Articles | Volume 3, issue 2
https://doi.org/10.5194/wcd-3-449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wcd-3-449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Circumglobal Rossby wave patterns during boreal winter highlighted by space–time spectral analysis
Laboratoire de Météorologie Dynamique/IPSL, École Normale Supérieure, PSL Université, Sorbonne Université, École Polytechnique, IP Paris, CNRS, Paris, France
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Efi Rousi
Potsdam Institute for Climate Impact Research (PIK), Leibniz Association, Potsdam, Germany
Fabio D'Andrea
Laboratoire de Météorologie Dynamique/IPSL, École Normale Supérieure, PSL Université, Sorbonne Université, École Polytechnique, IP Paris, CNRS, Paris, France
Gwendal Rivière
Laboratoire de Météorologie Dynamique/IPSL, École Normale Supérieure, PSL Université, Sorbonne Université, École Polytechnique, IP Paris, CNRS, Paris, France
François Lott
Laboratoire de Météorologie Dynamique/IPSL, École Normale Supérieure, PSL Université, Sorbonne Université, École Polytechnique, IP Paris, CNRS, Paris, France
Related authors
Jacopo Riboldi, Robin Noyelle, Ellina Agayar, Hanin Binder, Marc Federer, Katharina Hartmuth, Michael Sprenger, Iris Thurnherr, and Selvakumar Vishnupriya
EGUsphere, https://doi.org/10.5194/egusphere-2025-3599, https://doi.org/10.5194/egusphere-2025-3599, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Storm Boris hit central Europe in September 2024 with extreme precipitation and impacts: this work introduces a methodology to strengthen our comprehension of how global warming affects similar events, based on the incorporation of event-specific meteorological information. Furthermore, it contextualizes how the answer to the question "How will Boris-like storms change in a warmer climate?" depends on explicit and implicit methodological choices, with the aim to inform future research.
Antonio Segalini, Jacopo Riboldi, Volkmar Wirth, and Gabriele Messori
Weather Clim. Dynam., 5, 997–1012, https://doi.org/10.5194/wcd-5-997-2024, https://doi.org/10.5194/wcd-5-997-2024, 2024
Short summary
Short summary
Planetary Rossby waves are created by topography and evolve in time. In this work, an analytical solution of this classical problem is proposed under the approximation of linear wave dynamics. The theory is able to describe reasonably well the evolution of the perturbation and compares well with full nonlinear simulations. Several relevant cases with single and double zonal jets are assessed with the theoretical framework
Michael Schutte, Daniela I. V. Domeisen, and Jacopo Riboldi
Weather Clim. Dynam., 5, 733–752, https://doi.org/10.5194/wcd-5-733-2024, https://doi.org/10.5194/wcd-5-733-2024, 2024
Short summary
Short summary
The winter circulation in the stratosphere, a layer of the Earth’s atmosphere between 10 and 50 km height, is tightly linked to the circulation in the lower atmosphere determining our daily weather. This interconnection happens in the form of waves propagating in and between these two layers. Here, we use space–time spectral analysis to show that disruptions and enhancements of the stratospheric circulation modify the shape and propagation of waves in both layers.
Jacopo Riboldi, Robin Noyelle, Ellina Agayar, Hanin Binder, Marc Federer, Katharina Hartmuth, Michael Sprenger, Iris Thurnherr, and Selvakumar Vishnupriya
EGUsphere, https://doi.org/10.5194/egusphere-2025-3599, https://doi.org/10.5194/egusphere-2025-3599, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Storm Boris hit central Europe in September 2024 with extreme precipitation and impacts: this work introduces a methodology to strengthen our comprehension of how global warming affects similar events, based on the incorporation of event-specific meteorological information. Furthermore, it contextualizes how the answer to the question "How will Boris-like storms change in a warmer climate?" depends on explicit and implicit methodological choices, with the aim to inform future research.
