the seasonal climate forecast post-processing for specific purposes.
Paolo Davini, Federico Fabiano, and Irina Sandu
Weather Clim. Dynam., 3, 535–553, https://doi.org/10.5194/wcd-3-535-2022, https://doi.org/10.5194/wcd-3-535-2022, 2022
Short summary
Short summary
In climate models, improvements obtained in the winter mid-latitude circulation following horizontal resolution increase are mainly caused by the more detailed representation of the mean orography. A high-resolution climate model with low-resolution orography might underperform compared to a low-resolution model with low-resolution orography. The absence of proper model tuning at high resolution is considered the potential reason behind such lack of improvements.
Joshua Dorrington, Kristian Strommen, and Federico Fabiano
Weather Clim. Dynam., 3, 505–533, https://doi.org/10.5194/wcd-3-505-2022, https://doi.org/10.5194/wcd-3-505-2022, 2022
Short summary
Short summary
We investigate how well current state-of-the-art climate models reproduce the wintertime weather of the North Atlantic and western Europe by studying how well different "regimes" of weather are captured. Historically, models have struggled to capture these regimes, making it hard to predict future changes in wintertime extreme weather. We show models can capture regimes if the right method is used, but they show biases, partially as a result of biases in jet speed and eddy strength.
Katja Weigel, Lisa Bock, Bettina K. Gier, Axel Lauer, Mattia Righi, Manuel Schlund, Kemisola Adeniyi, Bouwe Andela, Enrico Arnone, Peter Berg, Louis-Philippe Caron, Irene Cionni, Susanna Corti, Niels Drost, Alasdair Hunter, Llorenç Lledó, Christian Wilhelm Mohr, Aytaç Paçal, Núria Pérez-Zanón, Valeriu Predoi, Marit Sandstad, Jana Sillmann, Andreas Sterl, Javier Vegas-Regidor, Jost von Hardenberg, and Veronika Eyring
Geosci. Model Dev., 14, 3159–3184, https://doi.org/10.5194/gmd-14-3159-2021, https://doi.org/10.5194/gmd-14-3159-2021, 2021
Short summary
Short summary
This work presents new diagnostics for the Earth System Model Evaluation Tool (ESMValTool) v2.0 on the hydrological cycle, extreme events, impact assessment, regional evaluations, and ensemble member selection. The ESMValTool v2.0 diagnostics are developed by a large community of scientists aiming to facilitate the evaluation and comparison of Earth system models (ESMs) with a focus on the ESMs participating in the Coupled Model Intercomparison Project (CMIP).
Federico Fabiano, Virna L. Meccia, Paolo Davini, Paolo Ghinassi, and Susanna Corti
Weather Clim. Dynam., 2, 163–180, https://doi.org/10.5194/wcd-2-163-2021, https://doi.org/10.5194/wcd-2-163-2021, 2021
Short summary
Short summary
Global warming not only affects the mean state of the climate (i.e. a warmer world) but also its variability. Here we analyze a set of future climate scenarios and show how some configurations of the wintertime atmospheric flow will become more frequent and persistent under continued greenhouse forcing. For example, over Europe, models predict an increase in the NAO+ regime which drives intense precipitation in northern Europe and the British Isles and dry conditions over the Mediterranean.
