Articles | Volume 4, issue 1
https://doi.org/10.5194/wcd-4-39-2023
https://doi.org/10.5194/wcd-4-39-2023
Research article
 | 
10 Jan 2023
Research article |  | 10 Jan 2023

Revisiting the wintertime emergent constraint of the southern hemispheric midlatitude jet response to global warming

Philipp Breul, Paulo Ceppi, and Theodore G. Shepherd

Related authors

Relationship between southern hemispheric jet variability and forced response: the role of the stratosphere
Philipp Breul, Paulo Ceppi, and Theodore G. Shepherd
Weather Clim. Dynam., 3, 645–658, https://doi.org/10.5194/wcd-3-645-2022,https://doi.org/10.5194/wcd-3-645-2022, 2022
Short summary

Related subject area

Dynamical processes in midlatitudes
Deepening mechanisms of cut-off lows in the Southern Hemisphere and the role of jet streams: insights from eddy kinetic energy analysis
Henri Rossi Pinheiro, Kevin Ivan Hodges, and Manoel Alonso Gan
Weather Clim. Dynam., 5, 881–894, https://doi.org/10.5194/wcd-5-881-2024,https://doi.org/10.5194/wcd-5-881-2024, 2024
Short summary
Large-scale perspective on extreme near-surface winds in the central North Atlantic
Aleksa Stanković, Gabriele Messori, Joaquim G. Pinto, and Rodrigo Caballero
Weather Clim. Dynam., 5, 821–837, https://doi.org/10.5194/wcd-5-821-2024,https://doi.org/10.5194/wcd-5-821-2024, 2024
Short summary
Divergent convective outflow in ICON deep-convection-permitting and parameterised deep convection simulations
Edward Groot, Patrick Kuntze, Annette Miltenberger, and Holger Tost
Weather Clim. Dynam., 5, 779–803, https://doi.org/10.5194/wcd-5-779-2024,https://doi.org/10.5194/wcd-5-779-2024, 2024
Short summary
Changes in the North Atlantic Oscillation over the 20th century
Stephen Outten and Richard Davy
Weather Clim. Dynam., 5, 753–762, https://doi.org/10.5194/wcd-5-753-2024,https://doi.org/10.5194/wcd-5-753-2024, 2024
Short summary
Life cycle dynamics of Greenland blocking from a potential vorticity perspective
Seraphine Hauser, Franziska Teubler, Michael Riemer, Peter Knippertz, and Christian M. Grams
Weather Clim. Dynam., 5, 633–658, https://doi.org/10.5194/wcd-5-633-2024,https://doi.org/10.5194/wcd-5-633-2024, 2024
Short summary

Cited articles

Barnes, E. A. and Polvani, L.: Response of the Midlatitude Jets, and of Their Variability, to Increased Greenhouse Gases in the CMIP5 Models, J. Climate, 26, 7117–7135, https://doi.org/10.1175/JCLI-D-12-00536.1, 2013. a
Bracegirdle, T. J., Shuckburgh, E., Sallee, J.-B., Wang, Z., Meijers, A. J. S., Bruneau, N., Phillips, T., and Wilcox, L. J.: Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence, J. Geophys. Res.-Atmos., 118, 547–562, https://doi.org/10.1002/jgrd.50153, 2013. a
Breul, P.: Code and Data, figshare [code and data set], https://doi.org/10.6084/m9.figshare.21816198.v1, 2023. a, b
Breul, P., Ceppi, P., and Shepherd, T. G.: Relationship between southern hemispheric jet variability and forced response: the role of the stratosphere, Weather Clim. Dynam., 3, 645–658, https://doi.org/10.5194/wcd-3-645-2022, 2022. a
Codron, F.: Relations between Annular Modes and the Mean State: Southern Hemisphere Winter, J. Atmos. Sci., 64, 3328–3339, https://doi.org/10.1175/JAS4012.1, 2007. a
Download
Short summary
Accurately predicting the response of the midlatitude jet stream to climate change is very important, but models show a variety of possible scenarios. Previous work identified a relationship between climatological jet latitude and future jet shift in the southern hemispheric winter. We show that the relationship does not hold in separate sectors and propose that zonal asymmetries are the ultimate cause in the zonal mean. This questions the usefulness of the relationship.