Hiroaki Naoe, Jorge L. Garcia-Franco, Chang-Hyun Park, Mario Rodrigo, Froila M. Palmeiro, Federico Serva, Masakazu Taguchi, Kohei Yoshida, James A. Anstey, Javier Garcia-Serrano, Seok-Woo Son, Yoshio Kawatani, Neal Butchart, Kevin Hamilton, Chih-Chieh Chen, Anne Glanville, Tobias Kerzenmacher, Francois Lott, Clara Orbe, Scott Osprey, Mijeong Park, Jadwiga H. Richter, Stefan Versick, and Shingo Watanabe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1148, https://doi.org/10.5194/egusphere-2025-1148, 2025
Short summary
Short summary
This study examines links between the stratospheric Quasi-Biennial Oscillation (QBO) and large-scale atmospheric circulations in the tropics, subtropics, and polar regions. The QBO teleconnections and their modulation by the El Niño-Southern Oscillation (ENSO) are investigated through a series of climate model experiments. While QBO teleconnections are qualitatively reproduced by the multi-model ensemble, they are not consistent due to modelled QBO bias and other systematic model biases.
Verónica Martínez-Andradas, Alvaro de la Cámara, Pablo Zurita-Gotor, François Lott, and Federico Serva
Weather Clim. Dynam., 6, 329–343, https://doi.org/10.5194/wcd-6-329-2025, https://doi.org/10.5194/wcd-6-329-2025, 2025
Short summary
Short summary
Global circulation model biases are present when simulating sudden stratospheric warmings (SSWs). These are important extreme phenomena that occur in the wintertime stratosphere, driven by the breaking of atmospheric waves. The present work shows that there is a large spread of the wave forcing during the development of SSWs in different models. In the mesosphere, gravity waves are found to force advection of the residual circulation, while planetary waves tend to decelerate the wind.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025, https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary
Short summary
Europe frequently experiences compound events, with major impacts. We investigate these events’ interactions, characteristics, and changes over time, focusing on socio-economic impacts in Germany and central Europe. Highlighting 2018’s extreme events, this study reveals impacts on water, agriculture, and forests and stresses the need for impact-focused definitions and better future risk quantification to support adaptation planning.
Dillon Elsbury, Federico Serva, Julie M. Caron, Seung-Yoon Back, Clara Orbe, Jadwiga H. Richter, James A. Anstey, Neal Butchart, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Yoshio Kawatani, Tobias Kerzenmacher, Francois Lott, Hiroaki Naoe, Scott Osprey, Froila M. Palmeiro, Seok-Woo Son, Masakazu Taguchi, Stefan Versick, Shingo Watanabe, and Kohei Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-3950, https://doi.org/10.5194/egusphere-2024-3950, 2025
Short summary
Short summary
This study examines how the Madden-Julian Oscillation (MJO), a major tropical weather pattern, is influenced by persistent El Niño or La Niña sea surface temperature conditions during winter. Using a coordinated set of climate model experiments, we find that El Niño strengthens Kelvin waves, speeding up MJO propagation, while La Niña strengthens Rossby waves, slowing it down. Better understanding these interactions between the MJO and ocean helps us better understand natural climate variability.
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Mortimer M. Müller, Joni-Pekka Pietikäinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Sarah Veit, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
Nat. Hazards Earth Syst. Sci., 25, 77–117, https://doi.org/10.5194/nhess-25-77-2025, https://doi.org/10.5194/nhess-25-77-2025, 2025
Short summary
Short summary
Our research, involving 22 European scientists, investigated drought and heat impacts on forests in 2018–2022. Findings reveal that climate extremes are intensifying, with central Europe being most severely impacted. The southern region showed resilience due to historical drought exposure, while northern and Alpine areas experienced emerging or minimal impacts. The study highlights the need for region-specific strategies, improved data collection, and sustainable practices to safeguard forests.