Cited articles
Altenhoff, A., Martius, O., Croci-Maspoli, M., Schwierz, C., and Davies, H.:
Linkage of atmospheric blocks and synoptic-scale Rossby waves: A climatological analysis,
Tellus A,
60, 1053–1063, https://doi.org/10.1111/j.1600-0870.2008.00354.x, 2008. a
Andrews, D. and Mcintyre, M. E.:
Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration,
J. Atmos. Sci.,
33, 2031–2048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2, 1976. a
Andrews, D. G., Holton, J. R., and Leovy, C. B.:
Middle Atmosphere Dynamics,
Academic Press, 489 pp., Volume 40, International Geophysics Series, 1987. a
Barnes, E. A.:
Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes,
Geophys. Res. Lett.,
40, 4734–4739, https://doi.org/10.1002/grl.50880, 2013. a
Baumgart, M., Ghinassi, P., Wirth, V., Selz, T., Craig, G. C., and Riemer, M.:
Quantitative view on the processes governing the upscale error growth up to the planetary scale using a stochastic convection scheme,
Mon. Weather Rev.,
147, 1713–1731, https://doi.org/10.1175/MWR-D-18-0292.1, 2019. a
Blackmon, M. L.:
A Climatological Spectral Study of the 500 mb Geopotential Height of the Northern Hemisphere,
J. Atmos. Sci.,
33, 1607–1623, https://doi.org/10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2, 1976. a
Blackmon, M. L., Lee, Y., and Wallace, J. M.:
Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales,
J. Atmos. Sci.,
41, 961–980, 1984. a
Blackport, R. and Screen, J. A.:
Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves,
Science Advances,
6, eaay2880, https://doi.org/10.1126/sciadv.aay2880, 2020. a, b
Branstator, G.:
Circumglobal Teleconnections, the Jet Stream Waveguide, and the North Atlantic Oscillation,
J. Climate,
5, 1893–1910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2, 2002. a
Cassou, C.: Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation, Nature, 455, 523–527, https://doi.org/10.1038/nature07286, 2008. a, b
Cassou, C., Minvielle, M., Terray, L., and Perigaud, C.:
A statistical–dynamical scheme for reconstructing ocean forcing in the Atlantic. Part I: weather regimes as predictors for ocean surface variables,
Clim. Dynam., 36, 19–39, https://doi.org/10.1007/s00382-010-0781-7, 2010. a
Cattiaux, J., Douville, H., and Peings, Y.:
European temperatures in CMIP5: origins of present-day biases and future uncertainties,
Clim. Dynam.,
41, 2889–2907, 2013. a
Chang, E. K. M. and Orlanski, I.:
On the Dynamics of a Storm Track,
J. Atmos. Sci.,
50, 999–1015, https://doi.org/10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2, 1993. a
Charney, J. G. and Drazin, P. G.:
Propagation of planetary-scale disturbances from the lower into the upper atmosphere,
J. Geophys. Res.,
66, 83–109, 1961. a
Chen, G., Lu, J., Burrows, D. A., and Leung, L. R.:
Local finite-amplitude wave activity as an objective diagnostic of midlatitude extreme weather,
Geophys. Res. Lett.,
42, 10952–10960, https://doi.org/10.1002/2015GL066959, 2015. a, b
Cherchi, A., Fogli, P. G., Lovato, T., Peano, D., Iovino, D., Gualdi, S., Masina, S., Scoccimarro, E., Materia, S., Bellucci, A., and Navarra, A.:
Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled Model,
J. Adv. Model. Earth Sy.,
11, 185–209, https://doi.org/10.1029/2018MS001369, 2019. a
Corti, S., Molteni, F., and Palmer, T.: Signature of recent climate change in frequencies of natural atmospheric circulation regimes, Nature, 398, 799–802, https://doi.org/10.1038/19745, 1999. a
Dawson, A., Palmer, T., and Corti, S.: Simulating regime structures in weather and climate prediction models, Geophys. Res. Lett., 39, L21805, https://doi.org/10.1029/2012GL053284, 2012. a