Yoshio Kawatani, Kevin Hamilton, Shingo Watanabe, James A. Anstey, Jadwiga H. Richter, Neal Butchart, Clara Orbe, Scott M. Osprey, Hiroaki Naoe, Dillon Elsbury, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Tobias Kerzenmacher, François Lott, Froila M. Palmerio, Mijeong Park, Federico Serva, Masakazu Taguchi, Stefan Versick, and Kohei Yoshioda
EGUsphere, https://doi.org/10.5194/egusphere-2024-3270, https://doi.org/10.5194/egusphere-2024-3270, 2024
Short summary
Short summary
The Quasi-Biennial Oscillation (QBO) of the tropical stratospheric mean winds has been relatively steady over the 7 decades it has been observed, but there are always cycle-to-cycle variations. This study used several global atmospheric models to investigate systematic modulation of the QBO by the El Niño/La Niña cycle. All models simulated shorter periods during El Niño, in agreement with observations. By contrast, the models disagreed even on the sign of the El Niño effect on QBO amplitude.
Antonio Segalini, Jacopo Riboldi, Volkmar Wirth, and Gabriele Messori
Weather Clim. Dynam., 5, 997–1012, https://doi.org/10.5194/wcd-5-997-2024, https://doi.org/10.5194/wcd-5-997-2024, 2024
Short summary
Short summary
Planetary Rossby waves are created by topography and evolve in time. In this work, an analytical solution of this classical problem is proposed under the approximation of linear wave dynamics. The theory is able to describe reasonably well the evolution of the perturbation and compares well with full nonlinear simulations. Several relevant cases with single and double zonal jets are assessed with the theoretical framework
Michael Schutte, Daniela I. V. Domeisen, and Jacopo Riboldi
Weather Clim. Dynam., 5, 733–752, https://doi.org/10.5194/wcd-5-733-2024, https://doi.org/10.5194/wcd-5-733-2024, 2024
Short summary
Short summary
The winter circulation in the stratosphere, a layer of the Earth’s atmosphere between 10 and 50 km height, is tightly linked to the circulation in the lower atmosphere determining our daily weather. This interconnection happens in the form of waves propagating in and between these two layers. Here, we use space–time spectral analysis to show that disruptions and enhancements of the stratospheric circulation modify the shape and propagation of waves in both layers.
Alice Portal, Fabio D'Andrea, Paolo Davini, Mostafa E. Hamouda, and Claudia Pasquero
Weather Clim. Dynam., 4, 809–822, https://doi.org/10.5194/wcd-4-809-2023, https://doi.org/10.5194/wcd-4-809-2023, 2023
Short summary
Short summary
The differences between climate models can be exploited to infer how specific aspects of the climate influence the Earth system. This work analyses the effects of a negative temperature anomaly over the Tibetan Plateau on the winter atmospheric circulation. We show that models with a colder-than-average Tibetan Plateau present a reinforcement of the eastern Asian winter monsoon and discuss the atmospheric response to the enhanced transport of cold air from the continent toward the Pacific Ocean.
Efi Rousi, Andreas H. Fink, Lauren S. Andersen, Florian N. Becker, Goratz Beobide-Arsuaga, Marcus Breil, Giacomo Cozzi, Jens Heinke, Lisa Jach, Deborah Niermann, Dragan Petrovic, Andy Richling, Johannes Riebold, Stella Steidl, Laura Suarez-Gutierrez, Jordis S. Tradowsky, Dim Coumou, André Düsterhus, Florian Ellsäßer, Georgios Fragkoulidis, Daniel Gliksman, Dörthe Handorf, Karsten Haustein, Kai Kornhuber, Harald Kunstmann, Joaquim G. Pinto, Kirsten Warrach-Sagi, and Elena Xoplaki
Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023, https://doi.org/10.5194/nhess-23-1699-2023, 2023
Short summary
Short summary
The objective of this study was to perform a comprehensive, multi-faceted analysis of the 2018 extreme summer in terms of heat and drought in central and northern Europe, with a particular focus on Germany. A combination of favorable large-scale conditions and locally dry soils were related with the intensity and persistence of the events. We also showed that such extremes have become more likely due to anthropogenic climate change and might occur almost every year under +2 °C of global warming.