Edmon Jr, H., Hoskins, B., and McIntyre, M.:
Eliassen–Palm cross sections for the troposphere,
J. Atmos. Sci.,
37, 2600–2616, 1980. a
Ertel, H.:
Ein neuer hydrodynamischer Wirbelsatz,
Meteorol. Z.,
59, 277–281, 1942. a
Fabiano, F. and Mavilia, I: fedef17/WRtool: WRtool 2.1 (v2.1), Zenodo [code], https://doi.org/10.5281/zenodo.4590985, 2021. a
Fabiano, F., Christensen, H., Strommen, K., Athanasiadis, P., Baker, A., Schiemann, R., and Corti, S.:
Euro–Atlantic weather Regimes in the PRIMAVERA coupled climate simulations: impact of resolution and mean state biases on model performance,
Clim. Dynam.,
54, 5031–5048, https://doi.org/10.1007/s00382-020-05271-w, 2020. a, b, c, d, e, f, g, h, i, j
Fabiano, F., Meccia, V. L., Davini, P., Ghinassi, P., and Corti, S.: A regime view of future atmospheric circulation changes in northern mid-latitudes, Weather Clim. Dynam., 2, 163–180, https://doi.org/10.5194/wcd-2-163-2021, 2021. a, b
Francis, J. A. and Vavrus, S. J.: Evidence linking Arctic amplification to extreme weather in mid-latitudes, Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000, 2012. a, b, c
Francis, J. A. and Vavrus, S. J.:
Evidence for a wavier jet stream in response to rapid Arctic warming,
Environ. Res. Lett.,
10, 014005, https://doi.org/10.1088/1748-9326/10/1/014005, 2015. a, b
Gray, S. L., Dunning, C. M., Methven, J., Masato, G., and Chagnon, J. M.:
Systematic model forecast error in Rossby wave structure,
Geophys. Res. Lett.,
41, 2979–2987, https://doi.org/10.1002/2014GL059282, 2014. a
Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J.-S., Brüggemann, N., Haak, H., and Stössel, A.: Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP), Geosci. Model Dev., 12, 3241–3281, https://doi.org/10.5194/gmd-12-3241-2019, 2019. a
Haarsma, R., Acosta, M., Bakhshi, R., Bretonnière, P.-A., Caron, L.-P., Castrillo, M., Corti, S., Davini, P., Exarchou, E., Fabiano, F., Fladrich, U., Fuentes Franco, R., García-Serrano, J., von Hardenberg, J., Koenigk, T., Levine, X., Meccia, V. L., van Noije, T., van den Oord, G., Palmeiro, F. M., Rodrigo, M., Ruprich-Robert, Y., Le Sager, P., Tourigny, E., Wang, S., van Weele, M., and Wyser, K.: HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR – description, model computational performance and basic validation, Geosci. Model Dev., 13, 3507–3527, https://doi.org/10.5194/gmd-13-3507-2020, 2020. a, b
Harvey, B., Methven, J., and Ambaum, M. H. P.:
An Adiabatic Mechanism for the Reduction of Jet Meander Amplitude by Potential Vorticity Filamentation,
J. Atmos. Sci.,
75, 4091–4106, https://doi.org/10.1175/JAS-D-18-0136.1, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.:
The ERA5 global reanalysis,
Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hoskins, B. J. and Karoly, D. J.:
The Steady Linear Response of a Spherical Atmosphere to Thermal and Orographic Forcing,
J. Atmos. Sci.,
38, 1179–1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2, 1981. a
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W.:
On the use and significance of isentropic potential vorticity maps,
Q. J. Roy. Meteor. Soc.,
111, 877–946, https://doi.org/10.1002/qj.49711147002, 1985. a, b
Huang, C. S. Y. and Nakamura, N.:
Local wave activity budgets of the wintertime Northern Hemisphere: Implications for the Pacific and Atlantic storm tracks,
Geophys. Res. Lett.,
44, 5673–5682, https://doi.org/10.1002/2017GL073760, 2017. a
Ivy, D. J., Solomon, S., and Rieder, H. E.:
Radiative and Dynamical Influences on Polar Stratospheric Temperature Trends,
J. Climate,