Cited articles
Ahmadi-Givi, F., Nasr-Esfahany, M., and Mohebalhojeh, A. R.: Interaction of North Atlantic baroclinic wave packets and the Mediterranean storm track, Q. J. Roy. Meteor. Soc., 140, 754–765,
https://doi.org/10.1002/qj.2171, 2014. a
Ali, S. M., Martius, O., and Röthlisberger, M.: Recurrent Rossby wave
packets modulate the persistence of dry and wet spells across the globe,
Geophys. Res. Lett., 48, e2020GL091452,
https://doi.org/10.1029/2020GL091452, 2021. a
Altenhoff, A. M., Martius, O., Croci-Maspoli, M., Schwierz, C., and Davies,
H. C.: Linkage of atmospheric blocks and synoptic-scale Rossby waves: a
climatological analysis, Tellus A, 60, 1053–1063,
https://doi.org/10.1111/j.1600-0870.2008.00354.x, 2008. a
Ambaum, M. H. P. and Novak, L.: A nonlinear oscillator describing storm track
variability, Q. J. Roy. Meteor. Soc., 140, 2680–2684,
https://doi.org/10.1002/qj.2352, 2014. a, b, c
Branstator, G. and Teng, H.: Tropospheric waveguide teleconnections and their
seasonality, J. Atmos. Sci., 74, 1513–1532, https://doi.org/10.1175/JAS-D-16-0305.1, 2017. a
Cassou, C.: Intraseasonal interaction between the Madden–Julian Oscillation
and the North Atlantic Oscillation, Nature, 455, 523–527,
https://doi.org/10.1038/nature07286, 2008. a
Chang, E. K. M., Lee, S., and Swanson, K. L.: Storm Track Dynamics, J. Climate, 15, 2163–2183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2, 2002. a
Chen, X., Li, C., Ling, J., and Tan, Y.: Impact of East Asian winter monsoon on MJO over the equatorial western Pacific, Theor. Appl. Climatol., 127, 551–561, https://doi.org/10.1007/s00704-015-1649-x, 2017. a
Cooley, J. W. and Tukey, J. W.: An algorithm for the machine calculation of
complex Fourier series, Math. Comp., 19, 297–301,
https://doi.org/10.1090/S0025-5718-1965-0178586-1, 1965. a
Coumou, D., Petoukhov, V., Rahmstorf, S., Petri, S., and Schellnhuber, H. J.: Quasi-resonant circulation regimes and hemispheric synchronization of extreme
weather in boreal summer, P. Natl. Acad. Sci. USA, 111, 12331–12336,
https://doi.org/10.1073/pnas.1412797111, 2014. a
Davini, P., Cagnazzo, C., Gualdi, S., and Navarra, A.: Bidimensional
diagnostics, variability, and trends of Northern Hemisphere blocking, J.
Climate, 25, 6496–6509, https://doi.org/10.1175/JCLI-D-12-00032.1, 2012. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a
Dell'Aquila, A., Lucarini, V., Ruti, P., and Calmanti, S.: Hayashi spectra of
the Northern Hemisphere mid-latitude atmospheric variability in the
NCEP-NCAR and ECMWF reanalyses, Clim. Dynam., 25, 639–652,
https://doi.org/10.1007/s00382-005-0048-x, 2005. a, b, c
European Centre for Medium-range Weather Forecast (ECMWF): The ERA-Interim reanalysis dataset, Copernicus Climate Change Service (C3S), https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim (last access: 8 November 2019), 2011. a
Ferranti, L., Magnusson, L., Vitart, F., and Richardson, D. S.: How far in
advance can we predict changes in large-scale flow leading to severe cold
conditions over Europe?, Q. J. Roy. Meteor. Soc., 144, 1788–1802,
https://doi.org/10.1002/qj.3341, 2018. a
Fragkoulidis, G., Wirth, V., Bossmann, P., and Fink, A. H.: Linking Northern Hemisphere temperature extremes to Rossby wave packets, Q. J. Roy. Meteor. Soc., 144, 553–566, https://doi.org/10.1002/qj.3228, 2018. a
Franzke, C., Fraedrich, K., and Lunkeit, F.: Low-frequency variability in a
simplified atmospheric global circulation model: Storm-track induced
“spatial resonance”, Q. J. Roy. Meteor. Soc., 126, 2691–2708,
https://doi.org/10.1002/qj.49712656905, 2006. a, b
Fromang, S. and Rivière, G.: The effect of the Madden–Julian
Oscillation on the North Atlantic Oscillation using idealized numerical
experiments, J. Atmos. Sci., 77, 1613–1635, https://doi.org/10.1175/JAS-D-19-0178.1, 2020. a
Gollan, G., Bastin, S., and Greatbatch, R. J.: Tropical precipitation
influencing boreal winter midlatitude blocking, Atmos. Sci. Lett., 20, e900, https://doi.org/10.1002/asl.900, 2019. a
Grise, K. M., Son, S.-W., and Gyakum, J. R.: Intraseasonal and interannual
variability in North American storm tracks and its relationship to
equatorial Pacific variability, Mon. Weather Rev., 141, 3610–3625,
https://doi.org/10.1175/MWR-D-12-00322.1, 2013. a
Guo, Y., Shinoda, T., Lin, J., and Chang, E. K. M.: Variations of Northern
Hemisphere storm track and extratropical cyclone activity associated with
the Madden–Julian Oscillation, J. Climate, 30, 4799–4818,
https://doi.org/10.1175/JCLI-D-16-0513.1, 2017. a
Hakim, G. J.: Developing wave packets in the North Pacific storm track, Mon. Weather Rev., 131, 2824–2837,
https://doi.org/10.1175/1520-0493(2003)131<2824:DWPITN>2.0.CO;2, 2003. a
Harnik, N., Messori, G., Caballero, R., and Feldstein, S. B.: The Circumglobal North American wave pattern and its relation to cold events in eastern North America, Geophys. Res. Lett., 43, 11015–11023,
https://doi.org/10.1002/2016GL070760, 2016. a
Hartmann, D. L.: Pacific sea surface temperature and the winter of 2014,
Geophys. Res. Lett., 42, 1894–1902, https://doi.org/10.1002/2015GL063083, 2015. a
Henderson, S. A., Maloney, E. D., and Barnes, E. A.: The influence of the
Madden–Julian Oscillation on Northern Hemisphere winter blocking, J.
Climate, 29, 4597–4616, https://doi.org/10.1175/JCLI-D-15-0502.1, 2016. a, b, c
Hong, C.-C., Hsu, H.-H., Tseng, W.-L., Lee, M.-Y., Chow, C.-H., and Jiang,
L.-C.: Extratropical Forcing Triggered the 2015 Madden–Julian
Oscillation–El Niño Event, Sci. Rep., 7, 46692,
https://doi.org/10.1038/srep46692, 2017. a
Hoskins, B. J. and Ambrizzi, T.: Rossby Wave Propagation on a realistic
longitudinally varying flow, J. Atmos. Sci., 50, 1661–1671,
https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2, 1993. a
Hoskins, B. J. and Hodges, K. I.: The annual cycle of Northern Hemisphere
storm tracks. Part I: Seasons, J. Climate, 32, 1743–1760,
https://doi.org/10.1175/JCLI-D-17-0870.1, 2019a. a
Hoskins, B. J. and Hodges, K. I.: The annual cycle of Northern Hemisphere
storm tracks. Part II: Regional Detail, J. Climate, 32, 1761–1775,
https://doi.org/10.1175/JCLI-D-17-0871.1, 2019b. a
Hoskins, B. J. and Karoly, D. J.: The steady linear response of a spherical
atmosphere to thermal and orographic Forcing, J. Atmos. Sci., 38, 1179–1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2, 1981. a
Hoskins, B. J. and Valdes, P. J.: On the existence of Storm-Tracks, J. Atmos. Sci., 47, 1854–1864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2, 1990. a
Hoskins, B. J., James, I. N., and White, G. H.: The shape, propagation and
mean-flow interaction of large-scale weather systems, J. Atmos. Sci., 40,
1595–1612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2, 1983. a, b, c
Jeong, J.-H., Kim, B.-M., Ho, C.-H., and Noh, Y.-H.: Systematic variation in
wintertime precipitation in East Asia by MJO-induced extratropical
vertical motion, J. Climate, 21, 788–801, https://doi.org/10.1175/2007JCLI1801.1, 2008. a, b
Jolly, E., D’Andrea, F., Rivière, G., and Fromang, S.: Linking warm Arctic winters, Rossby waves, and cold spells: An idealized numerical study, J.