29, 4927–4938, https://doi.org/10.1175/JCLI-D-15-0503.1, 2016. a
Lee, S. and Held, I. M.:
Baroclinic wave packets in models and observations,
J. Atmos. Sci.,
50, 1413–1428, https://doi.org/10.1175/1520-0469(1993)050<1413:BWPIMA>2.0.CO;2, 1993. a
Li, Y., Yang, S., Deng, Y., Hu, X., Cai, M., and Zhou, W.:
Detection and attribution of upper-tropospheric warming over the tropical western Pacific,
Clim. Dynam.,
53, 3057–3068, 2019. a
Martius, O., Schwierz, C., and Davies, H.:
Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and the theoretical LC1/2 classification,
J. Atmos. Sci.,
64, 2576–2592, 2007. a
Matsueda, M. and Palmer, T.:
Estimates of flow-dependent predictability of wintertime Euro–Atlantic weather regimes in medium-range forecasts,
Q. J. Roy. Meteor. Soc.,
144, 1012–1027, 2018. a
Nakamura, N. and Huang, C. S. Y.:
Atmospheric blocking as a traffic jam in the jet stream,
Science,
361, 42–47, https://doi.org/10.1126/science.aat0721, 2018. a
Nakamura, N. and Solomon, A.:
Finite-amplitude wave activity and mean flow adjustments in the atmospheric general circulation. Part I: Quasigeostrophic theory and analysis,
J. Atmos. Sci.,
67, 3967–3983, https://doi.org/10.1175/2010JAS3503.1, 2010. a, b
Nakamura, N. and Zhu, D.:
Finite-amplitude wave activity and diffusive flux of potential vorticity in eddy–mean flow interaction,
J. Atmos. Sci.,
67, 2701–2716, https://doi.org/10.1175/2010JAS3432.1, 2010. a
Novak, L., Ambaum, M. H., and Tailleux, R.:
The life cycle of the North Atlantic storm track,
J. Atmos. Sci.,
72, 821–833, 2015. a
Pedlosky, J.:
Finite-Amplitude Baroclinic Wave Packets,
J. Atmos. Sci.,
29, 680–686, https://doi.org/10.1175/1520-0469(1972)029<0680:FABWP>2.0.CO;2, 1972. a
Quinting, J. F. and Vitart, F.:
Representation of Synoptic-Scale Rossby Wave Packets and Blocking in the S2S Prediction Project Database,
Geophys. Res. Lett.,
46, 1070–1078, https://doi.org/10.1029/2018GL081381, 2019. a
Randel, W. J. and Wu, F.:
Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion,
J. Climate,
12, 1467–1479, https://doi.org/10.1175/1520-0442(1999)012<1467:COTAAA>2.0.CO;2, 1999. a
Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., Mayer, M., and Keeley, S. P. E.: Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP, Geosci. Model Dev., 11, 3681–3712, https://doi.org/10.5194/gmd-11-3681-2018, 2018. a
Robertson, A. W. and Ghil, M.:
Large-Scale Weather Regimes and Local Climate over the Western United States,
J. Climate,
12, 1796–1813, https://doi.org/10.1175/1520-0442(1999)012<1796:LSWRAL>2.0.CO;2, 1999. a
Scaife, A. A., Camp, J., Comer, R., Davis, P., Dunstone, N., Gordon, M., MacLachlan, C., Martin, N., Nie, Y., Ren, H.-L., Roberts, M., Robinson, W., Smith, D., and Vidale, P. L.:
Does increased atmospheric resolution improve seasonal climate predictions?,
Atmos. Sci. Lett.,
20, e922, https://doi.org/10.1002/asl.922, 2019. a
Schiemann, R., Athanasiadis, P., Barriopedro, D., Doblas-Reyes, F., Lohmann, K., Roberts, M. J., Sein, D. V., Roberts, C. D., Terray, L., and Vidale, P. L.: Northern Hemisphere blocking simulation in current climate models: evaluating progress from the Climate Model Intercomparison Project Phase 5 to 6 and sensitivity to resolution, Weather Clim. Dynam., 1, 277–292, https://doi.org/10.5194/wcd-1-277-2020, 2020. a
Screen, J. A. and Simmonds, I.:
The central role of diminishing sea ice in recent Arctic temperature amplification,
Nature,
464, 1334–1337, 2010. a
Screen, J. A. and Simmonds, I.:
Exploring links between Arctic amplification and mid-latitude weather,
Geophys. Res. Lett.,
40, 959–964, https://doi.org/10.1002/grl.50174, 2013. a