Atmos. Sci., 78, 2783–2799, https://doi.org/10.1175/JAS-D-20-0088.1, 2021. a
Kornhuber, K., Petoukhov, V., Petri, S., Rahmstorf, S., and Coumou, D.:
Evidence for wave resonance as a key mechanism for generating high–amplitude quasi–stationary waves in boreal summer, Clim. Dynam., 49, 1961–1979, https://doi.org/10.1007/s00382-016-3399-6, 2017. a, b
Kornhuber, K., Osprey, S., Coumou, D., Petri, S., Petoukhov, V., Rahmstorf, S., and Gray, L.: Extreme weather events in early summer 2018 connected by a
recurrent hemispheric wave-7 pattern, Environ. Res. Lett., 14, 054002,
https://doi.org/10.1088/1748-9326/ab13bf, 2019. a, b
Kornhuber, K., Comou, D., Vogel, E., Lesk, C., Donges, J. F., Lehmann, J., and Horton, R. M.: Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions, Nat. Clim. Chang., 10, 48–53,
https://doi.org/10.1038/s41558-019-0637-z, 2020. a
Lee, S. and Held, I. M.: Baroclinic wave packets in models and observations, J. Atmos. Sci., 50, 1413–1428, https://doi.org/10.1175/1520-0469(1993)050<1413:BWPIMA>2.0.CO;2, 1993. a
Lin, H. and Brunet, G.: Extratropical response to the MJO: Nonlinearity and
sensitivity to the initial State, J. Atmos. Sci., 75, 219–234,
https://doi.org/10.1175/JAS-D-17-0189.1, 2018. a
Lott, F., Kuttippurath, J., and Vial, F.: A Climatology of the gravest waves in the equatorial lower and middle stratosphere: Method and results for the
ERA-40 Re-Analysis and the LMDz GCM, J. Atmos. Sci., 66, 1327–1346,
https://doi.org/10.1175/2008JAS2880.1, 2009. a
MacRitchie, K. and Roundy, P. E.: The two-way relationship between the
Madden–Julian oscillation and anticyclonic wave breaking, Q. J. Roy.
Meteor. Soc., 142, 2159–2167, https://doi.org/10.1002/qj.2809, 2016. a
Manola, I., Selten, F., de Vries, H., and Hazeleger, W.: “Waveguidability”
of idealized jets, J. Geophys. Res.-Atmos., 118, 10432–10440,
https://doi.org/10.1002/jgrd.50758, 2013. a, b
Martineau, P., Chen, G., and Burrows, D. A.: Wave events: Climatology, trends, and relationship to Northern Hemisphere winter blocking and weather
extremes, J. Climate, 30, 5675–5697, https://doi.org/10.1175/JCLI-D-16-0692.1, 2017. a
Martius, O., Schwierz, C., and Davies, H. C.: Tropopause-Level Waveguides, J. Atmos. Sci., 67, 866–879, https://doi.org/10.1175/2009JAS2995.1, 2010. a
Orlanski, I.: Poleward deflection of storm tracks, J. Atmos. Sci., 55,
2577–2602, https://doi.org/10.1175/1520-0469(1998)055<2577:PDOST>2.0.CO;2, 1998. a
Pelly, J. L. and Hoskins, B. J.: A new perspective on blocking, J. Atmos. Sci., 60, 743–755, https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2, 2003. a
Petoukhov, V., Rahmstorf, S., Petri, S., and Schellnhuber, H. J.: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes, P. Natl. Acad. Sci. USA, 110, 5336–5341,
https://doi.org/10.1073/pnas.1222000110, 2013. a, b, c, d
Randel, W. J. and Held, I. M.: Phase speed spectra of transient eddy fluxes and critical layer absorption, J. Atmos. Sci., 48, 688–697,
https://doi.org/10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2, 1991. a, b, c
Riboldi, J., Grams, C. M., Riemer, M., and Archambault, H. M.: A phase locking perspective on Rossby wave amplification and atmospheric blocking downstream of recurving western North Pacific tropical cyclones, Mon. Weather Rev., 147, 567–589, https://doi.org/10.1175/MWR-D-18-0271.1, 2019. a
Rivière, G. and Drouard, M.: Dynamics of the Northern Annular Mode at
weekly time scales, J. Atmos. Sci., 72, 4569–4590,
https://doi.org/10.1175/JAS-D-15-0069.1, 2015. a
Rossby, C.-G.: Planetary flow patterns in the atmosphere, Q. J. Roy.
Meteor. Soc., 66, 68–87, 1940. a
Röthlisberger, M., Frossard, L., Bosart, L. F., Keyser, D., and Martius,
O.: Recurrent synoptic-scale Rossby wave patterns and their effect on the
persistence of cold and hot spells, J. Climate, 32, 3207–3226,
https://doi.org/10.1175/JCLI-D-18-0664.1, 2019. a, b
Sardeshmukh, P. D. and Hoskins, B. J.: The generation of global rotational flow by steady idealized tropical divergence, J. Atmos. Sci., 45, 1228–1251,
https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2, 1988. a
Schemm, S. and Schneider, T.: Eddy lifetime, number, and diffusivity and the suppression of eddy kinetic energy in midwinter, J. Climate, 31, 5649–5665,
https://doi.org/10.1175/JCLI-D-17-0644.1, 2018. a
Schemm, S., Rivière, G., Ciasto, L. M., and Li, C.: Extratropical cyclogenesis changes in connection with tropospheric ENSO teleconnections to the North Atlantic: Role of stationary and transient Waves, J. Atmos. Sci., 75, 3943–3964, https://doi.org/10.1175/JAS-D-17-0340.1, 2018. a, b
Schemm, S., Wernli, H., and Binder, H.: The storm-track suppression over the western North Pacific from a cyclone life-cycle perspective, Weather Clim. Dynam., 2, 55–69, https://doi.org/10.5194/wcd-2-55-2021, 2021. a
Schwierz, C., Croci-Maspoli, M., and Davies, H. C.: Perspicacious indicators of atmospheric blocking, Geophys. Res. Lett., 31, L06125, https://doi.org/10.1029/2003GL019341, 2004. a, b
Shutts, G. J.: The propagation of eddies in diffluent jetstreams: Eddy
vorticity forcing of “blocking” flow fields, Q. J. Roy. Meteor. Soc.,
109, 737–761, https://doi.org/10.1002/qj.49710946204, 1983. a, b
Small, R., Tomas, R., and Bryan, F.: Storm track response to ocean fronts in a global high-resolution climate model, Clim. Dynam., 43, 805–828,
https://doi.org/10.1007/s00382-013-1980-9, 2014. a
Steinfeld, D. and Pfahl, S.: The role of latent heating in atmospheric blocking dynamics: a global climatology, Clim. Dynam., 53, 6159–6180,
https://doi.org/10.1007/s00382-019-04919-6, 2019. a
Sussman, H., Raghavendra, A., Roundy, P., and Dai, A.: Trends in northern
midlatitude atmospheric wave power from 1950 to 2099, Clim. Dynam., 54,
2903–2918, https://doi.org/10.1007/s00382-020-05143-3, 2020. a
Teng, H. and Branstator, G.: Amplification of waveguide teleconnections in the Boreal summer, Curr. Clim. Change Rep., 5, 421–432,
https://doi.org/10.1007/s40641-019-00150-x, 2019. a
Thompson, D. W. J. and Li, Y.: Baroclinic and barotropic annular variability in the Northern Hemisphere, J. Atmos. Sci., 72, 1117–1136,
https://doi.org/10.1175/JAS-D-14-0104.1, 2015. a, b
Tibaldi, S. and Molteni, F.: On the operational predictability of blocking,
Tellus A, 42, 343–365, https://doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x, 1990. a
Trenberth, K. E.: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen–Palm flux
diagnostics, J. Atmos. Sci., 43, 2070–2087,
https://doi.org/10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2, 1986. a
Wang, S.-Y., Hipps, L., Gillies, R. R., and Yoon, J.-H.: Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO
precursor and anthropogenic warming footprint, Geophys. Res. Lett., 41,
3220–3226, https://doi.org/10.1002/2014GL059748, 2014. a