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., and Holland, M. M.: The emergence of surface-based Arctic amplification, The Cryosphere, 3, 11–19, https://doi.org/10.5194/tc-3-11-2009, 2009. a
Simmons, A. J. and Hoskins, B. J.:
The downstream and upstream development of unstable baroclinic waves,
J. Atmos. Sci.,
36, 1239–1254, https://doi.org/10.1175/1520-0469(1979)036<1239:TDAUDO>2.0.CO;2, 1979. a
Souders, M. B., Colle, B. A., and Chang, E. K. M.:
A Description and Evaluation of an Automated Approach for Feature-Based Tracking of Rossby Wave Packets,
Mon. Weather Rev.,
142, 3505–3527, https://doi.org/10.1175/MWR-D-13-00317.1, 2014. a
Straus, D. M., Corti, S., and Molteni, F.:
Circulation regimes: Chaotic variability versus SST-forced predictability,
J. Climate,
20, 2251–2272, 2007. a
Strommen, K., Mavilia, I., Corti, S., Matsueda, M., Davini, P., von Hadenberg, J., Vidale, P., and Mizuta, R.:
The Sensitivity of Euro–Atlantic Regimes to Model Horizontal Resolution,
arXiv [preprint], arXiv:1905.07046, 2019. a
Strong, C. and Magnusdottir, G.:
Tropospheric Rossby wave breaking and the NAO/NAM,
J. Atmos. Sci.,
65, 2861–2876, 2008. a
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., Moine, M.-P., Nabat, P., Roehrig, R., Salas y Mélia, D., Séférian, R., Valcke, S., Beau, I., Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes, J., Douville, H., Ethé, C., Franchistéguy, L., Geoffroy, O., Lévy, C., Madec, G., Meurdesoif, Y., Msadek, R., Ribes, A., Sanchez-Gomez, E., Terray, L., and Waldman, R.:
Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1,
J. Adv. Model. Earth Sy.,
11, 2177–2213, https://doi.org/10.1029/2019MS001683, 2019.
a
Wallace, J. M. and Gutzler, D. S.:
Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter,
Mon. Weather Rev.,
109, 784–812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2, 1981. a
Wernli, H. and Sprenger, M.:
Identification and ERA-15 Climatology of Potential Vorticity Streamers and Cutoffs near the Extratropical Tropopause,
J. Atmos. Sci.,
64, 1569–1586, https://doi.org/10.1175/JAS3912.1, 2007. a
Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert, D., Comer, R., Davis, P., Graham, T., Hewitt, H. T., Hill, R., Hyder, P., Ineson, S., Johns, T. C., Keen, A. B., Lee, R. W., Megann, A., Milton, S. F., Rae, J. G. L., Roberts, M. J., Scaife, A. A., Schiemann, R., Storkey, D., Thorpe, L., Watterson, I. G., Walters, D. N., West, A., Wood, R. A., Woollings, T., and Xavier, P. K.:
The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations,
J. Adv. Model. Earth Sy.,
10, 357–380, https://doi.org/10.1002/2017MS001115, 2018. a
Wirth, V., Riemer, M., Chang, E. K. M., and Martius, O.:
Rossby Wave Packets on the Midlatitude Waveguide–A Review,
Mon. Weather Rev.,
146, 1965–2001, https://doi.org/10.1175/MWR-D-16-0483.1, 2018. a, b
Yiou, P. and Nogaj, M.: Extreme climatic events and weather regimes over the North Atlantic: When and where?, Geophys. Res. Lett., 31, L07202, https://doi.org/10.1029/2003GL019119, 2004. a, b
Short summary
In this work we examine the ability of global climate models in representing the atmospheric circulation in the upper troposphere, focusing on the eventual benefits of an increased horizontal resolution. Our results confirm that a higher horizontal resolution has a positive impact, especially in those models in which the resolution is increased in both the atmosphere and the ocean, whereas when the resolution is increased only in the atmosphere no substantial improvements are found.
In this work we examine the ability of global climate models in representing the atmospheric...