Wheeler, M. C. and Hendon, H. H.: An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction, Mon. Weather Rev., 132, 1917–1932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2, 2004 (data available at: http://www.bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt, last access: 20 May 2021). a
Wheeler, M. and Kiladis, G. N.: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain, J. Atmos. Sci., 56, 374–399,
https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2, 1999. a, b, c
White, R. H., Kornhuber, K., Martius, O., and Wirth, V.: From atmospheric waves to heatwaves: A waveguide perspective for understanding and predicting concurrent, persistent and extreme extratropical weather, B. Am. Meteorol. Soc., https://doi.org/10.1175/BAMS-D-21-0170.1, online first, 2021. a, b
Wirth, V.: Waveguidability of idealized midlatitude jets and the limitations of ray tracing theory, Weather Clim. Dynam., 1, 111–125,
https://doi.org/10.5194/wcd-1-111-2020, 2020. a, b, c, d
Wirth, V. and Polster, C.: The problem of diagnosing jet waveguidability in the presence of large-amplitude eddies, J. Atmos. Sci., 78, 3137–3151,
https://doi.org/10.1175/JAS-D-20-0292.1, 2021. a, b
Wirth, V., Riemer, M., Chang, E. K. M., and Martius, O.: Rossby wave packets on the midlatitude waveguide – A review, Mon. Weather Rev., 146, 1965–2001, https://doi.org/10.1175/MWR-D-16-0483.1, 2018. a
Woollings, T. and Hoskins, B.: Simultaneous Atlantic–Pacific blocking and
the Northern Annular Mode, Q. J. Roy. Meteor. Soc., 134, 1635–1646,
https://doi.org/10.1002/qj.310, 2008. a
Xu, P., Wang, L., Vallis, G. K., Geen, R., Screen, J. A., Wu, P., Ding, S., Huang, P., and Chen, W.: Amplified waveguide teleconnections along the Polar Front Jet favor summer temperature extremes over Northern Eurasia, Geophys.
Res. Lett., 48, e2021GL093735, https://doi.org/10.1029/2021GL093735, 2021. a
Yang, S., Reinhold, B., and Källén, E.: Multiple weather regimes and
baroclinically forced spherical resonance, J. Atmos. Sci., 54, 1397–1409,
https://doi.org/10.1175/1520-0469(1997)054<1397:MWRABF>2.0.CO;2, 1997.
a
Zheng, C., Kar-Man Chang, E., Kim, H.-M., Zhang, M., and Wang, W.: Impacts of
the Madden–Julian Oscillation on storm-track Activity, surface air
temperature, and precipitation over North America, J. Climate, 31,
6113–6134, https://doi.org/10.1175/JCLI-D-17-0534.1, 2018. a, b
Zimin, A. V., Szunyogh, I., Hunt, B. R., and Ott, E.: Extracting envelopes of
nonzonally propagating Rossby wave packets, Mon. Weather Rev., 134,
1329–1333, https://doi.org/10.1175/MWR3122.1, 2006. a, b
Short summary
A revisited space and time spectral decomposition allows us to determine which harmonics dominate the upper-tropospheric flow evolution over a given time period as well as their propagation. This approach is used to identify Rossby wave patterns with a circumglobal extent, affecting weather evolution over different Northern Hemisphere regions. The results cast light on the processes originating and supporting these wave patterns, advocating at the same time for the usefulness of the technique.
A revisited space and time spectral decomposition allows us to determine which harmonics...